
 International Journal of

Geo-Information

Article

The SSP-Tree: A Method for Distributed Processing
of Range Monitoring Queries in Road Networks

HaRim Jung ID and Ung-Mo Kim *

College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Korea;
harim3826@gmail.com
* Correspondence: ukim@skku.edu; Tel.: +82-31-290-7118

Received: 11 August 2017; Accepted: 24 October 2017; Published: 26 October 2017

Abstract: This paper addresses the problem of processing range monitoring queries, each of which
continuously retrieves moving objects that are currently located within a given query range. In particular,
this paper focuses on processing range monitoring queries in the road network, where movements
of the objects are constrained by a predefined set of paths. One of the most important challenges of
processing range monitoring queries is how to minimize the wireless communication cost and the
server computation cost, both of which are heavily dependent on the amount of location-update stream
generated by moving objects. The traditional centralized methods for range monitoring queries assume
that moving objects periodically send location-updates to the server. However, when the number of
moving objects becomes increasingly large, such an assumption may no longer be acceptable because
the amount of location-update stream becomes enormous. Recently, some distributed methods have
been proposed, where moving objects utilize their available computational capabilities for sending
location-updates to the server only when necessary. Unfortunately, the existing distributed methods
only deal with the objects moving in Euclidean space, and thus they cannot be extended to processing
range monitoring queries over the objects moving along the road network. In this paper, we propose
the distributed method for processing range monitoring queries in the road network. To utilize the
computational capabilities of moving objects, we introduce the concept of vicinity region. A vicinity
region, assigned to each moving object o, makes o monitor whether or not it should be included in the
results of nearby queries. The proposed method includes (i) a new spatial index structure, called the
Segment-based Space Partitioning tree (SSP-tree) whose role is to efficiently search the appropriate
vicinity regions for moving objects based on their heterogeneous computational capabilities and (ii)
the details of the communication strategy between the server and moving objects, which significantly
reduce the wireless communication cost as well as the server computation cost. Through simulations,
we verify the effectiveness for processing range monitoring queries over a large number of moving objects
(up to 100,000) in the road network (modeled as an undirected graph).

Keywords: spatial databases; location-based services; road networks; range monitoring queries;
mobile devices; energy efficiency

1. Introduction

The proliferation of handheld computing devices equipped with positioning systems has led
to the rapid growth of Location-Based Services (LBSs) [1]. In this paper, we study the problem of
processing range monitoring queries. A range monitoring query q = (q.p, q.d), issued over a set of
moving objects O, (i) retrieves a subset of moving objects Ó (⊆ O) that are located within a query
distance q.d from a query point q.p; and (ii) continuously updates Ó as the moving objects change their
location. Range monitoring queries often play an important role for supporting LBSs. For example,
let us consider the following scenarios. A gas station owner (i.e., client) wants to send promotional

ISPRS Int. J. Geo-Inf. 2017, 6, 322; doi:10.3390/ijgi6110322 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-8538-8889
http://dx.doi.org/10.3390/ijgi6110322
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2017, 6, 322 2 of 26

coupons to all cars (i.e., moving objects) currently located near her gas station; a child safety service
provider (i.e., client) wants to monitor the potential dangerous areas to alert parents when their
children (i.e., moving objects) enter these areas; a traffic management department wants to monitor
the traffic conditions of the main highways in a city. In such scenarios, the functionality of monitoring
moving objects that are currently located within a region of interest is highly required.

A large number of methods for processing range monitoring queries were proposed [2–14],
which can be broadly classified into two categories according to the mobility of query points; one deals
with static query points (e.g., facilities such as the gas station mentioned above) [2–7], whereas the other
deals with moving query points (e.g., free taxis looking for the nearby passengers) [8–14]. Our proposed
method belongs to the former category. Most existing methods for processing range monitoring
queries are highly centralized in the sense that moving objects periodically send location-updates
to the server, and that the server carries out all the computations for processing range monitoring
queries [1]. Therefore, their focus is developing algorithms for efficiently process the queries at the
server side. However, when the number of moving objects becomes very large, they may suffer from
a severe communication bottleneck as well as overwhelming server workload due to a huge amount
of location-update stream generated by the moving objects.

One of the key challenges of processing range monitoring queries is how to minimize the
wireless communication cost and the server computation cost, both of which heavily depend on
the amount of location-update stream. As the amount of location-update stream is increased,
the wireless communication cost and the server computation cost are also increased accordingly.
Recently, some distributed methods, which aim to reduce the amount of location-update stream by
utilizing the computational capabilities of moving objects, have been proposed [2,3]. In the distributed
methods, the server assigns each moving object o several queries, and o locally monitors its movement
against these queries. Only when o affects the current result of any of the assigned queries, does it send
a location-update to the server to let the server update the result of the corresponding query. As such,
in the distributed methods, moving objects no longer need to periodically send location-updates to the
server, and thus the amount of location-update stream can be reduced. The additional benefit of the
distributed methods is that the moving objects can save energy consumption by reducing the number
of wireless message transmissions (i.e., the number of location-updates sent to the server). Please note
that a wireless message transmission is an energy expensive operation.

Unfortunately, the existing distributed methods only deal with the objects moving freely in
Euclidean space. In most real-life scenarios of LBSs, the objects are allowed to move only on
a pre-defined set of paths specified by the underlying road network. In Euclidean space, the distance
between a moving object o and a query point q.p is defined as the length of the straight-line connecting
them, whereas in the road network, the distance between o and q.p is defined as the total length
of the shortest path connecting them. Therefore, the existing distributed methods cannot support
range monitoring queries in the road network. For example, let us consider a range monitoring query
q = (q.p, q.d), where q.p is shown in Figure 1 and q.d = 10. As shown in Figure 1a, if q is issued over
a set of moving object O = {o1, o2, o3, o4, o5, o6} in Euclidean space, its current result is {o3, o4, o5, o6},
where the red circle in the figure represents the query range of q. On the other hand, as shown in
Figure 1b, if q is issued over O in the road network, its current result is {o3, o6}, where a set of red line
segments in the figure represents the query range of q. (Note: Each number in brackets in Figure 1b
indicates the distance between oi (1≤i≤6) ∈ O and q.p in the road network.) We refer to each line
segment that belongs to the query range in the road network as the query segment.

In this paper, we propose the distributed method for processing range monitoring queries in the
road network. To utilize the computational capabilities of moving objects, we introduce the concept of
vicinity region. Given a moving object o, o’s vicinity region, denoted by VR(o), is a rectangular region,
which contains (i) the point of o’s current location and (ii) a number of query segments. By letting the
server assign o (i) VR(o) and (ii) query segments inside VR(o), o can monitor by itself whether it affects
the results of nearby queries while it is moving. The moving object o sends a location-update to the

ISPRS Int. J. Geo-Inf. 2017, 6, 322 3 of 26

server whenever (i) it leaves VR(o) or (ii) it affects the result of some nearby query q. In the former
case, the server assigns o a new vicinity region together with new query segments, while in the latter
case, the server updates the result of q accordingly.

(a)

o1

o2

o3

o4

o5

o6
q.p

o1 (18)

o2 (20)

o3 (8)

o4 (18)

o5 (25)

o6 (6)q.p

(b)

10 distance between o3 and q.p

10

Figure 1. Difference between Euclidean space and the road network. (a) The query range in Euclidean
space; (b) The query range in the road network.

One critical problem is how to determine the suitable size of a vicinity region VR(o) for each
moving object o. If VR(o) is too small, o needs to frequently send a location-update to the server
for receiving a new vicinity region. On the other hand, if VR(o) is too large, o needs to monitor
a large number of queries, which imposes a computationally intensive burden on o. In general,
a handheld computing device carried by o executes multiple applications, and thus if a single LBS
application occupies substantial computational resources, the service quality of the other applications
may deteriorate drastically. With this problem in mind, we propose a new spatial index structure,
called the Segment-based Space Partitioning tree (SSP-tree). The role of the SSP-tree to efficiently search the
appropriate vicinity regions for moving objects based on their heterogeneous computational capabilities.
We also describe the details of the communication strategy between the server and moving objects for
cooperative processing of range monitoring queries in the road network.

In summary, we propose (i) the concept of vicinity region; (ii) the SSP-tree for vicinity region
search; and (iii) the vicinity region based communication strategy between the server and moving
objects for distributed processing of static range monitoring queries. Through simulations, we verify
the effectiveness of the proposed method for processing static range monitoring queries in terms of the
wireless communication cost and the server computation cost.

2. Problem Statement and System Overview

2.1. Background and Problem Statement

In this paper, we address the problem of processing range monitoring queries in the road network.
The road network is modeled as an undirected graph G = (V, E), where V = {v1, v2 . . . , v|V|} is a set
of vertices and E(⊆ V ×V) = {vivj|1 ≤ i ≤ |E|, 1 ≤ j ≤ |E|, i 6= j} is a set of edges. A vertex v ∈ V
corresponds to a road intersection or dead-end. On the other hand, an edge vivj ∈ E corresponds to a road
segment, which connects two vertices vi and vj. For convenience of notation, we sometimes indicate
an edge vivj as e. We can assume that each road segment of the road network is a straight line because
a curved road segment can be transformed into a set of straight lines by adding extra vertices and edges to
G. Therefore, the length of an edge vivj can be the Euclidean distance between its two endpoints vi and
vj. Hereafter, we use distE(·, ·) to denote the Euclidean distance between any two points (including the
vertices) in the road network G.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 4 of 26

Definition 1. Given two vertices va and vb in the road network G = (V, E), where vavb /∈ E, a path from va

to vb, denoted by P(va, vb), is a sequence of vertices (vp1 , vp2 . . . , vpk) such that vp1 = va, vpk = vb, and for
each consecutive pair of vertices (vpi , vpi+1) for all 1 ≤ i < k, the condition: vpi vpi+1 ∈ E holds. Then, the path
length of P(va, vb) is calculated as:

L(P(va, vb)) =
k−1

∑
i=1

distE(vpi , vpi+1), (1)

where vp1 = va and vpk = vb.

Definition 2. Given two vertices va and vb in the road network G = (V, E), where vavb /∈ E, there can exist
more than one path from va to vb. Then, the shortest path from va to vb, denoted by SP(va, vb), is defined as:

SP(va, vb) = arg min
P(va ,vb)∈Pset(va ,vb)

L(P(va, vb)), (2)

where Pset(va, vb) is the set of all the paths from va to vb. The path length of SP(va, vb), i.e., L(SP(va, vb)),
is called the shortest path length.

Consider an example of the road network G in Figure 2a, which serves as a running example in
the rest of this paper. In Figure 2a, G consists of 10 vertices and 13 edges. (Note: The vertices and
edges outside of the workspace are omitted.) Each number near to each edge in the figure indicates its
length (i.e., the Euclidean distance between its two endpoints). From the figure, it can be easily seen
that SP(v1, v9) = (v1, v4, v7, v9) and L(SP(v1, v9)) = 29.

q.p

v1 v2 v3(16)

v4 v5(15)

v6 (8)

v7

v8(16)

v10v9

o1.p (5)

o3.p (23)

o2.p (10)

p2(15)

p1(15)

distN (o1.p , q.p)

v1 v2 v3

v4 v5

v6

v7

v8

v10v9

236

6

8

8

23

8

8

4
29

17

13

8

(a) (b)

15

Figure 2. An example of the range monitoring query in the road network. (a) The road network G;
(b) The range monitoring query in G.

Let O = {o1, o2, . . . , o|O|} and Q = {q1, q2, . . . , q|Q|} be a set of moving objects and a set of range
monitoring queries, respectively. Each object o ∈ O is constrained to move only along the edges in the
road network G, and thus the point of o’s location, denoted by o.p, at a particular snapshot in time
always lies on an edge in G. Each query q ∈ Q is represented by a tuple (q.p, q.d), where q.p is a query
point lying on an edge in G and q.d is a query distance.

Definition 3. Given two points pa and pb, where pa lies on an edge vi1 vj1 and pb lies on an edge vi2 vj2 ,
the distance between pa and pb in the road network G, which is called the network distance (between pa and
pb) and denoted by distN(pa, pb), is defined as:

distN(pa, pb) =

distE(pa, pb) if vi1 = vi2 and vj1 = vj2 (i.e., pa and pb lie on the same edge);

minx∈{i1,j1},y∈{i2,j2}

(
distE(pa, vx) + L(SP(vx, vy)) + distE(vy, pb)

)
otherwise.

(3)

ISPRS Int. J. Geo-Inf. 2017, 6, 322 5 of 26

Given the road network G in Figure 2a, Figure 2b shows the network distance between a query
point q.p and several points on G (e.g., vertices and points of moving objects’ location). For example,
distN(q.p, v5) = distE(q.p, v5) and distN(q.p, o1.p) = distE(q.p, o1.p) because q.p, v5, and o1.p lie on
the same edge v5v6. On the other hand, distN(q.p, v3) = distE(q.p, v6) + L(SP(v6, v3)) + distE(v3, v3)

and distN(q.p, o3.p) = distE(q.p, v6) + L(SP(v6, v8)) + distE(v8, o3.p). In Figure 2b, each number in
brackets indicates the network distance between q.p and each point. (Note: The network distance
between q.p and some vertices are omitted for brevity.)

Definition 4. A range monitoring query q = (q.p, q.d), issued over a set of moving objects O,
in the road network G, continually retrieves a subset Ó (⊆ O) of moving objects for which the condition:
∀o ∈ Ó, distN(q.p, o.p) ≤ q.d holds.

Definition 5. Given a query q = (q.p, q.d), the query range of q in the road network G, denoted by QR(q),
is a set of all points on the edges (in G) reachable from q.p within q.d. Formally, QR(q) = {p|distN(q.p, p) ≤ q.d
and p is a point in G}.

From Definitions 4 and 5, we can immediately know that given a query q = (q.p, q.d) and
a moving object o (∈ O) in the road network G, if and only if the point of o’s current location is
inside the query range of q, can o be the current result of q (i.e., o.p ∈ QR(q)⇔ distN(q.p, o.p) ≤ q.d).
In the road network G, the query range QR(q) of a query q consists of a set of line segments.

Definition 6. Given an edge vivj in the road network G, a line segment, denoted by s[pa, pb], where pa and
pb are points on vivj, is a set of all points on vivj between pa and pb, i.e., the portion of vivj between pa and pb.

For example, in Figure 2b, the query range consists of all red line segments (i.e., s[v5, v6], s[v6, p1],
and s[v6, p2]), assuming q.d = 15. Please note that, by definition, an edge vivj in G = (V, E) is also
considered to be a line segment formed by its two endpoints vi and vj (i.e., vivj = s[vi, vj]). In this
paper, we refer to each line segment that belongs to the query range QR(q) of a query q as the query
segment of q, which we denote by qs[pa, pb] or qs for short. Therefore, given the query range QR(q) of
a query q, each query segment qs[pa, pb] ∈ QR(q) satisfies the condition: ∀p ∈ qs[pa, pb], p ∈ QR(q).

The primary goal of our work is to reduce the amount of location-update stream (generated by
moving objects) while maintaining the correct results of range monitoring queries in the road network.
To this end, we use the concept of vicinity region so that moving objects send location-updates to the
server only when necessary. Given a moving object o, o’s vicinity region VR(o) is a rectangular region,
which contains (i) the point of o’s current location and (ii) some query segments. By assigning each
moving object o (i) VR(o) and (ii) query segments inside VR(o), o can locally monitor whether it may
affect the results of nearby queries based on the following two lemmas.

Lemma 1. Given a query q = (q.p, q.d), a moving object o ∈ O, and one of the query segments qs of q in the
road network G, let o.ṕ and o.p be the point of o’s last known location at time t́ and the point of o’s current
location at time t , respectively (t́ < t). Suppose that o.ṕ /∈ qs and o.p ∈ qs, i.e., o enters qs from outside.
Then, there exists a case such that o affects the current result of q.

Proof. To prove this lemma, it suffices to show that such a case exists. Without loss of generality, let us
assume that o.ṕ /∈ QR(q), and thus distN(q.p, o.ṕ) > q.d, meaning that o is not a result object at the
last known time t́. From Definitions 4, 5, 6, and the description of the query segment, we know that
o.p ∈ QR(q), meaning that o is a result object at the current time t. This immediately implies that o
becomes a new result object, and therefore o affects the current result of q.

Lemma 2. Given the same setting and notation as Lemma 1, suppose that o.ṕ ∈ qs and o.p /∈ qs, i.e.,
o leaves qs. Then, there also exists a case such that o affects the current result of q.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 6 of 26

Proof. This lemma can be proved similarly as Lemma 1, and thus we omit the proof.

Only when each moving object o (i) leaves VR(o) or (ii) enters or leaves any of the assigned
query segments, does it send a location-update to the server in order to (i) receive a new vicinity
region together with new query segments or (ii) let the server update the result of a nearby query q
if necessary. In this paper, we focus on how to efficiently search the appropriate vicinity regions for
moving objects, and propose a new spatial index structure, namely the SSP-tree. We also present the
details of the vicinity region-based communication strategy between the server and moving objects for
processing range monitoring queries in the road network. To conclude Section 2.1, we summarize the
frequently used notations in Table 1.

Table 1. Frequently used notation.

Notation Explanation

G = (V, E) A graph model of the road network (V: a set of vertices, E: a set of edges)
vi (∈ V) A vertex in G
vivj or e (∈ E) An edge in G
o A moving object
o.p The point of o’s current location
o.cap o’s computational capability
q = (q.p, q.d) A range monitoring query (q.p: query point, q.d: query distance)
QR(q) The query range of q
qs[pa, pb] or qs (of q) A query segment (of q)
distE(·, ·) The Euclidean distance between any two points in G
distN(·, ·) The network distance between any two points in G
N A SSP-tree node or its corresponding subspace
N.C The count variable maintained in N
N.FL The full list maintained in N
QRT Query relevance table
SRT Segment relevance table

2.2. System Overview

Figure 3 shows an overview of the system model. Similarly to the system model presented in
the previous work [2–7], the system model we consider consists of three major components: moving
objects, clients, and the central server.

• Moving objects: Each moving object o, which is identified by its unique identifier oid, is capable of
sensing the point of its current location o.p and has some available computational capability o.cap.
We assume (i) that each moving object o has a heterogeneous capability o.cap, which is measured
by the maximum number of query segments it can process, and (ii) that o.cap ≥ θ, where θ is
a system parameter indicating the minimum number of query segments o should process; thus,
a moving object with a more powerful capability can be assigned a larger vicinity region that
contains a more number of query segments. There are two types of location-update messages
sent from the moving objects to the server: RequestVR and UpdateResult. The former is for the
purpose of receiving a new vicinity region, whereas the latter is to let the server update the result
of a query (if necessary). For example, assuming the moving object o1 in Figure 3 is assigned the
vicinity region VR(o1) together with query segments qs[v6, p1], qs[v6, p2], and qs[v6, p3], it sends
the RequestVR message to the server because it leaves VR(o1). On the other hand, assuming the
moving object o2 in Figure 3 is assigned the vicinity region VR(o2) together with query segments
qs[v1, v4], qs[v2, v5], and qs[v4, v5], it sends the UpdateResult message to the server because it leaves
qs[v1, v4].

• Clients: Each client is able to issue multiple range monitoring queries over the moving objects,
and continually receives the up-to-date results of these queries from the server via wireless or

ISPRS Int. J. Geo-Inf. 2017, 6, 322 7 of 26

high-speed wired connections. Each query q, issued by a client, is identified by its unique identifier
qid, and its query point q.p is assumed to be static; thus, the movement of q.p can be treated as
a deletion of the old query followed by an insertion of a new query.

q1.pq2.p

v1

v2 v3

v4 v5
v6

v7

v8

v10v9

move

o2

o1
move

o1's vicinity region VR(o1)

p3

p1

p2

o2's vicinity region VR(o2)

broadcast

Moving object

Initialization

Monitoring VR

Computing VR

Server

1. If leaving VR

2. If entering or
leaving qs inside VR

SSP-tree

SRT QRT

Managing query results

E
I

ET QT

Updating the query results in QT

Queries

Results

Managing VR Client

Figure 3. System overview.

• Central server: The server acts as an intermediary between moving objects and clients, i.e.,
moving objects and clients do not communicate directly, but indirectly through the server.
In addition to the SSP-tree, the server maintains the following basic memory-resident data
structures, which are commonly used in the existing methods for the road network [13,14].

– Edge Index (EI): EI is the PMR-quadtree built on the edges in the road network G = (V, E).
Each leaf node of EI stores the identifiers of the edges it intersects. Given a query q, EI is used
to identify the edge e (i.e., vivj ∈ E), where q.p resides. Specifically, EI is traversed down to
the leaf node that contains q.p, and e is identified among the edges stored in this leaf node.

– Edge Table (ET): ET is a table hashed on the identifier of each edge e. ET stores for e: (i) its
endpoints (i.e., vi and vj); (ii) its length (i.e., distN(vi, vj) = distE(vi, vj)) and (iii) the sets of
edges adjacent to each of its endpoints. ET is used to maintain the connectivity information
of the road network G.

– Query Table (QT): QT is a table hashed on the identifier qid of each query q. QT stores for q:
(i) its query point q.p; (ii) its query distance q.d; (iii) a set of its query segments; and (iv) its
current result. QT is used to maintain the information of the registered queries.

As the intermediary between moving objects and clients in the system, the server performs the
following three main tasks.

– Query registration: When a new query q is issued (or q is terminated) by a client, the server
inserts q into (or deletes q from) QT, updates the SSP-tree (and the additional data structures
that will be described in Section 3), and broadcasts messages (e.g., InsertQS, SplitRegion,
DeleteQS, and MergeRegion) to all the moving objects to notify them of these changes.
Please note that notifying such common information through broadcasting is desirable
because the communication overhead is irrelevant to the number of moving objects in a sense
that a single message transmission from the server can be received by all the moving objects.

– Region assignment: When a RequestVR message is arrived from the moving object o that
leaves its current vicinity region, the server searches a new vicinity region by traversing the
SSP-tree, after which it sends an AssignVR message to o for the purpose of assigning this new
vicinity region (together with new query segments) to o.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 8 of 26

– Query result update: When an UpdateResult message is arrived from a moving object o that
may affect the result of a query q, the server checks whether the current result of q is affected
by o. If so, the server updates the result of q. For example, in response to the UpdateResult
message sent by the moving object o2 in Figure 3, the server updates the result of q2 (i.e.,
the server removes o2 from the result of q2).

3. The Proposed Method

As mentioned in the previous section, we focus on the issue of how to efficiently search the
appropriate vicinity regions for moving objects. In this paper, similarly to the existing distributed
methods in Euclidean space, we choose to partition the workspace into many disjoint subspaces for
the search process of the vicinity regions. Please note that the space partitioning approaches used in
the existing distributed methods cannot be applied in the road network because they assume that the
query range (of a query) is even a rectangle instead of a circle [2,3].

As shown in Figure 4a, if the query ranges QR(q1) and QR(q2) of the queries q1 and q2,
respectively, in the road network are approximated by the rectangles, false positives may be generated
in the current results of q1 and q2. In the LBS applications, false positives are more harmful than false
negatives because the former can lead to the wrong query results. For example, let us assume that the
moving object o1 in Figure 4a is assigned (i) the entire workspace as its vicinity region VR(o1) and (ii)
two approximated rectangles of query ranges QR(q1) and QR(q2). Then, when o1 moves as shown
in the figure, o1 does not send the UpdateResult message to the server because it does not leave the
approximated rectangle of QR(q2). As a result, the server does not know the point of o1’s current
location o1.p, and thus o1 is wrongly included in the current result of q2 although o1.p /∈ QR(q2)

(i.e., distN(q2.p, o1.p) > q2.d).

q2.p

bounding rectangle of QR(q2)

q1.p

bounding rectangle of QR(q1)

o1

v1 v2

v3

v4 v5
v6

v7 v8

subspace 2

q2.p

subspace 111 subspace 112

subspace 12

q1.p

v1 v2 v3

v4 v5
v6

v7 v8

p1

p2

p3

p6

p4

p8

(a) (b)

o2

p5

p7

move

workspace workspace

Figure 4. Examples of approximation of query ranges and the space partitioning approach used in this
paper. (a) Approximation of query ranges; (b) The space partitioning approach used in this paper.

Figure 4b shows an example of the space partitioning approach used in this paper, which recursively
partitions the workspace into two equal subspaces until the number of query segments inside each
subspace is no more than the split threshold θ. (Note: In the figure, θ is assumed to be 4.)
In this paper, we assume that a subspace is horizontally or vertically partitioned along its longer
dimension. Specifically, given a subspace, if its width is longer than its height, it is partitioned
vertically, otherwise, it is partitioned horizontally. With such a space partitioning approach, the server
can use a subspace as a vicinity region VR(o) of each moving object o. The size of VR(o)
(i.e., the size of the subspace used as VR(o)) is determined by o’s capability o.cap; thus if o.cap = n,
VR(o) must contain the point of o’s current location o.p and no more than n query segments.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 9 of 26

For example, assuming o2.cap of the moving object o2 in Figure 4b is 3, o2 is assigned (i) subspace
112 as its vicinity region VR(o2) and (ii) three query segments qs[p2, v5], qs[v5, p4], and qs[v5, p5].

To efficiently support partitioning the workspace, the SSP-tree is used, which will be presented in
detail throughout this section.

3.1. Query Segment Computation

In this subsection, we describe an algorithm COMPUTESEG for the query segment computation.
When a new query q = (q.p, q.d) is issued by a client, COMPUTESEG, which takes a query point q.p
and a query distance q.d as inputs, computes the query segments of q based on Dijkstra’s algorithm.
Before we describe the details of COMPUTESEG, we introduce a distance metric, mindistN(q.p, vivj),
which is defined between a query point q.p and an edge vivj in the road network G, and serves as the
lower bound for filtering the unnecessary edges in the query segment computation.

Definition 7. Given a query point q.p and an edge vivj in the road network G, mindistN(q.p, vivj) is
defined as:

mindistN(q.p, vivj) =

0 if q.p ∈ vivj;

min
(

distN(q.p, vi), distN(q.p, vj)
)

otherwise.
(4)

Lemma 3. Given a query point q.p and an edge vivj in the road network G, ∀p ∈ vivj, mindistN(q.p, vivj) ≤
distN(q.p, p), where p denotes a point.

Proof. We prove this lemma by contradiction. Let us assume that there exists a point ṕ ∈ vivj such
that distN(q.p, ṕ) < mindistN(q.p, vivj). We distinguish two cases:

1. If q.p ∈ vivj, mindistN(q.p, vivj) = 0. This immediately contradicts the assumption because
distN(q.p, ṕ) cannot be less than 0.

2. If q.p /∈ vivj, mindistN(q.p, vivj) = min
(

distN(q.p, vi), distN(q.p, vj)
)

. Let us consider the subcase,

where mindistN(q.p, vivj) = distN(q.p, vi). Then, when we simplify the Equation (3) to obtain:

distN(q.p, ṕ) = min
(

distN(q.p, vi) + distE(vi, ṕ), distN(q.p, vj) + distE(vj, ṕ)
)

, distN(q.p, ṕ) =

distN(q.p, vi) + distE(vi, ṕ). This leads to a contradiction to the assumption because distN(q.p, vi)

≤ distN(q.p, vi) + distE(vi, ṕ). The subcase, where mindistN(q.p, vivj) = distN(q.p, vj), leads to
the same contradiction as the former subcase.

Therefore, ṕ cannot exist.

Algorithm 1 is the pseudocode of COMPUTESEG, assuming e is the edge that contains q.p
(e is identified by using EI). First, COMPUTESEG initializes an empty min-heap H to traverse the
vertices in the road network G in the ascending order of their network distance from q.p (line 1).
Next, COMPUTESEG enheaps the endpoints (i.e., vertices) of e into H with keys equal to their network
distance from q.p (lines 2–3). Then, COMPUTESEG iteratively deheaps a vertex from H.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 10 of 26

Algorithm 1 COMPUTESEG(q.p, q.d)
Input q.p: query point of q, q.d: query distance of q
Output qs_set: a set of query segments q
1: initialize an empty min-heap H;
2: let e be the edge containing q.p;
3: enheap the endpoints (vertices) of e into H with keys equal to their network distance from q.p;
4: repeat
5: deheap the top entry [vi, distN(q.p, vi)] from H;
6: mark vi as visited;
7: for each adjacent vertex vj of vi do
8: if vj has not been visited and distN(q.p, vi) ≤ q.d then
9: set distN(q.p, vj) to distN(q.p, vi) + distN(vi, vj); // distN(vi, vj) = distE(vi, vj)
10: enheap vj into H with a key distN(q.p, vj);
11: else if vj has been visited then
12: compute mindistN(q.p, vivj);
13: if mindistN(q.p, vivj) ≤ q.d then
14: compute the query segment qs of q;
15: insert qs into qs_set;
16: until (H is empty)
17: return qs_set;

For each deheaped vertex vi, COMPUTESEG marks vi as visited and checks each of its adjacent
vertices vj whether or not vj has been visited (vj is identified by using ET). If vj has not been visited,
COMPUTESEG further checks if distN(q.p, vi) ≤ q.d. Only if this is the case, is vj enheaped into H with
a key distN(q.p, vi) + distN(vi, vj) (lines 8–10). The rationale is that if (i) vj has not been visited and
(ii) distN(q.p, vi) > q.d, it is guaranteed that distN(q.p, vj) > q.d. This implies that no portion of each
edge vjvk formed by vj and each of its adjacent vertices vk (including vi) can be the query segment
of q because mindistN(q.p, vjvk) > q.d. From Lemma 3, we know that the network distance between
q.p and every point p ∈ vjvk is equal to or greater than mindistN(q.p, vjvk), and thus that ∀p ∈ vjvk,
distN(q.p, p) > q.d. Therefore, vj need not be enheaped and expanded. On the other hand, if vj has been
visited (i.e., vj has been deheaped before), COMPUTESEG further checks if mindistN(q.p, vivj) ≤ q.d.
If so, COMPUTESEG computes the query segment of q (lines 11–15). This process continues until H
becomes empty, and finally COMPUTESEG returns the query segments of q.

3.2. The Segment-Based Space Partitioning Tree (SSP-Tree)

3.2.1. Description

The SSP-tree is a hierarchical data structure that recursively splits the workspace into two
subspaces. It is a binary tree, where each node N represents a subspace of the workspace, and N’s two
children represent equal halves of this subspace. Hereafter, we say that a tree node N corresponds to
a subspace or vice versa if N represents this subspace, and without ambiguity, we use the symbol ‘N’
to denote both a tree node and its corresponding subspace.

Given a set of query segments on the workspace that corresponds to the root, if the number
of these query segments is greater than the split threshold θ (i.e., the minimum number of query
segments each moving object should process), the workspace is split into two subspaces, each of which
corresponds to a child node N of the root. When a query segment qs partially intersects N, it is also
split into two query segments qs ∩ N and qs− (qs ∩ N) so that qs ∩ N is inside N. When necessary,
we refer to each query segment computed by COMPUTESEG (e.g., qs that partially intersects N) as the
original query segment for distinguishing it from the newly generated query segments (e.g., qs ∩ N and
qs− (qs ∩ N)). The process recursively continues until each node has no more than θ query segments
inside it. We define the simple intersection relationships between a query segment qs and a node N of
the SSP-tree.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 11 of 26

Definition 8. Given a query segment qs[pa, pb] and a node N of the SSP-tree, let qs[pa, pb]
◦ be the interior of

qs[pa, pb] (i.e., qs[pa, pb]
◦ = qs[pa, pb] − {pa, pb}). Then, there can be three relationships as follows:

• Inside or contain relationship (see Figure 5a): We say that qs[pa, pb] is inside N or N contains
qs[pa, pb] if qs[pa, pb] ∩ N = qs[pa, pb].

• Partially intersect relationship (see Figure 5b): We say that qs[pa, pb] partially intersects N or vice
versa if (qs[pa, pb] ∩ N 6= qs[pa, pb]) ∧ (qs[pa, pb]

◦ ∩ N 6= ∅) ∧ ({pa, pb} ∩ N 6= ∅).
• Fully intersect relationship (see Figure 5c): We say that qs fully intersects N or vice versa

if (qs[pa, pb] ∩ N 6= qs[pa, pb]) ∧ (qs[pa, pb]
◦ ∩ N 6= ∅) ∧ ({pa, pb} ∩ N = ∅).

N N
N

qs [p1 , p2]

qs [p3 , p4]

qs [p5 , p6]

p1 p2

p3 p4

p5

p6

qs [p1 , p2]

qs [p3 , p4]

qs [p5 , p6]

p5

p6

p3 p4

p1 p2

p1

p2

qs [p1 , p2]

p3 p4

qs [p3 , p4]

p5

p6

(a) (c)(b)

qs [p5 , p6]

Figure 5. Simple intersection relationships between qs and N. (a) qs is inside N or N contains qs;
(b) qs partially intersects N or vice versa; (c) qs fully intersects N or vice versa.

Now, we describe the structure and properties of the SSP-tree. A leaf node of the SSP-tree stores
at most θ tuples of the form (qs, f lag), where qs is a query segment inside N and f lag is a single bit
that is set (i.e., logical 1) if qs is an original query segment. A non-leaf node stores two entries of the
form (ptr, N), where ptr is a pointer to a child node and N is a subspace that corresponds to the child
node pointed to by ptr. The SSP-tree satisfies the following properties:

• A tuple (qs, f lag) is stored in a leaf node N if qs is inside N.
• A tuple (qs, f lag) can be redundantly stored in two leaf nodes if qs lies along the splitting line SL

that separates these two leaf nodes (i.e., if qs ∩ SL = qs).
• For each entry (ptr, Ń) stored in a non-leaf node N, Ń represents one of the equal halves of

N’s subspace.
• Each (leaf and non-leaf) node N maintains (i) a variable, called the count variable (denoted by

N.C), which records the total number of query segments inside N, and (ii) a list, called the full list
(denoted by N.FL), which stores the original query segments that fully intersects N.

Assuming θ = 3, Figure 6 shows an example of the SSP-tree built on two queries
q1 and q2 in the road network G in Figure 2a, where the original query segments of
q1 and q2 are {qs[v5, v6], qs[v6, p1], qs[v6, p8]} (= QR(q1)) and {qs[v5, p2], qs[v5, p3], qs[v5, p5]}
(= QR(q2)), respectively.

To track each query q and its query segments (including the original query segments and the
newly generated query segments), the server maintains the Query Relevance Table (QRT). We say that
a query q is relevant to a query segment qs or vice versa if qs belongs to QR(q) (i.e., qs ∈ QR(q)).
For example, in Figure 6, the query q1 is relevant to the query segments qs[v5, p4], qs[v6, p1], qs[v6, p6],
qs[v6, p7], and qs[p7, p8]. On the other hand, the query q2 is relevant to the query segments qs[v5, p2],
qs[v5, p3], qs[v5, p4], and qs[p4, p5]. A query segment qs can have more than one relevant queries.
For example, qs[v5, p4] is relevant to both q1 and q2. Each row of QRT is a tuple of the form (qs, qid_list)

ISPRS Int. J. Geo-Inf. 2017, 6, 322 12 of 26

indexed by qs, where qs is a distinct query segment and qid_list is a list that stores the identifiers of the
queries that are relevant to qs.

The server also maintains the Segment Relevance Table (SRT) to identify the relevance between each
original query segment qs and the newly generated query segments. Similarly to the above, we say
that an original query segment qs is relevant to a newly generated query segment q́s or vice versa if
q́s is split from qs. For example, in Figure 6, the original query segment qs[v5, v6] is relevant to the
newly generated query segments qs[v5, p4] and qs[v6, p6], while the original query segment qs[v5, p5]

is relevant to the newly generated query segments qs[v5, p4] and qs[p4, p5]. It is important to note that
in contrast to the original query segments that partially intersect a node N of the SSP-tree, the original
query segments that fully intersect N are not split but stored in N.FL. For example, the query segment
qs[p4, p6] is not generated because qs[v5, v6] fully intersects the tree node N221; instead, qs[v5, v6] is
stored in N211.FL. A newly generated query segment q́s can have more than one relevant original
query segments. For example, qs[v5, p4] is relevant to both qs[v5, v6] and qs[v5, p5]. Each row of SRT is
a tuple of the form (q́s, qs_list) indexed by q́s, where q́s is a distinct newly generated query segment
and qs_list is a list that stores the original query segments that are relevant to q́s.

* Root is split into N1 and N2

* N2 is split into N21 and N22

* N21 is split into N211 and N212

v1 v2 v3

v4 v5 v6

v7

v8

v10v9

q2.p q1.p

p1

p4 p5 p6

p2

p3

N1 N22

N211 N212

p8

p7

o1

move

o2

QRT

qs[v5, p2]
qs[v5, p3]
qs[v5, p4]
qs[v6, p1]
qs[v6, p6]
qs[v6, p7]
qs[p4, p5]
qs[p7, p8]

< q2>

< q2>

< q1, q2>

< q1>

< q1>

< q1>

< q2>

< q1>

N1

Root Root.C = 8

N1.C = 3

N1 N2

N21 N22
(qs[v5, p3], 1)

(qs[v5, p2], 1)

(qs[v5, p4], 0)

empty
Root.FL

empty
N1.FL

N2.C = 5N2

N211 N212

N21.C = 4

empty
N21.FL

N21

(qs[p7, p8], 0)

N22.C = 1

N22

(qs[p4, p5], 0)

N211.C = 1

qs[v5, v6]
N211.FL

N211 N212 N212.C = 3

(qs[v6, p1], 1)

(qs[v6, p6], 0)

(qs[v6, p7], 0)

empty
N212.FL

empty
N2.FL

empty
N22.FL

: Non-leaf node

: Leaf node

: Full list

SRT

< qs[v5, v6], qs[v5, p5]>qs[v5, p4]
qs[v6, p6]
qs[v6, p7]
qs[p4, p5]
qs[p7, p8]

< qs[v5, v6] >
< qs[v6, p8] >
< qs[v5, p5] >
< qs[v6, p8] >

Figure 6. An example of the SSP-tree.

Given a (leaf or non-leaf) node N of the SSP-tree and a moving object o, N can become a candidate
for o’s vicinity region if N contains (i) o.p and (ii) N.C ≤ o.cap. In this connection, the first advantage
of maintaining N.FL at each node N is that the server can assign a larger (but still appropriate) vicinity
region to each moving object o than not maintaining it. This is because each query segment qs that
fully intersects N does not lead to the generation of a new query segment qs ∩ N, and thus the value of
N.C is not increased. Assuming o is assigned N as its vicinity region, the second advantage is that o
can reduce the number of sending unnecessary UpdateResult messages to the server because qs ∩ N is
not generated and assigned to o. Here, it should be validated that qs ∩ N need not be assigned to o.
This is accomplished by the following lemma.

Lemma 4. Given a node N of the SSP-tree, a query q = (q.p, q.d), an object o moving only inside N, and one
of the q’s relevant query segments qs[pa, pb] that fully intersects N, suppose that o enters or leaves qs[pa, pb].
In such a case, o cannot affect the current result of q.

Proof. From Definition 8, we know that both endpoints pa and pb of qs[pa, pb] are outside N.
In addition, from Section 2.1, we know that ∀p ∈ qs[pa, pb], distN(q.p, p) ≤ q.d. If o enters

ISPRS Int. J. Geo-Inf. 2017, 6, 322 13 of 26

qs[pa, pb], it comes from one of the query segments that is connected with qs[pa, pb] at the point pc,
where pc ∈ qs[pa, pb]

◦ and pc is inside N, because o is moving only inside N. Let this query segment
be qs[pc, pd]. Then, qs[pc, pd] must also be the relevant query segment of q, i.e., qs[pc, pd] ∈ QR(q),
because distN(q.p, pc) < q.d. Similarly, if o leaves qs[pa, pb], it enters one of the query segments that
must also be the relevant query segment of q. Therefore, o cannot affect the current result of q.

For example, assuming the capability o1.Cap of the moving object o1 in Figure 6 is 3, o1 is assigned
the tree node N211 as its vicinity region together with only the query segment qs[p4, p5]. When o1 moves
as shown in the figure, it sends only the RequestVR message to the server for receiving a new vicinity
region. Then, before assigning o1 a new vicinity region (together with new query segments), the server
should additionally check whether o1 leaves the original query segment qs[v5, v6] by accessing N211.FL
because, if so, o1 may affect the current result of the query q1. In this example, o1 does not leave
qs[v5, v6]. Please note that if the query segment qs[p4, p6] is generated and assigned to o1, o1 should
send two notification messages to the server, one that it has leaved N211 and the other that it has leaved
qs[p4, p6].

3.2.2. Vicinity Region Search

When a new moving object o is registered at the server, an algorithm SEARCH is performed
on the SSP-tree to find out o’s vicinity region VR(o). Algorithm 2 is the pseudocode of SEARCH.
Given a SSP-tree node N (initially the root) and a moving object o with the point of its current
location o.p and its capability o.cap, SEARCH recursively accesses only the nodes that contain o.p
until reaching the node N such that N.C ≤ o.cap (lines 1–3). Now, N becomes o’s vicinity region. Then,
SEARCH invokes SEARCHSEG, which is a recursive depth-first search function that takes N as an input
(line 6). SEARCHSEG retrieves the tuples stored in each N’s descendent leaf node Ń and returns all the
distinct query segments.

Algorithm 2 SEARCH(N, o)
Input N: a SSP-tree node initially set to the root, o: a moving object
Output VR(o): o’s vicinity region, qs_set: a set of distinct query segments
1: if N.C > o.cap then
2: find the entry (ptr, Ń) stored in N such that Ń contains o.p;
3: SEARCH(Ń, o); // Recursion
4: else // if N.C ≤ o.cap
5: set VR(o) to N;
6: set qs_set to qs_set ∪ SEARCHSEG(N);
7: return VR(o) and qs_set;
Function SEARCHSEG(N)
Input N: a SSP-tree node that becomes VR(o)
Output Result: a set of distinct query segments
1: if N is a non-leaf node then
2: for each entry (ptr, Ń) stored in N do
3: SEARCHSEG(Ń); // Recursion
4: else // if N is a leaf node
5: retrieve tuples stored in N and insert the query segments into Result;
6: return Result;

After Algorithm 2 terminates, the server sends an AssignVR message to o for assigning N as VR(o)
together with the retrieved query segments. For example, let us assume that the capability o2.cap
of the moving object o2 in Figure 6 is 4. When o2 is registered at the server, starting from the root,
SEARCH recursively traverses the SSP-tree until it reaches the node N21. Then, SEARCH invokes
SEARCHSEG to find out all the distinct query segments stored in N21’s descendent leaf nodes
(i.e., N211 and N212). After SEARCH terminates, the server sends an AssignVR message to o2 for assigning
N21 as VR(o2) together with the query segments qs[v6, p1], qs[v6, p6], qs[v6, p7], and qs[p4, p5].

ISPRS Int. J. Geo-Inf. 2017, 6, 322 14 of 26

3.2.3. SSP-Tree Manipulations

The SSP-tree can be manipulated with a set of algorithms, which specify how a query segment
is inserted into and deleted from the SSP-tree, and how overflow or underflow of a SSP-tree node
is managed.

Algorithm 3 INSERT(N, qs)
Input N: a SSP-tree node initially set to the root, qs: a query segment of a query q
1: update QT and QRT;
2: if N is a non-leaf node then
3: if qs fully intersects N then
4: insert qs into N.FL;
5: for each entry (ptr, Ń) stored in N do
6: if qs intersects Ń then // if qs is inside, partially intersects, or fully intersects Ń
7: INSERT(Ń, qs);
8: else // if N is a leaf node
9: if qs fully intersects N then
10: insert qs into N.FL;
11: else // if qs is inside or partially intersects N
12: if the tuple (qs ∩ N, f lag) is not already stored in N then
13: insert a tuple (qs ∩ N, f lag) into N and increases N.C by 1;
14: if qs partially intersects N then
15: update QT, QRT, and SRT;
16: repeat
17: set N̈ to N’s parent;
18: increase N̈.C by 1;
19: until (N̈ is the root)
20: if N.C > θ then
21: SPLITNODE(N);

Algorithm 3 is the pseudocode of the insert algorithm INSERT. Given an original query segment
qs of a query q, INSERT first updates QT and QRT (line 1). Then, INSERT recursively follows the paths
of the SSP-tree, each of which consists of non-leaf and leaf nodes with which qs intersects. At a non-leaf
node N in each path, INSERT checks if qs fully intersects N. If so, INSERT inserts qs into N.FL (lines
3–4). When reaching a leaf node N in the path, INSERT checks if qs fully intersects N. If this is the case,
INSERT inserts qs into N.FL (lines 9–10). On the other hand, if qs is inside or partially intersects N,
INSERT inserts a new tuple (qs ∩ N, f lag) into N and increases N.C by 1 only when it is not already
stored in N (lines 12–13). Here, if qs is inside N, i.e., qs ∩ N = qs, f lag is set. In case that qs partially
intersects N, INSERT additionally updates QT, QRT, and SRT (lines 14–15). Finally, INSERT increases
N̈.C of each node N̈ in the path from N’s parent to the root by 1 (lines 16–19). When N overflows (i.e.,
N.C > θ), INSERT invokes the split algorithm SPLITNODE (lines 20–21).

Algorithm 4 is the pseudocode of SPLITNODE. Given an overflowed leaf node N, SPLITNODE

creates (i) two new empty leaf nodes Nle f t and Nright, and (ii) a new non-leaf node Nnew that stores
entries (ptr, Nle f t) and (ptr, Nright), where Nle f t or Nright represents one of the equal halves of N (lines
1–3). Now, Nle f t and Nright become Nnew’s children. Next, SPLITNODE inserts all the query segments
stored in N.FL (i.e., all the original query segments that fully intersect N) into Nle f t.FL, Nright.FL,
and Nnew.FL, after which it finds the entry (ptr, N) stored in N’s parent to redirect ptr to point to Nnew

(lines 4–5). Now, N’s parent becomes Nnew’s parent. Then, SPLITNODE checks for each tuple (qs, f lag)
stored in N if qs intersects each of Nnew’s children Ńnew. (Note: For the ease of description, we use Ńnew

to denote both Nle f t and Nright when necessary.) If so, according to two cases, SPLITNODE proceeds
as follows:

1. If f lag is set, indicating that qs is the original query segment, SPLITNODE checks if qs
fully intersects Ńnew. If so, SPLITNODE inserts qs into Ńnew (lines 10–11). Otherwise,
SPLITNODE inserts a tuple (qs ∩ Ńnew, f lag) into Ńnew and increases Ńnew.C by 1 only when

ISPRS Int. J. Geo-Inf. 2017, 6, 322 15 of 26

(qs ∩ Ńnew, f lag) is not already stored in Ńnew (lines 12–13). In case that qs partially intersects
Ńnew, SPLITNODE additionally updates QT, QRT, and SRT (lines 14–15).

2. If f lag is not set, SPLITNODE checks for each of qs’s relevant original query segments q́s if q́s fully
intersects Ńnew. If so, SPLITNODE inserts q́s into Ńnew.FL (lines 18–19). Otherwise, similarly to
the former case, SPLITNODE inserts a tuple (q́s ∩ Ńnew, f lag) into Ńnew and increases Ńnew.C by 1
only when (q́s ∩ Ńnew, f lag) is not already stored in Ńnew (lines 20–21). In case that q́s partially
intersects Ńnew, SPLITNODE additionally updates QT, QRT, and SRT (lines 22–23).

Then, SPLITNODE sets Nnew.C to (Nle f t.C + Nright.C) and increases N̈.C of each node N̈ in the
path from Nnew’s parent to the root by (Nnew.C− N.C) (lines 24–28). Finally, SPLITNODE discards N
(line 29). This split process propagates downward if necessary (lines 30–31).

Algorithm 4 SPLITNODE(N)
Input N: an overflowed SSP-tree leaf node
1: create two new empty leaf nodes Nle f t and Nright;
2: create a new empty non-leaf node Nnew;
3: insert entries (ptr, Nle f t) and (ptr, Nright) into Nnew;
4: insert all the query segments stored in N.FL into Nle f t.FL, Nright.FL, and Nnew.FL;
5: find the entry (ptr, N) stored in N’s parent and redirect ptr to point to Nnew;
6: for each entry (ptr, Ńnew) stored in Nnew do // Ńnew : Nle f t or Nright
7: for each tuple (qs, f lag) stored in N do
8: if qs intersects Ńnew then // if qs is inside, partially intersects, or fully intersects Ńnew
9: if f lag is set then
10: if qs fully intersects Ńnew then
11: insert qs into Ńnew.FL;
12: else // if qs is inside or partially intersects Ńnew
13: insert a tuple (qs ∩ Ńnew, f lag) into Ńnew and increase Ńnew.C by 1 if it is not stored in Ńnew;
14: if qs partially intersects Ńnew then
15: update QT, QRT, and SRT;
16: else // f lag is not set
17: for each qs’s relevant original query segment q́s ∈ q́s_list of the tuple (qs, q́s_list) in SRT do
18: if q́s fully intersects Ńnew then
19: insert q́s into Ńnew.FL;
20: else // if q́s is inside or partially intersects Ńnew
21: insert a tuple (q́s ∩ Ńnew, f lag) into Ńnew and increase Ńnew.C by 1 if it is not stored in Ńnew;
22: if q́s partially intersects Ńnew then
23: update QT, QRT, and SRT;
24: set Nnew.C to (Nle f t.C + Nright.C);
25: repeat
26: set N̈ to Nnew’s parent;
27: increase N̈.C by (Nnew.C− N.C);
28: until (N̈ is the root)
29: discard N;
30: for each entry (ptr, Ńnew) stored in Nnew do // Ńnew : Nle f t or Nright
31: SPLITNODE(Ńnew) if Ńnew.C > θ;

Algorithm 5 is the pseudocode of the delete algorithm DELETE. Given an original query segment
qs of a query q, DELETE first updates QRT (line 1). Then, DELETE follows the paths of the SSP-tree,
each of which consists of non-leaf and leaf nodes with which qs intersects. At a non-leaf node N
in each path, DELETE checks if qs fully intersects N. If so, DELETE deletes qs from N.FL (lines 3–4).
When reaching a leaf node N in this path, DELETE checks the intersection relationships between qs
and N. Then, according to three cases, DELETE proceeds as follows:

ISPRS Int. J. Geo-Inf. 2017, 6, 322 16 of 26

1. If qs fully intersects N, DELETE qs from N.FL (lines 10–11).
2. If qs is inside N (i.e., qs ∩ N = qs), DELETE deletes the tuple (qs ∩ N, f lag) from N and decreases

N.C by 1 if q is the only relevant query of qs ∩ N (lines 12–14).
3. If qs partially intersects N, DELETE updates QRT and SRT (line 16). Then, it deletes the tuple

(qs ∩ N, f lag) from N and decrease N.C by 1 if qs is the only relevant original query segment of
qs ∩ N (lines 17–18).

If the tuple (qs ∩ N, f lag) is deleted from N, DELETE decreases N̈.C of each node N̈ in the
path from its parent to the root by 1 (lines 20–23). Finally, DELETE invokes the merge algorithm
MERGENODE, which takes N’s parent as an input, to condense the tree if possible (line 24).

Algorithm 5 DELETE(N, qs)
Input N: a SSP-tree node initially set to the root, qs: a query segment of a query q
1: update QRT;
2: if N is a non-leaf node then
3: if qs fully intersects N then
4: delete qs from N.FL;
5: else // if qs is inside or partially intersects N
6: for each entry (ptr, Ń) stored in N do
7: if qs intersects Ń then // if qs is inside, partially intersects, or fully intersects Ń
8: DELETE(Ń, qs);
9: else // if N is a leaf node
10: if qs fully intersects N then
11: delete qs from N.FL;
12: else if qs is inside N then // if qs ∩ N = qs
13: if q is the only relevant query of qs ∩ N (= qs) then
14: delete the tuple (qs ∩ N, f lag) from N and decrease N.C by 1;
15: else // if qs partially intersects N
16: update QRT and SRT;
17: if qs is the only relevant original query segment of qs ∩ N then
18: delete the tuple (qs ∩ N, f lag) from N and decrease N.C by 1;
19: if the tuple (qs ∩ N, f lag) is deleted from N then
20: repeat
21: set N̈ to N’s parent;
22: decrease N̈.C by 1;
23: until (N̈ is the root)
24: MERGENODE(N’s parent);

Algorithm 6 MERGENODE(N)
Input N: a non-leaf node of the SSP-tree
1: if N.C ≤ θ and both of N’s children are leaf nodes then
2: create a new empty leaf node Nnew;
3: insert all the original query segments stored in N.FL into Nnew.FL;
4: set Nnew.C to N.C;
5: find the entry (ptr, N) stored in N’s parent and redirect ptr to point to Nnew;
6: for each entry (ptr, Ń) stored in N do
7: for each tuple (qs ∩ Ń, f lag) stored in Ń do
8: insert (qs ∩ Ń, f lag) into Nnew if it is not stored in Nnew;
9: discard N and N’s children;
10: MERGENODE(Nnew’s parent);

Algorithm 6 is the pseudocode of MERGENODE. Given a non-leaf node N, MERGENODE first
checks if (i) N.C ≤ θ and (ii) both of N’s children are leaf nodes. If so, MERGENODE creates a new
empty leaf node Nnew, inserts all the original query segments stored in N.FL into Nnew.FL, and sets
Nnew.C to N.C (lines 2–4). Next, MERGENODE finds the entry (ptr, N) stored in N’s parent to redirect
ptr to point to Nnew (line 5). Now, N’s parent becomes Nnew’s parent. Then, MERGENODE inserts all

ISPRS Int. J. Geo-Inf. 2017, 6, 322 17 of 26

the distinct tuples stored in each N’s child Ń into Nnew (lines 6–8). Finally, MERGENODE discards N
and its children (line 9). This merge process propagates upward until the node that does not satisfy the
merge condition is reached (line 10).

Now, we analyze the time costs of the SSP-tree manipulations in Lemma 5. For the simplicity of
analysis, we assume (i) that each query segment is not redundantly stored in two leaf nodes; and (ii)
that the SSP-tree is perfectly balanced, and thus its depth is log2(

|QS_set|
θ), where |QS_set| denotes the

total number of query segments stored in the leaf nodes. In addition, the number of original query
segments q́s_list of each tuple (qs, q́s_list) in SRT is assumed to be almost same.

Lemma 5. Let tinsert, tsplit, tdelete, and tmerge be the time costs of insert, split, delete, and merge operations,

respectively. Then, tinsert ≈ α1 log2(
|QS_set|

θ) + α2 log2(
|QS_set|

θ), tsplit ≈ 2 · α3(θ + 1) · |q́s_list| +
α4 log2(

|QS_set|
θ), tdelete ≈ α5 log2(

|QS_set|
θ) + α6 log2(

|QS_set|
θ), and tmerge ≈ α7θ, where α1, α2, . . . , α7

are constants.

Proof. Given a new query segment qs, INSERT involves finding the leaf node N from the root to store qs
and updating the count variables of the non-leaf nodes along the path from N to the root, both of which
take time linear to the depth of the SSP-tree, and thus tinsert ≈ α1 log2(

|QS_set|
θ) + α2 log2(

|QS_set|
θ).

Please note that (i) updating full list N.FL maintained in each node N and (i) updating
QT, QRT, and SRT take constant expected time because they are implemented as hash tables.
Given an overflowed leaf node N, SPLITNODE checks θ + 1 tuples against each of two newly generated
leaf nodes Ńnew. (Note: Ńnew is a child of the newly generated non-leaf node Nnew.) In addition,
for each tuple (qs, f lag), if f lag is not set, SPLITNODE further checks q́s_list of the tuple (qs, q́s_list) in
SRT. These take time at most 2 · α3(θ + 1) · |q́s_list|. Because SPLITNODE also involves updating the
count variables of the non-leaf nodes along the path from Nnew to the root, tsplit ≈ 2 · α3(θ + 1) · |q́s_list|
+ log2(

|QS_set|
θ). To delete an existing query segment qs, DELETE finds the leaf node N from the root,

deletes qs if necessary, and updates the count variables of the non-leaf nodes along the path from N
to the root; therefore, tdelete ≈ α5 log2(

|QS_set|
θ) + α6 log2(

|QS_set|
θ). Finally, MERGENODE checks each

tuple (qs, f lag) stored in two mergeable leaf nodes against a new leaf node, and thus tmerge ≈ α7θ.

3.3. Vicinity Region-based Communications and Query Processing

In this subsection, we describe how each moving object and the server communicate each other to
cooperatively process range monitoring queries. The query processing consists of server-side tasks
and object-side tasks.

3.3.1. Server-Side Tasks

The server performs three main tasks: query registration, region assignment, and query result
update.

• Query registration: When a new query q is issued by a client, the server inserts q into QT
and invokes COMPUTESEG (see Algorithm 1) to compute the relevant query segments of q.
Then, for each query segment qs generated by COMPUTESEG, the server (i) invokes INSERT

(see Algorithm 3) to insert qs into the SSP-tree and (ii) broadcasts the InsertQS(qs) message.
In case that a leaf node Ń of the SSP-tree is split into Nle f t and Nright, the server broadcasts the
SplitRegion(Ń, Nle f t, Nright) message. On the other hand, when an existing query q is terminated
by a client, for each relevant query segment qs of q, the server (i) invokes DELETE (see Algorithm 5)
to delete qs from the SSP-tree; (ii) broadcasts the DeleteQS(qs) message; and finally (iii) deletes
q from QT. In case that two leaf nodes Nle f t and Nright are merged, the server broadcasts the
MergeRegion(Nle f t, Nright, qs_set(le f t+right)) message, where qs_set(le f t+right) is the combined set of
query segments inside Nle f t and Nright.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 18 of 26

• Region assignment: When the server receives the RequestVR(o.p, o.cap, Nold) message from
a moving object o, where o.p, o.cap, and Nold denote the point of o’s current location, o’s capability,
and o’s previous vicinity region, respectively, it first checks if o leaves each original query segment
stored in Nold.FL. If so, the server updates the result of the corresponding query when necessary.
Then, the server invokes SEARCH (see Algorithm 2), after which it sends the AssignVR(Nnew, qs_set)
message to o, where Nnew is o’s new vicinity region and qs_set is a set of query segments
inside Nnew.

• Query Result Update: When the server receives the UpdateResult(o.p, qs) message from a moving
object o, it visits QRT to find the relevant queries of qs. Then, the server checks each qs’s relevant
query q if distN(q.p, o.p) ≤ q.d. If so, the server inserts o into the result of q (if it is not already
there). On the other hand, if distN(q.p, o.p) > q.d, the server removes o from the result of q (if it
is there).

3.3.2. Object-Side Tasks

Each moving object o maintains a subspace N as its vicinity region and a set qs_set of query
segments inside N. Whenever o moves, it checks (i) if it leaves N and (ii) it enters or leaves each
query segment qs ∈ qs_set. If o leaves N, it sends the RequestVR(o.p, o.cap, Nold) message to the
server. In response, o receives the AssignVR(Nnew, qs_set) message from the server. On the other hand,
if o enters or leaves qs, it sends the UpdateResult(o.p, qs) message to the server. In addition, o expects
the following broadcast messages from the server and processes them as follows:

• InsertQS(qs): When o listens to the InsertQS(qs) message, it first checks if o.p is inside qs. If so,
o sends UpdateResult(o.p, qs) message to the server to let the server insert o into the results of qs’s
relevant queries. Then, o checks if qs is inside or partially intersects its vicinity region N. If so,
o inserts N ∩ qs into qs_set. In case that the cardinality |qs_set| of qs_set is greater than o.cap, i.e.,
|qs_set| > o.cap, o sends the RequestVR(o.p, o.cap, Nold) to the server.

• SplitRegion(Ń, Nle f t, Nright): When o listens to the SplitRegion(Ń, Nle f t, Nright) message, it first
checks if its vicinity region N equals Ń. If this is the case, if o.p is inside Nle f t, o sets Nle f t as
its new vicinity region Nnew; otherwise, it sets Nright as Nnew. Then, for each query segment qs
(∈ qs_set) that intersects Nnew, o replaces it with qs ∩ Nnew.

• DeleteQS(qs): When o listens to the DeleteQS(qs) message, it just deletes qs from qs_set if qs is
inside its vicinity region N.

• MergeRegion(Nle f t, Nright, qs_set): When o listens to the MergeRegion(Nle f t, Nright, qs_set(le f t+right))

message, it first checks if its vicinity region N equals Nle f t or Nright. If so, o sets Nle f t ∪ Nright as
its new vicinity region Nnew and replaces qs_set with qs_set(le f t+right).

4. Performance Evaluation

In this section, we evaluate and compare the performance of the proposed distributed method
(denoted by DM) with that of the centralized method (denoted by CM) in terms of the communication
cost and the server computation cost because existing work for range monitoring queries in the road
network mostly adopts CM [1]. CM uses the same basic data structures (i.e., EI, ET, and QT) as
DM. The communication cost of CM was measured by the total number of location-update messages
transmitted from moving objects, while that of DM was measured by the total number of messages
transmitted between the server and moving objects, i.e., the sum of (i) the number of point-to-point
messages (RequestVR, UpdateResult, and AssignVR) and (ii) the number of broadcast messages (InsertQS,
SplitRegion, DeleteQS, and MergeRegion). On the other hand, the server computation cost of CM and
DM was measured by the amount of CPU-time the server takes for query processing. Because we
are interested in the advantages of maintaining the full list at each SSP-tree node, we implemented
two versions of the SSP-tree; one is the proposed SSP-tree, where each node maintains the full list,
and the other is the naïve SSP-tree, where each node does not maintain the full list. The simulations

ISPRS Int. J. Geo-Inf. 2017, 6, 322 19 of 26

were coded in Java on Intel Xeon E5-2620 6-core Processor with 8GB RAM running Linux Ubuntu
12.04 (64-bit) operating system.

4.1. Simulation Setup

Each set of simulations was conducted on a real road network of the city of Oldenburg in Germany
(normalized to [0, 10,000]2), which consists of 6105 vertices and 7035 edges, and is obtained from
https://iapg.jade-hs.de/personen/brinkhoff/generator/ [15]. The number of queries whose query
points are uniformly placed on the road network is varied from 1000 to 10,000, and the query distance
of each query is varied from 50 to 500. On the other hand, the number of moving objects is varied from
10,000 to 100,000, and the minimum computational capability of each moving object is varied from 10
to 100. The movement of each moving object follows the random waypoint model [16], which is one of
the most widely used mobility models: each moving object o chooses a random point of destination on
the road network and moves along the shortest path to the destination at a constant speed distributed
uniformly from 0 to the maximum speed, which we set to 50 per simulation time step. Upon reaching
the destination, o remains stationary for a certain period of time. When this period expires, o chooses
a new destination and repeats the same process during the entire simulation time steps. We list
the set of used parameters and their default values (stated in boldface) in the simulations in Table
2. In each simulation, we evaluated the effect of one parameter while the others were fixed at their
default values. We ran each simulation for 1000 simulation time steps and measured the average of (i)
the total number of messages transmitted and (ii) CPU-time (in ms) consumed at each simulation time
step. We set each object in CM sends the location-update message to the server at each simulation time
step. We set 5% of queries to be updated (i.e., reinserted after they are deleted) at each simulation time
step. Please note that this update rate is sufficient to study the performance of the proposed method
because we focus on the queries with the static query points.

Table 2. Simulation parameters and their values.

Simulation Parameter Value Used (Default)

Number of queries 1000∼10,000 (5000)
Query distance 50∼500 (250)

Number of moving objects 10,000∼100,000 (50,000)
Minimum computational capability 10∼100 (50)

4.2. Simulation Results

4.2.1. Effect of the Number of Queries

In the first simulation, we varied the number of queries from 1000 to 10,000 and studied the
effect of the number of queries on the communication cost and the server computation cost. Figure 7
shows the effect of the number of queries on (i) the communication cost (i.e., the total number of
messages communicated between the server and moving objects) and (ii) the server computation
cost (i.e., the amount of CPU-time the server takes for query processing). As shown in Figure 7a,
the number of queries does not affect the communication cost of CM because, in CM, moving object
periodically send location-updates to the server. On the other hand, as the number of queries is
increased, the communication cost of DM is also increased. However, DM clearly outperforms CM
because, in DM, moving objects utilize their computational capabilities for sending messages to the
server only when necessary, i.e., when they (i) leave their current vicinity regions or (ii) enter or leave
any of the assigned query segments. This figure also shows that DM with the SSP-tree (denoted by
DM(SSP-tree)) performs much better than DM with the naïve SSP-tree (denoted by DM(naïve SSP-tree)).
This is because by using the SSP-tree, where each node maintains the full list, the server can assign
larger vicinity regions to moving objects than that using the naïve SSP-tree, and thus the moving
objects can reduce the number of sending RequestVR messages to the server for receiving new vicinity

https://iapg.jade-hs.de/personen/brinkhoff/generator/

ISPRS Int. J. Geo-Inf. 2017, 6, 322 20 of 26

regions (see the first advantage of the full list describe in Section 3.2). Please note that assigning larger
vicinity regions to the moving objects makes them not frequently leave their current vicinity regions.
In addition, the moving objects in DM(SSP-tree) can also reduce the number of sending unnecessary
UpdateResult messages to the server (see the second advantage of the full list describe in Section 3.2).
As compared to CM and DM(naïve SSP-tree), on average, DM(SSP-tree) incurs 12.6% and 66.2%, respectively,
of the communication cost.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

9,000

18,000

27,000

36,000

45,000

54,000

63,000

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of queries

 CM
 DM (Naive SSP-tree)
 DM (SSP-tree)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

30

60

90

120

150

180

210

 CM
 DM(Naive SSP-tree)
 DM (SSP-tree)

C
P

U
 t

im
e

(m
s)

Number of queries

(a) (b)

Figure 7. Effect of the number of queries on the communication cost and the server computation cost.
(a) Total number of messages vs. the number of queries; (b) The amount of CPU-time vs. the number
of queries.

As shown in Figure 7b, the performance of all methods in terms of the server computation cost
degrades as the number of queries is increased. However, as expected, CM performs much worse than
DM(naïve SSP-tree) and DM(SSP-tree) because, in CM, the server checks all moving objects if they affect
the current results of all queries. It is also observed from this figure that DM(SSP-tree) outperforms
DM(naïve SSP-tree). In both methods, the amount of CPU-time the server takes is mainly affected by
the search process for assigning vicinity regions to moving objects. As already mentioned above,
because of the first advantage of the full list, the SSP-tree helps the server assign larger vicinity regions
to the moving objects than the naïve SSP-tree does. As a result, the server in DM(SSP-tree) can reduce
more CPU-time than that in DM(naïve SSP-tree). As compared to CM and DM(naïve SSP-tree), on average,
DM(SSP-tree) takes 32.3% and 63.7%, respectively, of the amount of CPU-time.

4.2.2. Effect of the Query Distance

In this simulation, we varied the query distance of the range monitoring queries from 50 to 500
to examine how the query distance affects the performance of the proposed method. As shown in
Figure 8a, the query distance does not affect the communication cost of CM because of the same
reason mentioned in the first simulation. On the other hand, as the query distance is increased,
the communication cost of DM(naïve SSP-tree) and DM(SSP-tree) is increased. As the query distance
becomes longer, excessive intersections among query segments occur. This increases the number
of node splits of the naïve SSP-tree and the SSP-tree, and thus accelerates the height growth of the
naïve SSP-tree and the SSP-tree. As a result, the servers in DM(naïve SSP-tree) and DM(SSP-tree) are led
to assign smaller vicinity regions to moving objects. Because the moving objects are assigned the
vicinity regions of small size, they frequently leave these vicinity regions and send RequestVR messages
to the server. However, DM(SSP-tree) performs better and is less sensitive to this parameter than
DM(naïve SSP-tree) because, again, of the first advantage of maintaining the full list at each node in the

ISPRS Int. J. Geo-Inf. 2017, 6, 322 21 of 26

SSP-tree. On average, DM(SSP-tree) incurs 12.1% and 51.4% of the communication cost, as compared to
CM and DM(naïve SSP-tree), respectively.

50 100 150 200 250 300 350 400 450 500
0

9,000

18,000

27,000

36,000

45,000

54,000

63,000

 CM
 DM (Naive SSP-tree)
 DM (SSP-tree)

N
u

m
b

er
 o

f
m

es
sa

g
es

Query distance

(a) (b)

50 100 150 200 250 300 350 400 450 500
0

12

24

36

48

60

72

84

 CM
 DM (Naive SSP-tree)
 DM (SSP-tree)

C
P

U
 t

im
e

(m
s)

Query distance

Figure 8. Effect of the query distance on the communication cost and the server computation cost.
(a) Total number of messages vs. the query distance; (b) The amount of CPU-time vs. the query distance.

Figure 8b shows the effect of the query distance on the server computation cost. In contrast
to DM(naïve SSP-tree) and DM(SSP-tree), the server computation cost of CM is nearly not affected by the
query distance because an increase in the query distance does not increases the amount of CPU-time
the server takes for checking moving objects if they affect the current results of queries. However,
DM(SSP-tree) still performs best in all cases. As compared to CM and DM(naïve SSP-tree), on average,
DM(SSP-tree) takes 41.7% and 64.9%, respectively, of the amount of CPU-time.

4.2.3. Effect of the Number of Moving Objects

In this simulation, we varied the number of moving objects from 10,000 to 100,000 to study how
the number of moving objects affects the performance of the proposed method.

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
0

15,000

30,000

45,000

60,000

75,000

90,000

105,000 CM
 DM (Naive SSP-tree)
 DM (SSP-tree)

N
u

m
b

er
 o

f
m

es
sa

g
es

Number of moving objects

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
0

20

40

60

80

100

120

140
 CM
 DM (Naive SSP-tree)
 DM (SSP-tree)

C
P

U
 t

im
e

(m
s)

Number of moving objects

(a) (b)

Figure 9. Effect of the number of moving objects on the communication cost and the server computation
cost. (a) Total number of messages vs. the number of moving objects; (b) The amount of CPU-time vs.
the number of moving objects.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 22 of 26

As shown in Figure 9, as the number of moving objects is increased, the overhead of all
methods is increased in terms both of the communication cost and the server computation cost.
The communication cost of CM is proportional to the number of moving objects because they
periodically send location-updates to the server. In contrast, the communication cost of DM(naïve SSP-tree)
and DM(SSP-tree) is slightly increased due to the benefits of utilizing the computational capabilities
of moving objects. Similarly, the server computation cost of DM(naïve SSP-tree) and DM(SSP-tree) is less
sensitive to the number of moving objects than CM. We can observe from Figure 9 that DM(SSP-tree)
performs best in terms both of the communication cost and the server computation cost.

4.2.4. Effect of the Minimum Computational Capability

In this simulation, we varied the value of the minimum computational capability of each moving
object to study how the value of θ affects the performance of the proposed method. The value of θ

indicates (i) the minimum number of query segments each moving object should process and (ii) the
split threshold of the naïve SSP-tree and the SSP-tree. As shown in Figure 10, both the communication
cost and the server computation cost of CM are not affected by this parameter at all because CM does
not utilizes the computational capabilities of moving objects. On the other hand, the performance of
DM(naïve SSP-tree) and DM(SSP-tree) in terms both of the communication cost and the server computation
cost is improved as the value of the minimum computational capability is increased. This is because
a larger value of θ increases the average number of query segments each moving object should process,
and thus the server can assign a larger vicinity region to each moving object. However, DM(SSP-tree)
performs a lot better than DM(naïve SSP-tree). As compared to DM(naïve SSP-tree), on average, DM(SSP-tree)
incurs 81.9% of the communication cost and takes 78.2% of the amount of CPU-time.

(a) (b)

10 20 30 40 50 60 70 80 90 100
0

9,000

18,000

27,000

36,000

45,000

54,000

63,000

 CM
 DM (Naive SSP-tree)
 DM (SSP-tree)

N
u

m
b

er
 o

f
m

es
sa

g
es

Computational capability

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

 CM
 DM (Naive SSP-tree)
 DM (SSP-tree)

C
P

U
 t

im
e

(m
s)

Computational capability

Figure 10. Effect of the minimum computational capability on the communication cost and the
server computation cost. (a) Total number of messages vs. the minimum computational capability;
(b) The amount of CPU-time vs. the minimum computational capability.

5. Discussion

Our work focuses on distributed processing of static range monitoring queries over moving
objects. To utilize the computational capability o.cap of each moving object o by using the SSP-tree,
we fix the system parameter θ in advance to the minimum number of query segments o should process
by assuming the server lets o to select one of the predefined values as o.cap when o is registered at the
server, so that o.cap ≥ θ. This is because when a new moving object ó with its capability ó.cap < θ

is registered at the server, the SSP-tree needs to be reconstructed from the scratch, similarly to the
index structures used in the existing distributed methods for processing static range monitoring
queries in Euclidean space [2,3]. Figure 11a shows the effect of the number of queries on the initial

ISPRS Int. J. Geo-Inf. 2017, 6, 322 23 of 26

construction time of the SSP-tree. When the number of queries is 5000 (the default value of this
parameter), the construction time of the SSP-tree takes 8.7 s, which can be amortized by the long
running time of the range monitoring queries if θ is fixed or is not frequently changed. However,
for the case where θ is dynamically changed, more investigations should be done.

In addition, different from the centralized methods [4–7], in our work, moving objects may suffer
from the additional computational burden of participating in query processing tasks. Figure 11b
shows the effect of the minimum computational capability of each moving object o on the amount of
CPU-time consumed by o. It can be easily observed from the figure that as the value of the minimum
computational capability is increased (i.e., as the value of θ is increased), the computational burden
on o is also increased. Therefore, there needs to be future consideration of how to enable the moving
objects to voluntarily participate in query processing tasks so that the advantages of the proposed
method can be fully realized.

(a) (b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

4

8

12

16

20

24

C
P

U
 t

im
e

(s
ec

)

Number of queries

10 20 30 40 50 60 70 80 90 100
0

80

160

240

320

400

480

C
P

U
 t

im
e

(m
ic

ro
se

c)

Computational capability

Figure 11. Construction time of the SSP-tree and CPU-time consumed by a moving object.
(a) Construction time of the SSP-tree vs. the number of queries; (b) The amount of CPU-time consumed
by a moving object in DM(SSP-tree) vs. the minimum computational capability; all other parameters
have their default values (see the values stated in boldface in Table 2).

Finally, another issue that needs to be addressed is the energy efficiency of moving objects.
With regard to identifying the location of moving objects, our work makes the same assumption
that the centralized methods do, namely, that each moving object o periodically measures its current
location through GPS. However, GPS is an energy-intensive module, and thus its periodic usage can
be a major energy drain for o. To achieve the energy efficiency of each moving object o, the strategy
that makes o allow the GPS module to sleep should be considered. This would entail developing the
method for determining a proper sleep duration ∆t for o, so that o can move freely without sensing
and checking its current location against nearby queries during ∆t.

6. Related Work

Most of the early researches on spatial databases assumed the static objects in Euclidean
space and focused on (i) developing efficient spatial access methods (e.g., the R-tree [17] and its
variants [18,19]) and (ii) processing of snapshot queries, which retrieves the results of queries only
once at a specific snapshot in time. Papadias et al. incorporated the road network into the existing
spatial databases and proposed two basic methods for processing several types of snapshot queries
(e.g., range queries, nearest neighbor queries, spatial join queries, and closest pair queries) in the road
network [20]. The first method is the Euclidean Restriction (ER). ER first identify the candidate objects

ISPRS Int. J. Geo-Inf. 2017, 6, 322 24 of 26

by their Euclidean distance from the query point, after which it discards the false positives based
on their network distances from the query point. The second method is the Network Expansion (NE),
which performs the search directly from the query point by gradually expanding the nearby vertices
in the order of their network distances from the query point. Both ER and NE use the R-tree to speed
up query processing. Zhong et al. proposed the G-tree, a hierarchy structure, for processing nearest
neighbor queries in the road network [21]. Assuming only the broadcast communication is available,
Sun et al. proposed the Network Partition Index (NPI) for processing range queries and nearest neighbor
queries in the road network [22].

Later on, the focus was extended to indexing moving objects. Assuming that the trajectories of
moving objects are known a priori or predictable, Saltenis et al. proposed the Time-Parameterized R-tree
(TPR-tree) for indexing moving objects, where the location of each moving object is transformed into
a linear function of time [23]. Tao et al. proposed the improved version of the TPR-tree, called the
TPR∗-tree, which uses the exactly same data structure as the TPR-tree but applies new insert and
delete algorithms [24]. However, the known-trajectory assumption does not hold for most real-life
application scenarios (e.g., the velocity of a typical customer on the road are frequently changed),
which leads those index structures to become prohibitively expensive to update. To deal with a large
number of moving objects that move arbitrarily, Lee et al. proposed a generalized bottom-up update
strategy for the R-tree [25]. Wang and Zimmermann introduced the dual index design for snapshot
range queries over moving objects in the road network, which utilizes the R-tree to index the road
network and the in-memory grid structure to index the points of moving objects’ location [26].

Motivated by LBSs, another research direction has recently focused on processing monitoring
queries. Many methods for monitoring queries have been proposed, which can be broadly classified
into two categories according to the mobility of query points and objects. The first category focuses
on static queries over moving objects, and the second category deals with moving queries over
static/moving objects. Because our work belongs to the first category, we elaborate on the review of
the representative methods in the first category and briefly review the methods in the second category.
Indexing queries, instead of indexing frequently moving objects, has been considered to be an attractive
strategy, which reduces the server computation cost for updating index structures because monitoring
queries remain active for a long period of time and are static. Prabhakar et al. suggested to use the R-tree
to index queries [5], while Kalashnkov et al. used the in-memory grid structure [6]. Wang and Roger
extended [26] for processing monitoring queries in the road network [7]. These methods assume that
moving objects periodically send location-updates to the server. The server, meanwhile, continually (i)
receives the location-update stream; (ii) determines the queries that are affected by the movements of
the objects; and (iii) updates their results if necessary. However, constant location-updates generated
by a huge number of moving objects may incur significant communication bottleneck and greatly
increase the overhead at the server for determining the affected queries and keeping their results up to
date. In addition, because the transmission of a location-update message over a wireless connection
takes a substantial amount of energy, the handheld device carried by each moving object exhausts its
battery life quickly.

To help each moving object reduce the number of sending location-updates to the server, the safe
region method was proposed in [4,5]. The safe region, assigned to each moving object o, is the area
that (i) contains the point of o’s current location and (ii) guarantees that the current results of all the
queries will remain valid as long as o does not leave it. Therefore, o need not send a location-update
to the server as long as it does not leave its safe region. Although the safe region method improves
the overall system performance to a certain degree, because the size of a safe region assigned to each
object o is typically small, o easily leaves its current safe region and contacts the server in order to
receive a new safe region. Recently, the distributed methods, namely the Monitoring Query Management
(MQM) method [2] and the Query Region-tree (QR-tree) method [3] were proposed. Unfortunately,
these distributed methods only deal with the objects moving freely in Euclidean space.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 25 of 26

Focusing on processing moving monitoring queries over static objects, the safe region methods
were also proposed in [8,9]. Similarly to the safe region assigned to a moving object, the safe region
assigned to a query q is the region that (i) contains q.p and (ii) guarantees that while q.p remains inside
it, the result of q remain unchanged. More recently, several algorithms were proposed to compute
the safe exits of a query q in the road network [10–12]. Safe exits are a set of points that guarantee
the result of q remains unchanged before q.p reaches any of these points. There were also proposed
methods for processing moving monitoring queries over moving objects in the road network [13,14].
Mouratidis et al. proposed the Incremental Monitoring Algorithm (IMA) and the Group Monitoring
Algorithm (GMA) [13]. IMA is based on NE [20], while GMA extends IMA with the shared execution
paradigm. Liu and Hua proposed the distributed method that utilizes the computational capabilities of
moving objects [14]. However, this method is not comparable to our proposed method (i.e., DM(SSP-tree))
because it assumes that there is no restriction on the number of queries the server can assign to moving
objects. Specifically, in this method, although the number of queries a moving object o can process is
at most n, the server can assign o more than n queries. On the other hand, in our proposed method,
the server must assign o no more than n query segments.

7. Conclusions

In this paper, we addressed the problem of the efficient processing of range monitoring queries
over the objects moving along the road network. Given a set of geographically distributed moving
objects on the road, the primary goal of our study is to keep the results of queries up to date,
while incurring the minimum communication cost and server computation cost by letting the moving
objects evaluate several queries that are relevant to them. To achieve this, we introduced the concept
of vicinity region and proposed a new spatial index structure, namely the SSP-tree. By assigning
each moving object (i) a vicinity region and (ii) a set of query segments inside this region, the moving
object can locally monitor whether it may affect the results of nearby queries. The SSP-tree is used to
efficiently search the appropriate vicinity regions for moving objects based on their heterogeneous
computational capabilities. We also described the details of how each moving object and the server
communicate each other to cooperatively process range monitoring queries. Through a series of
simulations, we showed the effectiveness of proposed method for processing static range monitoring
queries in the road network.

Acknowledgments: This research project was supported by Ministry of Culture, Sports and Tourism (MCST) and
from Korea Copyright Commission in 2017.

Author Contributions: HaRim Jung initiated the idea, developed the research concept, and wrote the manuscript.
Ung-Mo Kim oversaw all of the work and revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ilarri, S.; Mena, E.; Illarramendi, A. Location-dependent query processing: Where we are and where we are
heading. ACM Comput. Surv. 2010, 42, 1–73.

2. Cai, Y.; Hua, K.A.; Cao, G.; Xu, T. Real-time processing of range-monitoring queries in heterogeneous mobile
databases. IEEE Trans. Mob. Comput. 2006, 5, 931–942.

3. Jung, H.; Kim, Y.S.; Chung, Y.D. QR-tree: An efficient and scalable method for evaluation of continuous
range queries. Inf. Sci. 2014, 274, 156–176.

4. Hu, H.; Xu, J.; Lee, D.L. A generic framework for monitoring continuous spatial queries over moving objects.
In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore,
MD, USA, 13–16 June 2005.

5. Prabhakar, S.; Xia, Y.; Aref, W.G.; Hambrusch, S. Query indexing and velocity constrained indexing: Scalable
techniques for continuous queries on moving objects. IEEE Trans. Comput. 2002, 51, 1124–1140.

6. Kalashnkov, D.V.; Prabhakar, S.; Hambrusch, S.E. Main memory evaluation of monitoring queries over
moving objects. Disrtib. Parallel Database 2004, 15, 117–135.

ISPRS Int. J. Geo-Inf. 2017, 6, 322 26 of 26

7. Wang, H.; Roger, Z. Processing of continuous location-based range queries on moving objects in road
networks. IEEE Trans. Knowl. Data Eng. 2011, 23, 1065–1078.

8. Cheema, M.A.; Brankovic, L.; Lin, X.; Zhang, W.; Wang, W. Continuous monitoring of distance-based range
queries. IEEE Trans. Knowl. Data Eng. 2011, 23, 1182–1199.

9. Al-Khalidi, H.; Taniar, D.; Betts, J.; Alamri, S. Monitoring moving queries inside a safe region. Sci. World J.
2014, 2014, doi:10.1155/2014/630396.

10. Yung, D.; Man, L.Y.; Lo, E. A safe-exit approach for efficient network-based moving range queries.
Data Knowl. Eng. 2012, 72, 126–147.

11. Cho, H.J.; Kwon, S.J.; Chung, T.S. A safe exit algorithm for continuous nearest neighbor monitoring in road
networks. Mob. Inf. Syst. 2013, 9, 37–53.

12. Cho, H.J.; Ryu, K.; Chung, T.S. An efficient algorithm for computing safe exit points of moving range queries
in directed road networks. Inf. Syst. 2014, 41, 1–19.

13. Mouratidis, K.; Yiu, M.L.; Papadias, D.; Mamoulis, N. Continuous nearest neighbor monitoring in road
networks. In Proceedings of the 32nd international conference on Very large data bases, Seoul, Korea,
12–15 September 2006.

14. Liu, F.; Hua, K.A. Moving query monitoring in spatial network environments. Mob. Netw. Appl. 2012, 17,
234–254.

15. Brinkhoff, T. A framework for generating network-based moving objects. GeoInformatica 2002, 6, 153–180.
16. Broch, J.; Maltz, D.A.; Johnson, D.; Hu, Y.-C.; Jetcheva, J. A performance comparison of multi-hop wireless

ad hoc network routing protocols. In Proceedings of the 4th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, Dallas, TX, USA, 25–30 October 1998.

17. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of Data, Boston, MA, USA, 18–21 June 1984.

18. Beckmann, N.; Kriegel, H.-P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for
points and rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management
of Data, Atlantic City, NJ, USA, 23–25 May 1990.

19. Roussopoulos, N.; Faloutsos, C. The R+-tree: A dynamic index for multi-dimensional objects. In Proceedings
of the 13th International Conference on Very Large Data Bases, San Francisco, CA, USA, 1–4 September 1987.

20. Papadias, D.; Zhang, J.; Mamoulis, N.; Tao, Y. Query processing in spatial network databases. In Proceedings
of the 29th international conference on Very large data bases, Berlin, Germany, 9–12 September 2003.

21. Zhong, R.; Li, G.; Tan, K.L.; Zhou, L.; Gong, Z. G-tree: An efficient and scalable index for spatial search on
road networks. IEEE Trans. Knowl. Data Eng. 2015, 27, 2175–2189.

22. Sun, W.; Chen, C.; Zheng, B.; Chen, C.; Liu, P. An air index for spatial query processing in road networks.
IEEE Trans. Knowl. Data Eng. 2015, 27, 382–395.

23. Saltenis, S.; Jensen, C.; Leutenegger, S.; Lopez, M.A. Indexing the positions of continuously moving
objects. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data,
Dallas, TX, USA, 16–18 May 2000.

24. Tao, Y.; Papadias, D.; Sun, J. The TPR*-tree: An optimized spatio-temporal access method for predictive
queries. In Proceedings of the 29th International Conference on Very Large Data, Berlin, Germany,
9–12 September 2003.

25. Lee, M.L.; Hsu, W.; Jensen, C.S.; Cui, B.; Teo, K.L. Supporting frequent updates in R-trees: A bottom-up
approach. In Proceedings of the 29th International Conference on Very Large Data Bases, Berlin, Germany,
9–12 September 2003.

26. Wang, H.; Zimmermann, R. A novel dual-index design to efficiently support snapshot location-based query
processing in mobile environments. IEEE Trans. Mob. Comput. 2010, 9, 1280–1292.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement and System Overview
	 Background and Problem Statement
	System Overview

	The Proposed Method
	Query Segment Computation
	The Segment-Based Space Partitioning Tree (SSP-Tree)
	Description
	Vicinity Region Search
	SSP-Tree Manipulations

	Vicinity Region-based Communications and Query Processing
	Server-Side Tasks
	Object-Side Tasks

	Performance Evaluation
	Simulation Setup
	Simulation Results
	Effect of the Number of Queries
	Effect of the Query Distance
	Effect of the Number of Moving Objects
	Effect of the Minimum Computational Capability

	Discussion
	Related Work
	Conclusions
	References

