
 International Journal of

Geo-Information

Article

A Multiple Ant Colony Optimization Algorithm for
Indoor Room Optimal Spatial Allocation

Lina Yang 1,2, Xu Sun 1,*, Axing Zhu 2 and Tianhe Chi 1

1 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100864, China;
yangln@radi.ac.cn (L.Y.); chith@126.com (T.C.)

2 Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA; azhu@wisc.edu
* Correspondence: sunxu@radi.ac.cn; Tel.: +86-10-8217-8178

Academic Editors: Sisi Zlatanova, Kourosh Khoshelham, George Sithole and Wolfgang Kainz
Received: 4 March 2017; Accepted: 24 May 2017; Published: 1 June 2017

Abstract: Indoor room optimal allocation is of great importance in geographic information science
(GIS) applications because it can generate effective indoor spatial patterns that improve human
behavior and efficiency. However, few research concerning indoor room optimal allocation has
been reported. Using an office building as an example, this paper presents an integrative approach
for indoor room optimal allocation, which includes an indoor room allocation optimization model,
indoor connective map design, and a multiple ant colony optimization (MACO) algorithm. The
mathematical optimization model is a minimized model that integrates three types of area-weighted
costs while considering the minimal requirements of each department to be allocated. The indoor
connective map, which is an essential data input, is abstracted by all floor plan space partitions and
connectivity between every two adjacent floors. A MACO algorithm coupled with three strategies,
namely, (1) heuristic information, (2) two-colony rules, and (3) local search, is effective in achieving
a feasible solution of satisfactory quality within a reasonable computation time. A case study was
conducted to validate the proposed approach. The results show that the MACO algorithm with these
three strategies outperforms other types of ant colony optimization (ACO), Genetic Algorithm (GA),
and particle swarm optimization (PSO) algorithms in quality and stability, which demonstrates that
the proposed approach is an effective technique for generating optimal indoor room spatial patterns.

Keywords: indoor GIS; optimal spatial allocation; ant colony optimization

1. Introduction

Humans spend almost 87% of their time indoors [1]. It is important to conduct research in indoor
spaces. Some studies have already been performed, such as representation and space subdivision
of indoor spaces [2,3], which provided a thorough technical foundation for further research, such as
indoor room optimal allocation.

In the problem of indoor room optimal allocation, spatial search approaches are used to allocate
specific objects (such as different office departments) to proper indoor space units (such as rooms) to
achieve an optimal spatial layout by considering multiple factors, such as spatial convenience and
personal preference. Skillful indoor spatial allocation, such as reasonably allocated departments in
an office building, can effectively reduce the cost of office communication. Poor allocation can lead
to increased office costs and waste. However, to the best of our knowledge, few studies have been
conducted that focus on indoor room optimal allocation.

Previous studies for spatial optimal allocation involve urban planning, such as city land-use
optimal allocation [4–9], protected ecological area partitioning [10], and farmland management [11].
While establishing models for these problems, macroscopic factors, such as the natural environment
(such as land use suitability, compatibility), economic development (such as land use conversion cost,
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travel time), and spatial/geometrical characteristics (such as distance, contiguity, and compactness)
usually are considered [7]. However human factors, such as the distribution of population and
jobs, are always abstracted and simplified [12]. However, in an indoor environment, human
factors are important because human behavior is closely coupled with the indoor spatial layout [13].
Therefore, human behavior, requirements, and their interaction with the indoor environment should
be emphatically taken into consideration during problem modeling.

Moreover, similar to the spatial optimal allocation in urban planning, indoor room allocation is
an non-deterministic polynomial-time hard (NP-hard) problem in the discrete domain, whose optimal
solution often lies within innumerable combinations of allocable rooms and type alternatives and is
hard to be found by traditional Geographic information sciences (GIS) functions within a reasonable
time. Previous studies proved that the heuristic algorithm is effective at finding near-optimal solutions
by obtaining a trade-off between the quality of solutions and the burden of computation. Numerous
heuristic algorithms such as genetic algorithm (GA) [4,14–16], simulated annealing (SA) [9,17], artificial
immune system (AIS) [6], particle swarm optimization (PSO) [8,18], artificial bee colony (ABC) [5,10],
and ant colony optimization (ACO) [7,19] have been proposed as approaches to spatial optimal
allocation in urban planning.

Among these algorithms, ACO, which simulates a set of cooperating artificial ants seeking
optimal routes (solutions) by local heuristics and knowledge from past experiences [20], is special
because of its unique way of constructing solutions. Many heuristic algorithms, such as GA, AIS,
PSO, and ABC, construct a new solution by neighborhood search manipulation (such as crossover
and mutation) that changes parts of the current solution. Although the random neighborhood search
manipulation increases the solution’s diversity, it also leads to the generation of a large amount of
low quality solutions because heuristic information cannot be generally used in the neighborhood
search procedure, such as the commonly used crossover strategy. Different from it, ACO constructs a
new solution by determining each element of a solution pseudo-randomly one by one. It means that
heuristic information, which is helpful for obtaining an optimal solution of relative high quality [17],
can be applied for the determination of each solution element. Potentially, ACO could be a more
effective algorithm to tackle complex spatial optimization problems in certain areas.

In the area of spatial optimal allocation, ACO has been used to tackle this kind of problem.
Li modified the ACO method for zoning protected natural areas by adjusting three strategies, route
selection probability, heuristic information, and pheromone deposition [19]. However, the proposed
ACO can only be used to handle the land use allocation problem that involves only one land use type.
Liu used a multi-type ant colony optimization (ACO) method to solve the problem with multiple land
use types in large areas [7]. In his modified ACO algorithms, the types of ants correspond to the types
of land uses; the ant colony size equals the number of allocable units in study region, and each ant
occupies a unit according to site selection probabilities. The locations of all the ants form a solution
of the land use allocation problem. It can be seen that the colony size is not scalable and only one
solution is obtained in each iteration, which is different from the essence of ACO that positively feeds
back by the current-best solution among multiple solutions obtained by multiple ants in each iteration.
Moreover, because only one solution is found in each iteration, it will reduce the solution’s diversity,
and will thus be trapped into the local optimal solution easily. Therefore, it is not suitable to introduce
the modified ACO to solve the indoor room allocation problem directly.

Based on the above analysis, this paper presents an optimal model considering human interaction
for indoor spatial allocation. A new multiple ant colony optimization (MACO) algorithm that is able
to effectively allocate multiple objects to indoor space units is proposed to solve this NP-hard problem.
The remainder of the paper is arranged as follows. Sections 2 and 3 introduce the details of the
approach, including indoor spatial data organization, optimization model construction, and MACO
resolution. The approach is tested and illustrated with a case study in Section 4. Finally, Section 5
presents the discussion and conclusions drawn based on previous experiments.
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2. Model Formulation

2.1. Indoor Room Optimal Allocation Model

The goal of establishing an indoor room optimal allocation model is to make the connectivity
cost of people’s communication minimized, the spatial layout of relative departments concentrated,
and the energy consumption reduced. Different optimal allocation models could be established
according to different requirements. For example, in this paper, the following demands are considered.
(1) To ensure the efficiency of internal communication, the rooms that are assigned to the same office
department number should be relatively compact; (2) To enhance the convenience of daily work, the
total connectivity cost of the business department’s rooms to the public department’s rooms should be
minimized; (3) To reduce the energy consumption by utilizing elevators, the total connectivity cost of
all allocated rooms to the building’s exits is low; (4) Considering sustainable development, ensuring
convenience and satisfying all department demands, the remaining rooms’ area should be as large
as possible.

In this paper, the mathematic symbols used in the model establishment are listed in Table 1.

Table 1. The mathematic symbols in indoor room optimal allocation.

Mathematic Symbol Description

{Dk} Office departments
{Ri} Allocable rooms{
Amin

k

}
Each office department’s demand, the minimum working area

Ai The area of each allocable room
TB Department type—business departments
TP Department type—public departments
Np The number of public departments
Nb The number of business departments
Ne The number of building exits
Nr The number of allocable rooms{

Dk
∣∣k = 1, 2, · · · , Np

}
The public departments{

Dk
∣∣k = Np, Np + 1, · · · , Np + Nb

}
The business departments

dij Indoor spatial connectivity cost between two different rooms

xik
The allocation relationship between room i and department k. If room i

is assigned to department k, xik = 1; otherwise, xik = 0.

Based on the first three requirements, three kinds of connectivity cost are defined, (1) Cost1 (shown
in Formula (1)), the connectivity cost within the same department, (2) Cost2 (shown in Formula (2) ),
the connectivity cost of all business departments’ rooms to public departments’, and (3) Cost3 (shown
in Formula (3)), the total connectivity cost from all allocated rooms to the building’s exits. Meanwhile,
considering the fourth requirement, all three connectivity costs are weighted by the room area.

Cost1 =
Nr

∑
i=1

Nr

∑
j=1

Np+Nb

∑
k=1

Aidijxikxjk (1)

Cost2 =
Nr

∑
i=1

Nr

∑
j=1

Np

∑
kp=1

Np+Nb

∑
kb=Np+1

Aidijxikb
xjkp (2)

Cost3 =
Nr

∑
i=1

Np+Nb

∑
k=1

Ne

∑
e=1

Aidiexik (3)

Therefore, we can allocate departments with the minimum value for the following functions.

min(Cost1 + Cost2 + Cost3) (4)
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Nr

∑
i=1

Aixik ≥ Amin
k , k = 1, 2, · · · , Np + Nb (5)

xik ∈ {0, 1} (6)

Formula (5) is the area constraint, which requires that the total area of allocated rooms for each
department must be larger than the department’s minimum area demand.

The computation scale of the problem is (Np + Nb)
Nr , which will increase dramatically with

the increase of Np, Nb and Nr. It is extremely difficult to find the best solution by greedy searches.
Therefore, it is necessary to use a proper heuristic algorithm to find the optimal solution within
reasonable time.

2.2. Indoor Spatial Data Model

The goal of designing indoor spatial data is to obtain the required parameters while solving the
optimization problem, such as the connectivity cost between every two rooms

{
dij
}

, and each room’s
area {Ai}.

In order to be supportive for obtaining the connectivity cost
{

dij
}

, the Geometric Network Model
(GNM) [21] is imported to model the indoor spatial data. GNM is derived from a logical network,
such as the Node-Relation Graph (NRG) in OGC IndoorGML [22], and is used to geometrically and
realistically represent the indoor connectivity relationships. Similar to NRG, GNM represents 3D
entities (such as rooms, exits, corridors) as nodes in a graph in dual space [23]. However, different
from the abstraction of a simple polygon (such as a hallway) to a node in NRG, GNM defines it as line
segments. As shown in Figure 1, Figure 1b is the abstraction of an indoor building in primal space
(Figure 1a) by the NRG models, but its two hallway nodes (H1 and H2) are represented as line features
in the GNM models (shown as the blue line segments in Figure 1c).

In this paper, the main partitions in each floor plan, such as each room, exits, lift lobbies, and
staircases, are abstracted as nodes located in each partition’s entrance. In each floor plan and between
floors, connections (such as hallways, stairs, and elevators) are abstracted as edges to represent the
connectivity among different partitions. Notably, the area of each room Ai and the connectivity costs
of each connection dij should be geographically calculated in primal geographic space.
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Figure 1. Representation of indoor spatial data.

Based on the indoor connectivity data, an origins and destinations (OD) cost matrix is obtained
by setting the point features of all allocable rooms and building exits as origins and destinations.
This matrix and each allocable room’s area are used in the optimization computation as inputs.
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3. Multiple Ant Colony Optimization

3.1. Basic ACO

ACO is a type of swarm intelligence heuristic algorithm that simulates the behaviors and
communication of ants to solve complex optimization problems [20]. In general, five phases are
included in a basic ACO algorithm.

(1) Initializing pheromones. Usually, the pheromone on each node is initialized as the same value.
(2) Constructing solutions. Each artificial ant selects route nodes (solution’s elements) successively

and pseudo-randomly according to the transition probability to form a route (a solution). The transition
probability is determined by the pheromones on all nodes and the heuristic information. Commonly,
the more pheromone deposited on a node, the higher the probability that the node is selected by an ant.

(3) Updating solutions. If a better solution is constructed, the best-so-far solution will be recorded
as the better one.

(4) Updating the pheromones on all nodes after new solutions are constructed by ants. This
contains two kinds of pheromone updating strategies. One is pheromone reinforcement, which is
used to increase the pheromone on each solution’s nodes. The better the solution is, the larger the
pheromone increment is. The other one is pheromone evaporation, which makes the pheromone on
all nodes decrease at a predefined rate and is helpful for ants to “forget” the bad solutions in the
previous iteration. By the combination of these two strategies and multiple repeated iterations, the
pheromones on the optimal route’s nodes increase, thus, the ants tend to converge to the optimal path
(the optimal solution).

(5) Judging the algorithm’s convergence. The convergent condition is usually defined as a
maximum iteration number or maximum iteration time. If the convergent condition is not met, step 2
and step 3 will be executed again, otherwise, the algorithm stops.

3.2. Improvement Strategies

Based on the basic ACO algorithm, this paper proposes multiple ant colony optimization (MACO)
to solve the problem of indoor spatial optimal allocation. Compared to basic ACO, MACO is improved
from three aspects. First, three kinds of heuristic information that are influential to the transition
probability calculation are proposed to navigate each ant’s route selection to areas in the solution space
where the global optimal solution is located. Second, a two-colony optimization rule is proposed to
prevent the ants’ route selection from being trapped in the local optimal solution. Third, a local search
strategy is imported to improve the best solution’s quality in each iteration and also the algorithm’s
overall performance.

3.2.1. Heuristic Information

When implementing indoor spatial allocation, if a fully random strategy is adopted, a large
number of solutions with low quality will be generated, which makes it challenging to find the optimal
solution within a reasonable time. Therefore, in this MACO, three types of connectivity costs in
the problem’s optimization model (the minimum connectivity cost of allocated rooms and exits, the
minimum connectivity cost among rooms that are assigned to the same department, and the minimum
connectivity costs between rooms that belong to different departments) can be treated as the heuristic
information for assigning rooms to each department.

While evaluating the heuristic information, the mathematic symbols are listed as follows (Table 2).
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Table 2. The mathematic symbols in evaluating the heuristic information.

Mathematic Symbols Descriptions

i Room number
k, t Department number
θ(i) The department that room i is assigned to
Θk Θk = {i|θ(i) = k}, all the rooms that are assigned to department k
Θ Θ = ∪Θi, all the rooms that have been allocated

T(k) The type of department k
η(k, i) The heuristic information on node (k, i)

Explicitly, heuristic information η(k, i) can be calculated based on the following
three circumstances.

1. If Θ = ∅ or if Θk = ∅ and ∀t ∈ {1, · · · , k− 1}, T(t) = T(k), then η(k, i) = 1
min{Aidie |e=1,··· ,Ne} ,

which is the reciprocal of the minimum weighted connectivity cost between the allocated room i
and the building exits.

2. If Θk = ∅ and ∃t ∈ {1, · · · , k− 1}, T(t) 6= T(k), then η(k, i) = 1
min{Aidij|j∈Θt ,T(t) 6=T(k)} , which is

the reciprocal of the minimum weighted connectivity cost between the allocated room i and the
allocated rooms whose department type is not T(k).

3. If Θk 6= ∅, then η(k, i) = 1
min{Aidij|j∈Θk} , which is the reciprocal of the minimum weighted

connectivity cost between the allocated room i and the allocated rooms whose department
number is k.

3.2.2. Two-Colony Optimization Strategy

Because of the usage of these three types of heuristic information, the order of allocating
departments has a strong impact on the final allocation solution. In order to ensure more opportunities
for generating solutions with a better order of allocating departments, a two-colony optimization rule
has been imported to MACO. These two ant colonies are of the same size, Nant.

In the phase of solution generation, the first ant colony is used to pseudo-randomly determine
the optimal order of allocating departments according to the transition probability based on the
pheromone. The first-colony pheromone matrix is M1 = {τ1(k, q)}, in which k is the number of the
department and q is the allocation order. If the allocation order of department k is φ(k) and the former
k− 1 departments’ allocating order set is Φ = {φ(1), φ(2), · · · φ(k− 1)}, the transition probability that
the allocating order of department k is set as q is:

P(φ(k) = q) =
τ

γ
1 (k, q)

∑
t/∈Φ

τ
γ
1 (t, q)

(7)

in which γ is the adjustment parameter of pheromone τ1(k, q).
Based on the order obtained by the first colony, the second ant colony assigns rooms to each

department to form solutions (a sample of the solution is shown in Figure 2) according to its transition
probability. The probability is highly related to the heuristic information mentioned in Section 3.2.1
and the second-colony’s pheromones. The second-colony pheromone matrix is M2 = {τ2(k, i)}, in
which k is the number of departments and i is the number of rooms. The transition probability that a
room i is assigned to department k can be expressed as Formula (8):

P(θ(i) = k) =
τα

2 (k, i)ηβ(k, i)
∑

t/∈Θ
τα

2 (k, t)ηβ(k, t)
(8)
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in which α, β are the adjustment parameters of pheromone τ2(k, i) and heuristic information η(k, i)
respectively. The meanings of and Θ can be found in Table 2.
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Figure 2. Solution representation of indoor spatial allocation. The solution can be represented as a
vector of Nr dimensions. The assigned department number of zero indicates that the room is not
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In the phase of pheromone updating, the two colonies use the same elite ant strategy via two
pheromone matrixes, M1 and M2 (Formulas (9)–(11)):

τn(i, k) = ρτn(i, k) +4τn(i, k) +4τbs(i, k) (9)

4 τn(i, k) =

{
Q/ fn xn

ik = 1

0 xn
ik = 0

(10)

4 τbs(i, k) =

{
Q/ f bs xbs

ik = 1

0 xbs
ik = 0

(11)

Here, the pheromone τn
1 (i, k) and τn

2 (i, k) of node (i, k) in M1 and M2 during the iteration n are
represented by the same symbol τn(i, k). ρ ∈ (0, 1) is the pheromone decay parameter, 4τn(i, k) is
the pheromone increment on all nodes of the current best solution in iteration n, 4τbs(i, k) is the
pheromone increment of the best-so-far solution Xbs =

{
xbs

ik

}
, fn is the best objective function value in

iteration n, and f bs is the best function value of the best-so-far solution. Q is a predefined constant,
which is used to ensure that the pheromone increments,4τn(i, k) and4τbs(i, k), are not too large to
lead to a local optimal solution or too small to result in slow convergence relative to the pheromone
τn(i, k) and τbs(i, k).

3.2.3. Local Search

In this MACO, if all ants finish constructing solutions, a greedy local search strategy, swap
exchange, is used to further improve the solution quality. This strategy swaps two rooms that were
originally assigned to different departments to generate a new solution (shown in Figure 3). Because
a local search is a time consuming operation, it is only applied to the best solution in the current
iteration Xcb.
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The procedure of the local search can be expressed as follows.

1. Calculate the accumulated connectivity cost hi =
Nr
∑

j=1

Np+Nb

∑
k=1

dijxikxjk between each room that is

assigned to department k and the other rooms.
2. Select the number of rooms ik = argmaxi{hi|xik = 1} and all unallocated rooms

Ie =
{

i
∣∣xik = 0, k = 1, 2, · · ·Np + Nb

}
to form an allocable room set Iswap = Ie ∪ {ik}.

3. Randomly swap two rooms Ri, Rj, i ∈ Iswap, j ∈ Iswap, and calculate the new solution’s objective
function value. Find the swap operation with the largest improvement value, execute this swap
to obtain a new solution X′ , and let Xcb = X′ .

3.3. Overall Procedure

The overall procedure can be explicitly described as follows.
Input: (1) Indoor connective map, which includes allocable rooms, building exits, room areas, and

connectivity costs; (2) allocation demand data, such as department types and each department’s spatial
area requirements; and (3) ACO parameters, such as population size SN, adjustment parameters of the
pheromone and heuristic information γ, α, β, pheromone update constant Q and decay parameter ρ,
and the maximum iteration number Niter.

Step 1: Initialize the data, such as the pheromone matrix M1 and M2 and the iteration number
g = 0.

Step 2: Execute Steps 2.1–2.3 by each ant to construct solutions.
Step 2.0: Set ant counter a = 1.
Step 2.1: The ant a in the first ant colony determines the departments’ allocating order. Execute

steps 2.1.1–2.1.5.
Step 2.1.1: Set departments’ counter k = 1, departments’ allocating order Φ = ∅.
Step 2.1.2: If k ≤ Np + Nb, go to step 2.1.3, otherwise, go to step 2.2.
Step 2.1.3: Calculate the transition probability by Formula (7) according to pheromone matrix M1.
Step 2.1.3: Calculate the distribution of transition probabilities, Fq = ∑

j/∈Φ,j≤q
P(φ(k) = j).

Step 2.1.4: Generate a random number r, select the value q(q = argmin
{

Fq ≥ r
}

) as the allocating
order of department k, φ(k) = q.

Step 2.1.5: Φ = Φ ∪ {φ(k)}, k = k + 1. Go to step 2.1.2.
Step 2.2: Based on the order obtained in Step 2.1, the ant a in the second colony assign rooms to

each department to obtain a solution. Execute steps 2.2.1–2.2.10.
Step 2.2.1: Set departments’ counter k = 1, the allocable rooms set R = {1, 2, · · · , Nr}, and the

allocation solution as a zero matrix X = 0Nr ,Np+Nb .
Step 2.2.2: If k ≤ Np + Nb, go to step 2.2.3, otherwise, go to step 2.3.
Step 2.2.3: Determine the department q that will be allocated in the current calculation, q = φ(k).
Step 2.2.4: Calculate the heuristic information according to Section 3.2.1.
Step 2.2.5: Calculate the transition probability by Formula (8) according to the pheromone matrix

M2 and the heuristic information obtained in step 2.2.4.
Step 2.2.6: Calculate the distribution of transition probabilities, Ft = ∑

i/∈Θ,i≤t
P(θ(i) = q).

Step 2.2.7: Generate a random number r, and select the value t(t = argmin{Ft ≥ r}) as the room

that was allocated to department q, x(a)
tj =

{
1 j = q

0 j 6= q
.

Step 2.2.8: Update the set of allocable rooms, R = R− {t}.

Step 2.2.9: If
Nr
∑

i=1
Aixiq ≥ Amin

q , go to step 2.2.10, otherwise, go to step 2.2.4.

Step 2.2.10: k = k + 1. Go to step 2.2.2.
Step 2.3: Update the current-best solution.
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Step 2.3.1: Calculate the objective function value f according to Formulas (1)–(4).
Step 2.3.2: If f < f cb, go to step 2.3.3, otherwise, go to step 2.4.
Step 2.3.3: Update the current-best objective function value f cb = f , the current best allocating

order of departments Φcb = Φ, and the current-best room allocation solution Xcb =
{

x(a)
ij

}
Nr ,Np+Nb

.

Step 2.4: a = a + 1, if a ≤ Nant, go to step 2.1, otherwise, go to step 3.
Step 3: Apply local search to the best solution Xcb in the current iteration to further improve the

quality of the current-best solution.
Step 4: Update the best-so-far solution.
Step 4.1: If f cb < f bs, go to step 4,2, otherwise, go to step 5.
Step 4.2: Update the best-so-far objective function value f bs = f cb, the best-so-far allocating order

of departments Φbs = Φcb, and the best-so-far room allocation solution Xbs = Xcb.
Step 5: Update the pheromone Matrix M1 and M2 by Formulas (9)–(11).
Step 6: Set g = g + 1. Evaluate the convergence. If g < Niter, repeat steps 2–5; otherwise, stop.
Output: The best-so-far solution Xbs.

3.4. Time Complexity

In this paper, the quantities of departments and rooms are Np + Nb and Nr, respectively, the
maximum iteration number is Niter, and the size of ant colony is Nant. The MACO algorithm’s
computational time complexity can be analyzed as follows.

As shown in Table 3, the time complexity of the objective function value calculation is
C( f ) = O

(
(Np + Nb)

2 + Nr

)
, which is governed by the calculation of Cost2 and Cost3. The time

complexity of the ant’s behavior is O
(

Nant ×
(
(Nb + Np)

4 + Nr
3
))

, explicitly shown in Table 4.

Therefore, after Niter iterations, the total time complexity is O
(

Nant × Niter ×
(
(Nb + Np)

4 + Nr
3
))

.

Table 3. Computational time complexity of the objective function value calculation.

Main Steps Computational Complexity

Calculating Cost1 using Formula (1) O(Np + Nb)

Calculating Cost2 using Formula (2) O
(
(Np + Nb)

2
)

Calculating Cost3 using Formula (3) O(Nr)

Table 4. Computational time complexity of ants’ behaviors in each iteration.

Main Steps Computational Complexity

For the first ant colony

Determine the optimal order of allocating
departments O

(
Nant × (Np + Nb)

2
)

Updating pheromone O
(
(Np + Nb)

2
)

For the second ant colony

Calculating heuristic information O
(

Nant × Nr
2
)

Assigning rooms to each department and
calculating the objective function value O

(
Nant × (Np + Nb)× Nr × C( f )

)
Applying local search to the current-best

solution and calculating the objective
function value

O
(
(Np + Nb)

2 × C( f )
)

Updating pheromone O
(
(Np + Nb)× Nr

)
4. Experiment

In this experiment, the proposed MACO algorithm is coded in MATLAB 2012b software and
implemented on a PC with an Intel (R) Xeon (R) CPU E3-1230 @ 3.3 GHz and 16 GB RAM using the
Windows 7 64-bit operating system.
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4.1. Experimental Data Description

This paper uses an office building as a case study. The building contains five floors, three elevators,
and three staircases. There are 145 allocable rooms of different areas. The total area is 3089 m2, the
smallest area is 8 m2, and the largest area is 36 m2. Considering factors such as electric energy savings
and strenuous stair climbing, the connectivity cost of each elevator that connects two adjacent floors is
10 meters, and each staircase’s connectivity cost is 12 m. The connectivity cost of rooms on the same
floor is set as its practical connective distance.

The office building’s indoor connective map can be obtained through the software of ARCGIS 10.0,
which is shown in Figure 4. There are 16 departments to be allocated, and their minimum area
requirements are listed in Table 5. There are 16145 total candidate solutions in this case study.
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Table 5. The allocation requirements of the office building in the case study.

Department Type Department No. Minimum Area (m2)

Public Department 1 100
2 100
3 80
4 60
5 100

Business Department 6 100
7 140
8 150
9 180
10 210
11 300
12 180
13 260
14 320
15 180
16 220
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4.2. MACO Parameter Selection

The main parameters concerning MACO include SN, α, β, γ, ρ, Q, and Niter. In this experiment,
the converging condition is set as Niter = 500, or the current-best solution is the best-so-far solution for
ten successive times. Based on the preliminary experiment and experiences [19,24,25], an orthogonal
experimental approach was used to determine the values of these parameters among the following
value ranges: SN ∈ {20, 40, 60, 80, 100}, α ∈ {1, 3, 5, 7, 9}, β ∈ {1, 3, 5, 7, 9}, γ ∈ {1, 3, 5, 7, 9},
ρ = {0.9, 0.95, 0.99, 0.995, 0.999}, and Q ∈

{
103, 104, 105, 106, 107}. The parameter selection

experiments were designed as shown in Table 6. Each experiment was run ten times.

Table 6. Parameter selection design.

Experiment ID SN α β γ ρ Q

1 20 1 1 1 0.9 1000
2 20 3 3 3 0.95 10,000
3 20 5 5 5 0.99 100,000
4 20 7 7 7 0.995 1,000,000
5 20 9 9 9 0.999 10,000,000
6 40 1 3 5 0.995 10,000,000
7 40 3 5 7 0.999 1000
8 40 5 7 9 0.9 10,000
9 40 7 9 1 0.95 100,000

10 40 9 1 3 0.99 1,000,000
11 60 1 5 9 0.95 1,000,000
12 60 3 7 1 0.99 10,000,000
13 60 5 9 3 0.995 1000
14 60 7 1 5 0.999 10,000
15 60 9 3 7 0.9 100,000
16 80 1 7 3 0.999 100,000
17 80 3 9 5 0.9 1,000,000
18 80 5 1 7 0.95 10,000,000
19 80 7 3 9 0.99 1000
20 80 9 5 1 0.995 10,000
21 100 1 9 7 0.99 10,000
22 100 3 1 9 0.995 100,000
23 100 5 3 1 0.999 1,000,000
24 100 7 5 3 0.9 10,000,000
25 100 9 7 5 0.95 1000

Based on the range analysis method of orthogonal experiments [26], the results are summarized
in Table 7. Ki is the average value of all solutions’ objective function value, while the corresponding
parameter value is set as the ith value in its candidate value range. For example, the number 25.39355
in the first row and first column refers to the average objective value of all solutions with SN = 20.
The range R is the gap between the maximum and minimum value, which reflects the objective’s
fluctuation range with the change of a single parameter’s value. A larger value of R implies a more
important influence of the corresponding parameter on the final results. Therefore, the primary order
of the six parameters is β > Q > α > γ > ρ > SN. The optimal parameters’ value is the ith value in
its candidate range if Ki maintains the minimum objective value. Therefore, the suggested parameter
values are SN = 80, α = 1, β = 5, γ = 1, ρ = 0.9, and Q = 1000.
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Table 7. Results of the orthogonal experiments. The bold numbers are the minimal value in each
column in the first five rows.

Statistic Criterion SN α β γ ρ Q

K1 (×105) 25.39355 23.14087 29.45160 24.47543 24.75974 22.22692
K2 (×105) 25.41501 24.98020 24.56443 25.64599 24.86951 24.90870
K3 (×105) 25.27312 25.98248 24.10325 24.59825 25.90307 26.81958
K4 (×105) 25.10221 26.37223 24.83291 27.34773 25.52166 26.56158
K5 (×105) 26.20184 26.90995 24.43355 25.31833 26.33175 26.86895
Range R 1.09963 3.76908 5.34835 2.87230 1.57201 4.64203

Primary order 6 3 1 4 5 2
Optimal parameter value 80 1 5 1 0.9 1000

4.3. Experimental Results and Analysis

Based on the parameter selection experiments, we obtain a set of parameters SN = 80, α = 1,
β = 5, γ = 1, ρ = 0.9, and Q = 1000, that are expected to achieve favorable results.

One optimal MACO solution was selected for result analysis, and its statistic result is summarized
in Table 8. Because of the area-weighted connectivity cost in the optimization model, it is impossible
for an optimal solution to assign too many rooms to a department. From the table, we find that the area
of each department’s allocated rooms is close to its required minimal area. This result is reasonable for
meeting the sustainable development requirement; the remaining rooms’ area should be as large as
possible, while ensuring convenience and satisfying all department demands.

Table 8. Statistics of each department’s allocated rooms.

Department ID Room Number Room Area (m2) Required Area (m2)

1 3 102 100
2 3 105 100
3 3 81 80
4 2 70 60
5 3 102 100
6 6 100 100
7 7 141 140
8 8 150 150
9 10 181 180
10 12 212 210
11 12 303 300
12 10 181 180
13 11 261 260
14 13 320 320
15 8 182 180
16 13 220 220
0 * 21 364 -

Note: * A department ID of zero refers to the unallocated rooms.

The solution’s spatial allocation is depicted in Figure 5. From the figure, it can be found that
almost all of the public departments are centered on the middle floors to reduce the connectivity cost to
other business departments, which matches our common experience. Besides, we find that the rooms
assigned to the same department are concentrated on the same floor; this condition arises because of
the sufficient allocable rooms in each floor and relatively large connectivity cost settings of elevators
and staircases between two adjacent floors while considering factors such as electric energy saving and
stair climbing. As a result, the unallocated rooms on one floor are not assigned to a department if their
areas cannot satisfy any department’s minimal requirements. Thus, it is reasonable that some rooms
are unallocated on low floors, even though they may increase the connectivity cost of all allocated
rooms to building exits.
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Notably, a few department rooms are not closely concentrated, shown as the rooms in red ovals
in Figure 6. In Figure 6A, the rooms of department 3, R1 in the red circle, are not effectively spatially
close to other rooms with the same department number, because all the connectivity costs are weighted
by room areas. The area of all rooms labeled as department 3 is 80 m2, equal to the department’s
minimal area demand. If room R2 (16 m2) or room R3 (14 m2) but not room R1 (11 m2) are assigned
to department 3, the area-weighted connectivity costs would increase and result in a worse objective
function value, which was approved by executing local search operations. Similar to the situation
that occurred in the third floor (Figure 6B), rooms R4 and R6 with the same department number
are separated. From the perspective of spatial aggregation, if the types of rooms R4 and R5 were
exchanged, or the types of rooms R6 and R7 were exchanged, the costs within the same department,
Cost1, would be reduced. However, the exchange trials show that the cost between business and public
departments, Cost2, will increase at a greater rate, which can be seen in Table 9. It proves the optimality
and reasonability of the solution generated by MACO.ISPRS Int. J. Geo-Inf. 2017, 6, 161  14 of 20 
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Table 9. Comparison of the exchange trials while validating the optimality of the solution generated by
MACO. The bold numbers are the minimal value among all comparisons.

Comparison
Department Numbers that

Rooms Are Assigned to Cost1
(×105)

Cost2
(×105)

Cost3
(×105)

Objective
Value (×105)

R4 R5 R6 R7

The optimal allocation 4 6 4 7 2.7073 14.733 1.3877 18.828
Exchange trials 1 6 4 4 7 2.7029 14.762 1.3877 18.853
Exchange trials 2 4 6 7 4 2.7044 14.749 1.3877 18.841
Exchange trials 3 6 4 7 4 2.7000 12.778 1.3877 18.865

4.4. Algorithm Validation

4.4.1. Comparison of the Improved Strategies

The proposed MACO algorithm is compared with three other types of ACO methods with
different strategies (shown in Table 10). ACO-1 does not use the heuristic information while calculating
the transition probability to form a solution. Compared to MACO’s overall procedure, ACO-1 will not
execute step 2.2.4, and the probability’s calculation in step 2.2.5 is based on Formula (7) rather than
Formula (8). ACO-2 does not use the local search strategy to further improve the current-best solution’s
quality, whose procedure is the same as MACO’s procedure without step 3. ACO-3 utilizes only one
ant colony to construct a solution. Instead of the first ant colony determining the order of allocating
departments pseudo-randomly in MACO, the order of allocating departments is totally determined
randomly in ACO-3. It means that its overall procedure does not contain all the operations on the
first colony in MACO, which mainly include step 2.1 and step 5 concerning the updating pheromone
matrix M1.
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Table 10. Comparison of the improved strategies.

Experiment ID Solution Construction
Local Search

Transition Probability

Two-Colony Strategy Pheromone Heuristic Information

MACO
√ √ √ √

ACO-1
√ √ √

×
ACO-2

√
×

√ √

ACO-3 ×
√ √ √

The statistical results of the experiments after ten iterations of each algorithm are shown in
Table 11.

Table 11. Statistical results of different strategies’ comparison experiments. The bold numbers are the
minimal objective function value among all comparable algorithms.

Experiment ID
Best Objective
Function Value

(×105)

Average Objective
Function Value

(×105)

Standard
Deviation (×105)

Average Computation
Time Per Iteration

(Seconds)

MACO 18.82804 19.74889 0.46364 2.6952
ACO-1 24.83096 25.81269 0.60610 1.8989
ACO-2 19.73300 20.71029 0.58900 2.4516
ACO-3 19.12111 19.95435 0.78379 2.5103

Table 11 clearly shows that MACO using the strategies proposed in this paper outperforms other
types of ACO algorithms in quality and stability. The importance of each strategy can be observed.
(1) The experiment of ACO-1 that lacks heuristic information produced the worst results, which
indicates that heuristic information plays the most important role in achieving a solution of high
quality. (2) The strategy of local search also plays an essential role for satisfactory results since ACO-2
that lacks local search can only obtain results ranking as second best. (3) Relative to the two strategies
discussed above, the strategy of a two-colony rule plays a relatively small role in solution quality
because ACO-3’s results are nearest to the MACO results. However, ACO-3 exhibited the least stability
with the largest standard deviation.

The approximate computation time of these three strategies, heuristic information, local search,
and two-colony rules was 0.7963, 0.2436, and 0.1849 s per iteration, respectively. These values are
shown in Figure 7 with the objective function value gap from MACO without using one of these
strategies. Figure 7 shows that the heuristic information strategy is relatively time consuming, but it is
the most effective strategy to improve the solution quality. The total computation time of MACO is
acceptable for practical application.
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Taking each experiment’s best result as an example, the best-so-far solution found in each iteration
of each algorithm is depicted in Figure 8.
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The curve of ACO-1 shows that this algorithm always has the worst solution with the largest
objective function value during the optimization procedure, which implies that it cannot achieve
a satisfactory result without the incorporation of the heuristic information. The curves of MACO,
ACO-2, and ACO-3 indicate that the objective function values are evidently optimized before the 200th
iteration and that these three algorithms have similar performance while exploring new solutions.
However, with the implementation of optimization, if the iteration is more than 300, MACO can
achieve better solutions than ACO-2 and ACO-3. Different from ACO-2 and ACO-3, both MACO
and ACO-1 provide convergence because the optimal solution is found ten successive times within
500 iterations, which means that the strategies of heuristic information and two-colony rules can
effectively reduce a solution’s randomness while ensuring its diversity.

4.4.2. Comparison of the Different Algorithms

In order to validate the algorithm’s generality and effectiveness, we use three sets of simulated data
and two different intelligent algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO), to make comparisons. The simulated data include randomly generated indoor spatial data
(shown in Figure 9) and allocation requirements (Table 12).
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Table 12. Random generated allocation requirements data.

Dataset ID
Public Department Business Department

Department No. Minimum Area (m2) Department No. Minimum Area (m2)

A 1 15 1 30
2 20 2 40

B 1 40 1 90
2 40 2 70

3 80
4 70

C 1 80 1 120
2 100 2 180

3 200
4 140
5 160

While using GA and PSO to solve the problem of indoor room allocation, the same strategy
as MACO is used to generate the initial solutions. In the GA algorithm, crossover operations that
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exchange the department types of two randomly selected rooms with the same position in two
solutions, and mutation operations that swap the department types of two randomly selected rooms
with different positions in a solution, are combined together to generate new solutions. Similar to [8],
the PSO in this comparison experiment adopts a solution neighborhood search rule with the same
genetic reproduction mechanisms as GA, namely crossover and mutation, to generate new solutions. It
is notable that non-feasible solutions will be easily generated by such neighborhood search strategies.
Therefore, the following two steps will be adopted to adjust the non-feasible solution to being feasible.

Step 1. For each department k whose allocated room area Aallocated
k is larger than its minimal

requirement Amin
k , randomly select a room with the department type k and set its status as unallocated

until Aallocated
k ≤ Amin

k .
Step 2. For each department k (Aallocated

k < Amin
k ), pseudo-randomly assign a room to it

according to the probabilities determined by heuristic information mentioned in Section 3.2.1 until the
department’s area demand is satisfied.

After thirty calculations with the convergent condition that the current-best solution is the
best-so-far solution for ten successive times, the statistical results are listed in Table 13. It clearly shows
that MACO outperforms GA and PSO in the problem of indoor room allocation with smaller objective
function values and standard deviations.

Table 13. Statistical results of the different algorithms’ comparison experiments.

Data Set ID Algorithm Best Objective Function
Value (×105)

Average Objective
Function Value (×105)

Standard
Deviation (×105)

A MACO 1.062468 1.230582 0.117381
Genetic Algorithm(GA) 1.062468 1.262189 0.104001

Particle Swarm
Optimization (PSO) 1.062468 1.178371 0.08068

B MACO 16.00452 16.68899 0.684466
GA 18.30258 21.09572 0.959144
PSO 18.99274 20.59133 1.311235

C MACO 67.42195 69.78997 1.575588
GA 79.20612 89.7569 4.959768
PSO 92.55909 98.81198 2.989783

5. Discussion and Conclusions

Similar to city land use allocation, indoor spatial optimal allocation is a complex process in
which the complexity of searching for an optimum solution increases enormously with increases in
the number of objects to be allocated and the size of the data set. However, indoor spatial optimal
allocation has its own distinguishing characteristics. One is that human behavior should be considered
in optimization modeling. The other is that the solving algorithm for this discrete domain problem
is different since the constraints of the optimization model are more complex. Therefore, this paper
derives an indoor spatial allocation model by minimizing certain area-weighted connectivity costs and
proposes a MACO algorithm to solve the problem. The proposed algorithm contains three effective
strategies, heuristic information, two-colony rules, and local search. A series of experiments proves
that MACO is an efficient technique for generating alternative indoor allocation patterns.

This paper focused primarily on the application of an office building’s indoor spatial optimal
allocation. Based on the model proposed in this paper, the objective function and constraints could
be added or modified for different allocation demands in other application scenarios. The solution is
easily extended to other indoor spatial allocation problems, such as allocation in school buildings and
commercial centers. The indoor map processing and model optimization algorithm proposed in this
paper is versatile and can accommodate other indoor spatial allocation problems.

However, some potential limitations exist that can be summarized from two points of view. First,
the proposed model of indoor spatial optimal allocation is a simple version of a practical problem.
For example, (1) only two types of departments, business and public, are considered in this model,
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(2) the tightness differences between different business departments and public departments are not
considered, and (3) the demand differences of different departments for floors are not considered.
Based on certain supportive data, these limitations could be eliminated. For the first limitation, the
parameters of department type could be extended. For the second, the connectivity costs between
business and public departments could have different weights. The higher the weight is, the closer the
two departments are. For the third limitation, an index of demand suitability could be proposed, and
an objective function that maximizes the total suitability could be established.

Second, ACO is a type of random algorithm, which means that it does not necessarily find the
best solution; it can only provide a set of optimal solutions for the decision maker. In addition, as the
scale of the data rises, the computation time of ACO increases dramatically. Methods to improve its
calculation efficiency are a recommended topic for further study.
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