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Abstract: Recently, researchers around the world have been striving to develop and modernize
human–computer interaction systems by exploiting advances in modern communication systems.
The priority in this field involves exploiting radio signals so human–computer interaction will require
neither special devices nor vision-based technology. In this context, hand gesture recognition is one of
the most important issues in human–computer interfaces. In this paper, we present a novel device-free
WiFi-based gesture recognition system (WiGeR) by leveraging the fluctuations in the channel state
information (CSI) of WiFi signals caused by hand motions. We extract CSI from any common WiFi
router and then filter out the noise to obtain the CSI fluctuation trends generated by hand motions.
We design a novel and agile segmentation and windowing algorithm based on wavelet analysis and
short-time energy to reveal the specific pattern associated with each hand gesture and detect duration
of the hand motion. Furthermore, we design a fast dynamic time warping algorithm to classify our
system’s proposed hand gestures. We implement and test our system through experiments involving
various scenarios. The results show that WiGeR can classify gestures with high accuracy, even in
scenarios where the signal passes through multiple walls.
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1. Introduction

Recently, gesture recognition systems have become increasingly interesting to researchers
in the field of human–computer interfaces. Specifically, the promise of device-free gesture recognition
systems is the lure that attracts researchers to this new and promising technology. Building interactive
systems based on wireless signals (such as ubiquitous WiFi) that do not require installing cameras
or sensors will permanently change the computing industry and smart device manufacturing:
for example, when manufacturing a smart interactive TV, manufacturers would not need to equip
the TV with expensive sensors or vision-based technologies; instead, they could adopt device-free
gesture recognition technology. Therefore, this technology has the potential to provide a tremendous
advancement in the field of human–computer interaction that will affect both smart home systems and
smart device manufacturing.

Traditional gesture recognition systems depend on vision technology such as a Microsoft
Kinect [1] or wearable sensors such as Magic rings [2]. For the future, researchers are endeavoring
to eliminate such sensors and move straight to the promising technology of device-free sensing
systems. Device-free systems were given this name because the object perceived by the computer
does not need cameras or sensors in the sensing area or on the perceived object. Previous approaches
show that WiFi signal analysis can support localizing humans in indoor environments both when
in line-of-sight (LOS) and non-line-of-sight (NLOS), such as through walls and behind closed doors.
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WiFi signals can also be used to identify the number of people in a room along with their locations [3].
Some of the previous approaches have been extended to leverage WiFi signals analysis for hand
gesture recognition systems, which enable humans to communicate with devices without requiring
sensors or vision-based technology [4]. However, WiFi-based gesture recognition systems still lack
security and are still limited in their sensing capabilities through multiple walls.

In this paper, we present a device-free hand gesture recognition system that enables humans
to interact with home devices and also provides user security and device selection mechanisms.
We leverage the Channel State Information (CSI) of wireless signals as a metric for our system.
Previous WiFi-based sensing mechanisms leveraged the received signal strength (RSS) from the
wireless MAC layer to track human motion. However, the RSS value decreases as distance increases
and suffers from multipath fading in complex environments. Moreover, RSS is measured from WiFi
signals per-packet level; therefore, RSS is single-valued. In contrast, physical layer CSI is more robust
to environmental changes and is measured at the orthogonal frequency-division multiplexing (OFDM)
subcarrier level from the received packet [5]. Therefore, we leverage CSI to build a more stable and
more robust system.

In general, previous WiFi-based gesture recognition approaches applied a moving window and
extracted several features from the time and frequency domains of WiFi signals—such as the median,
standard deviation, second central moment, least mean square, entropy, interquartile, signal energy,
and so on. Experimentally, we find that some gestures produce values similar to other features that
can raise the false detection rate, especially in through-wall scenarios. Increasing the number of
features also increases the accuracy but limits the speed of the system. Therefore, our system does
not extract such features; instead, we design an efficient segmentation method based on wavelet
analysis and Short-Time Energy (STE). The wavelet algorithm reveals the unique pattern associated
with each gesture and the STE algorithm dynamically detects the duration of each gesture in the signal
time series. Therefore, our system selects these patterns as the features of each gesture. It is worth
mentioning that each pattern detected by our system preserves most of the frequency domain and
time domain components; therefore, our feature selection method considers even more features than
previous approaches, which mainly select a small number of features that may not be sufficient for
micro-motions like hand gesture. Thereafter, we adopt a dynamic time warping (DTW) algorithm to
compare gesture patterns and to discriminate between the gestures, because each gesture pattern has
tens of points. We choose DTW because of its high efficiency in matching the corresponding points of
two time-series.

In creating a device-free gesture recognition system, we face three main challenges. The first
challenge is the problem of how to classify gestures through multiple walls. From previous approaches,
we find that CSI-based gesture classification systems still have limited through-wall sensing capabilities.
We solve this problem by building an efficient segmentation method and fast classification algorithm
that can recognize gestures accurately through one wall by using only a ubiquitous WiFi router, such
as TP-LINK TL-WR842N. Then, to extend hand gesture recognition to scenarios when the user is
separated from the receiver by multiple walls, we modify the transmitter hardware (the WiFi router)
by installing high throughput antennas in place of the router’s original antennas. The second challenge
is how to add security to a device-free gesture recognition system. Adding security is a crucial problem
and a limiting factor in most previous approaches that, when it is omitted, will lead to an insecure
system. For example, without built-in security, a neighbor moving his hand could control his nearby
neighbors’ devices. The third challenge is avoiding random interactions of user and devices that work
through a WiFi-based gesture recognition system (WiGeR). This is also a crucial issue that has the
potential to cause chaos in human–computer interfaces. For instance, if a user swipes his hand leftward
and his TV changes the channel, his laptop swipes to the next page, and his air-conditioner increases
the temperature setting, the result will be chaos. Obviously, such a scenario involves an inappropriate
system response. To solve the second and third challenges, our system requires the user to perform a
unique gesture that the system can recognize and treat as that user’s identifier or authorized gesture.
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After a gesture has been detected as an authorized user gesture, WiGeR will enable the user to begin
interacting with devices. Moreover, each device also requires the user to perform a unique gesture that
can be treated as a device selection gesture. When WiGeR detects a specific device selection gesture, the
device will subsequently respond to other user interaction gestures. This simple solution is based on
novel and efficient pattern segmentation and classification algorithms. The gestures can be modified
through learning by both users and devices.

In this paper, our main contributions are as follows:

• We present a gesture recognition system that enables humans to interact with WiFi-connected
devices throughout the entire home, using seven hand gestures as interactive gestures,
three air-drawn hand gestures that function in the security scheme as users’ authenticated
gestures, and three additional air-drawn hand gestures that function as device selection gestures.
Unlike previous WiFi-based gesture recognition systems, our system can work in different
scenarios—even through multiple walls. Moreover, our system is the first device-free gesture
recognition system that provides security for users and devices.

• We design a novel segmentation method based on wavelet analysis and Short-Time Energy (STE).
Our novel algorithm intercepts CSI segments and analyzes the variations in CSI caused by hand
motions, revealing the unique patterns of gestures. Furthermore, the algorithm can determine
both the beginning and the end of the gesture (the gesture duration).

• We design a classification method based on Dynamic Time Warping to classify all proposed hand
gestures. Our classification algorithm achieves high accuracy in various scenarios.

• We conduct exhaustive experiments. Each gesture has been tested several hundred times.
The experiments provide us with important insights and improve our system classification ability
by letting us choose the best parameters—gained through experience—to build a gesture learning
category profile that can handle gestures with various users’ physical shapes in different positions.

The remainder of this paper is organized as follows. Section 2 provides an overview of some
related works. Section 3 presents the system architecture. Section 4 describes the methodology.
Section 5 discusses the experimental setup and results. Section 6 concludes this paper and provides
suggestions for future research.

2. Related Works

2.1. Device-Based Gesture Recognition Systems

Commercial gesture recognition systems utilize various technologies to identify a wide variety
of gestures. These technologies include cameras and computer vision and room-based or built-in
sensors such as cameras [6], PointGrab [7], laptops [8], smartphones [9,10], GPS [11], vision-based [12],
and accelerometers [13,14], as well as sensors worn on the human body—such as rings [15],
armbands [16], and wristbands [17,18].

However, they have drawbacks. For example, vision-based systems require a line of sight
between the user and the camera device; interior sensors need special sensors installed; and, of course,
wearable devices need to be worn by the user, which can be inconvenient. Moreover, none of these
systems are free. In contrast, our system interacts with WiFi-connected devices without any special
devices and costs nearly nothing.

2.2. Device-Free Gesture Recognition Systems

The existing works on device-free wireless-based sensing systems can be categorized into three
main trends: (1) received signal strength (RSS) based systems; (2) Radio Frequency (RF) based systems,
sometimes called Software Defined Radio (SDR); and (3) Channel State Information (CSI) based
systems. Here, we review some of the previous approaches to describe the latest developments in this
research area.
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2.2.1. RSS

Abdelnasser et al. [19] proposed a WiFi-based gesture recognition system (WiGest) by leveraging
changes in RSS due to hand gestures. The WiGest system can identify several hand gestures and map
them to commands to control various application actions. WiGest achieved gesture recognition
accuracy rates of 87.5% and 96% using a single access point and three overhead access points,
respectively. Nonetheless, RSSI is an inadequate metric because the severe variation in RSSI values
causes continual misdetection. Furthermore, WiGest and others RSS-based gesture recognition systems
still lack security and cannot operate through walls.

2.2.2. SDR

Recently, various device-free sensing systems have been proposed that use Software Defined
Radio with devices such as Universal Software Radio Peripheral (USRP) and Radio-frequency
identification(RFID) readers. Pu et al. [4] presented the WiSee system, which can recognize nine
body gestures to interact with home Wi-Fi-connected devices by leveraging the Doppler shift of
wireless signals. Adib et al. presented WiVi [3], Witrack [20], and WiTrack02 [21]. These systems can
track human movement through walls and classify simple hand gestures. Wang et al. [22] presented
the RF-IDraw system, which was designed for commercial RFID readers. RF-IDraw enables a virtual
touch screen, allowing a user to interact with a device through hand gestures. Kellogg et al. [23]
designed the AllSee system that can identify human gestures using RFID tags and power harvesting
sensors, but AllSee cannot work with WiFi signals; it works only with TV and RFID transmissions.

All these SDR-based systems require special devices whose costs are high and whose installation
is burdensome. In contrast, our system requires only an access point (a Wi-Fi router) which are now
ubiquitously available almost everywhere. In addition, SDR-based systems suffer from a lack of
security. In contrast, our system supports security for both users and devices.

2.2.3. CSI

Channel State Information-based sensing systems have been designed for various purposes,
such as localization [24], human motion detection [25], and counting humans [26]. Recently, CSI has
been extended to recognize human motions such as fall detection [27], daily activity recognition [28],
micro-movement recognition [29], and gesture recognition [30,31]. Nandakumar et al. [30] presented a
hand gesture recognition system that can identify four hand gestures with an accuracy of 91%, and 89%
in LOS and in a backpack, respectively. He et al. [31] presented a hand gesture recognition system
called WiG. WiG classifies four hand gestures in both LOS and NLOS with an accuracy of 92% and 88%,
respectively. Compared to the SDR-based systems, previous CSI-based gesture recognition systems
have proposed fewer and simpler hand gestures. In contrast, our system is designed for whole-home
use, able to control multiple devices with sufficient interactive gesture recognition capabilities.

In summary, all previous device-free gesture recognition systems still suffer from security issues,
and still lack the ability to sense gestures through multiple walls. In this paper, we present the
WiGeR system, which overcomes these limitations and outperforms previous device-free gesture
recognition systems.

3. System Overview

3.1. Gestures Overview

We design a novel system that enables a human to send messages to devices wirelessly without
having to carry or wear any wireless or sensor device to implement a command or relay a message
to the device with which they wish to communicate. Our system recognizes seven hand gestures for
controlling devices as shown in Figure 1.
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(g)

Figure 1. Seven hand gestures for interacting with home devices wirelessly. The gestures are as
follows: (a) Swipe leftward: the user moves his hand from right to left; (b) Swipe rightward: the user
moves his hand from left to right; (c) Flick: the user first grabs his hand, pushes it forward, and then
flicks it; (d) Grab: the user first flicks his hand and then grabs it and pulls it backward; (e) Scroll up:
the user raises his hand up from the side of his body; (f) Scroll down: the user moves his hand down;
(g) Pointing: the user points forward.

These seven gestures can be adjusted to control several devices with different functions; Table 1
lists the tasks that these gestures can accomplish.

Table 1. Proposed gestures utilized for different devices.

Gesture TV Laptop, Smart Device Air-Conditioner

Leftward (−) Change channel Swipe files leftward (−) Temperature setting
Rightward (+) Change channel Swipe files rightward (+) Temperature setting

Flick Zoom in Zoom in (+) Fan speed
Grab Zoom out Zoom out (−) Fan speed

Scroll up (+) Volume Scroll pages/files up Change mode heat/cold
Scroll down (−) Volume Scroll pages/files down Change mode cold/heat

Point Open/Close/Enter Open/Close/Enter On/Off

As a unique recognition method, users are required to perform some unique gesture for
authorization. We asked three users to perform three different gestures by drawing special shapes
in the air. Here, we propose three shapes as described in Figure 2a–c. WiGeR can recognize and
authenticate a user by classifying the implemented gesture; subsequently, that user can interact with a
target device. Each target device also has a special gesture. The user is asked to implement draw-in-air
gesture to be able to select a target device to interact with. We propose three shapes to be drawn in the
air as illustrated in Figure 2d–f. If WiGeR classifies the performed gestures as a specific device gesture,
the device will be able to respond to subsequent commands by that user. This solution protects our
interactive system and avoids both outside intrusion and unwanted random user–device interaction.
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Figure 2. User security gestures and device selection gestures. (a) User 1 security gesture: drawing
a cross shape in the air; (b) User 2 security gesture: drawing a Z shape in the air; (c) User 3 security
gesture: drawing the inverse of a Z shape in the air; (d) Device 1 selection gesture: the user is asked to
draw a W shape in the air; (e) Device 2 selection gesture: the user is asked to draw an L shape in the
air; (f) Device 3 selection gesture: the user is asked to draw an X shape in the air.

3.2. System Architecture

Our system consists of the following stages:

1. Preparation: In this stage, WiGeR collects information from the WiFi access point, extracts amplitude
information, and then filters out the noise.

2. Pattern segmentation: In this stage, the system differentiates between gestures. We apply a
multi-level wavelet decomposition algorithm and the short-time energy algorithm to extract
gesture patterns and detect the start and end point of a gesture, respectively, and detect the width
of the motion window.

3. Gesture classification: In this stage, the system compares the patterns in each gesture window.
The DTW algorithm is applied and accurately classifies the candidate gestures.

Figure 3 shows the WiGeR architecture and workflow. In Section 4, we will explain each stage
in detail.

Raw CSI

Amplitude 
Extraction

Filtering

Pattern 
Segmentation

Gesture 
Classification

Authenticated
detection

  Auth 
User

Not
Auth

ContinueDevice Selection

Interaction

Cancel

Collected from Wi-Fi Signals

Figure 3. System Architecture and Workflow. WiFi-based gesture recognition system (WiGeR) starts
by collecting channel state information (CSI) and then extracts amplitude information, removes noise,
detects abnormal patterns, and classifies gestures. If the first gesture is classified as an authenticated
user, the system will continue. Otherwise, the process will fail.
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4. Methodology

4.1. Preparation

Channel state information portrays how the signals propagate from transmitter to receiver in
a wireless communication system and exposes the channel characteristics by amplitude and phase
information of every subcarrier. Let H denote the Channel State Information and T and R express
the transmitter and receiver, respectively. The relation between CSI, transmitter, and receiver can be
expressed as Equation (1):

R = HT + N (1)

where N is the noise. A WiFi channel in the 2.4 GHz band can be considered as a narrowband
flat-fading channel, which can be interpreted as shown in Equation (2) [32]:

Hi,j =‖ Hi,j( fk) ‖ ej 6 Hi,j( fk) (2)

where ‖ Hi,j( fk) ‖ is the amplitude, 6 Hi,j( fk) is the phase, i is the stream number, and j is the subcarrier
number. In our system, we leverage only the amplitude information of CSI, due to the instability of
phase information.

We use a WiFi TP-Link router that has two antennas as the transmitter or access point (AP) and
a Lenovo ThinkPad x201 Laptop equipped with an Intel WiFi link IWL 5300 network card as a receiver
or detection point (DP). This means that we have a 2*3 MIMO system. According to the OFDM scheme,
CSI is divided into six streams, and each stream has 30 subcarriers. Therefore, 180 groups of data can
be derived from each received packet as illustrated in Equation (3):

‖ Hi,j( fk) ‖=

‖ H1,1( fk) ‖ ... ‖ H1,30( fk) ‖
: : :

‖ H6,1( fk) ‖ ... ‖ H6,30( fk) ‖

 (3)

We aggregate the CSI in the 30 subcarriers into one single value Hi, where i is the stream number.
Thus, we acquire six streams that can represent CSI values, as shown in Figure 4.
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Figure 4. Raw CSI before and after filtering (a) Raw CSI represented by six streams with noise; (b) Raw
CSI represented by six streams after applying the Butterworth Filter.

As shown in Figure 4a the real trend of CSI is drowned in the noise. Hence, we design
a Butterworth low-pass filter to remove the noise but preserve the real trend of CSI caused by hand
motion. As shown in Figure 4b, our filter effectively removes all the noise.
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4.2. Pattern Segmentation

Moving objects such as hand gestures in the test environments are associated with a duration for
analyzing gesture performance with the raw CSI frequency. The duration of different gestures may be
identical, but the frequency of each gesture is different. Therefore, we need to extract the frequency and
time components of different hand gestures at different durations to obtain a unique pattern for each
hand gesture. To this end, we design an efficient pattern segmentation algorithm based on wavelet
analysis and Short Time energy.

First, we design a multi-level wavelet decomposition algorithm to decompose CSI and analyze
its frequency and time components to obtain a unique pattern for each gesture. WiGeR calculates the
mean value of CSI six streams to obtain a CSI one-dimension vector which is the input of the wavelet
analysis algorithm. Then, the multilevel 1-dimension wavelet decomposition is applied as follows:

f [CSI] = ∑
k

aj0kφj0k(CSI) +
∞

∑
j=0

∑
k

β jkψjk(CSI) (4)

where aj0k and β jk are the approximation coefficients and detailed coefficients, respectively.
φj0k(CSI) and ψjk(CSI) are called the scaling function (father wavelet), and the wavelet function
(the mother wavelet). aj0k and β jk can be calculated as

aj0k =
∫

f (CSI)φj0kdCSI, β jk =
∫

f (CSI)ψjkdCSI (5)

Here, we test our classifier with Daubechies wavelet and Symlets wavelet; we find that Symlets
of order 4 (sym4) up to level 5 (j = 5) achieves the best accuracy. Therefore, we use Symlets (sym4)
as a wavelet type, and we select the detailed coefficients of the level (j = 5) as the wavelet analysis
result that represents the CSI of the implemented gesture. Figure 5 shows the result of the wavelet
decomposition algorithm for three security gestures and three device-selection gestures (drawn in
the air). Note that each hand gesture has a unique pattern in the raw CSI. The three patterns in
Figure 5a represent the three security gestures and the three patterns in Figure 5b represent the three
device-selection gestures.
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Figure 5. Wavelet analysis results of air-drawn gestures. (a) Wavelet analysis result of security gestures;
(b) Wavelet analysis results of device-selection gestures.

Second, we apply short-time energy (STE) algorithm to the results of the wavelet decomposition
of CSI. STE is a famous algorithm used in speech signal processing that can classify speech and silent
periods. A high STE rate denotes the time during which speech is occurring, whereas a low rate reflects
non-speech or silence. In the same manner, the STE rate will vary in consonance with the variations in
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CSI. We design our algorithm as suggested in the definition of STE mentioned in [33]. We redefine STE
for CSI as follows.

The long-term energy of CSI signal can be expressed as shown in Equation (4):

E =
n

∑
csi=n−N+1

h2(csi) = h2(n− N + 1) + ... + h2(n) (6)

where E is the energy of the CSI signal after wavelet decomposition (h(csi)). The wavelet
decomposition h(csi) can be expressed as shown in Equation (5):

hn(csi) = h(csi)w(n− csi) n− N + 1 ≤ csi ≤ n (7)

where n = 0, 1, 2, ..., N is the window length. The STE of CSI can be determined from the following expression:

En =
n

∑
csi=n−N+1

[h(csi)w(n− csi)]2 (8)

where w() is the window function, n is the sample that the analysis window is centered on, and N is
the window length. Here, we apply a rectangular window.

In Figure 6, the red line represents STE, which follows the CSI signal and increases as CSI varies
because of human hand motion. The width of the time window can be seen clearly.
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Figure 6. Detecting hand gesture interval by short-time energy with a rectangular window. The
short-time energy (STE) rate changes according to the variations in CSI generated by a user’s
hand motion.

4.3. Classification

We adopt the dynamic time warping (DTW) algorithm to classify gestures for our system.
DTW matches the temporal distortions between two models to find the warp path between the
corresponding points in two time-series. In general, DTW [34], given two time-series g and ǵ with
lengths gm and ǵn, respectively, can be written as:

g = g1, g2, ....gi, ..., gm ǵ = ǵ1, ǵ2, ....ǵj, ..., ǵn

The warp path W between the g and ǵ time-series can be represented as follows:

W = W1, W2, ..., WL where Wl = (i, j) =‖ gi − ǵj ‖
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where L is the length of the warp path, l denotes the lth element of the path, i is an index in the time
series g, and j is an index in the time series ǵ. Therefore, the warp path W can be defined as a Euclidian
distance and calculated as shown in Equation (7):

W(gi, ǵj) =

√√√√ L

∑
l=1

(gi − ǵj)2 (9)

However, the optimal warp path is considered as the minimum distance warp path of two-time
series. Therefore, the distance of the optimal warp path can be calculated as shown in Equation (8):

D(gi, ǵj) = min
L

∑
l=1

W(gi, ǵj) (10)

where D(gi, ǵj) is the distance between the two data point indices of two time series of hand gestures
(indices from g and from ǵ) in the lth element of the warp path. Our DTW dynamically sets up
warp path index points based on the starting and ending points of the hand motion detected by
the pattern segmentation algorithm (discussed in Subsection 4.2) and, consequently, speeds up the
classification process.

WiGeR can dynamically classify gestures by comparing the warp path distance of gestures based
on minimum distances that were determined from exhaustive experiments during the learning phase.
These gestures are stored in the system profile and considered as identified gestures. We use the open
source machine learning tool box [35]. Figure 7 shows the alignments between two-time series of two
hand gestures. DTW dynamically compares the intervals of hand motion detected by the STE algorithm.
DTW is a fast and agile algorithm that improves our system’s performance. The experimental results
verify the validity and efficiency of our segmentation and classification methods.
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Figure 7. This Figure shows alignments between two-time series of two hand gestures by dynamic
time warping (DTW): (a) 2D plot of two gestures time sequences alignments by DTW; (b) 3D plot of
DTW alignments of two gestures signal.

5. Experiments and Results

In this section, we describe the implementation of our proposed system and the results we have
obtained from more than two months of testing with six volunteers in different scenarios.

5.1. Experimental Set up

We use a commercial WiFi router (TL-WR842N) with two antennas as an access point (AP).
For a detection point (DP), we use a Lenovo x201 laptop equipped with an IWL 5300 network card,
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running a 32-bit Linux operating system (Ubuntu version 14.04), and with the open source CSI-TOOLS
installed [36]. We set the packet transmission rate to 100 packets per second to obtain sufficient
information from each hand gesture motion.

We set up our system in a laboratory building using five different scenarios as shown in Figure 8.
The testing area is 8 m × 8 m and contains a main lab room and a small interior room. The volunteer
users perform gestures for the different scenarios in the main lab room, the interior room, and the
adjoining corridor, as depicted in Figure 8. The scenarios are as follows:

1. Scenario 1: The AP, DP, and user are all in the main lab room. The user performs the gestures
between the AP and DP, positioned as shown in Figure 8 (label S1).

2. Scenario 2: The AP and the user are in the same room, but the DP is in the interior lab room
separated by one wall. The distance between the AP and the DP is approximately 3.5 m, and the
distance between the DP and the user is approximately 3 m. The user is approximately 2 m from
the AP, as shown in Figure 8 (label S2).

3. Scenario 3: The DP and the user are in the interior lab room, while the AP is in the main lab
room separated by one wall. The distance between the AP and the DP is 3.5 m, and the distance
between the DP and the user is 2 m. The user is approximately 4 m away from the AP.

4. Scenario 4: The AP and the DP are both in the main lab room. The user is asked to perform
gestures in the corridor, approximately 7 m and 5 m away from the AP and the DP, respectively.
There is one intervening wall.

5. Scenario 5: The AP and the DP are both in the small interior room, while the user is in the corridor
separated from them by two walls at a distance of approximately 8 m.

USER S2

USER S3

DP S1,S4
USER S1

Interior 
Lab room

Main  Lab Room Corridor

USER S4,S5AP S5

DP S2,S3,S5

AP 
S1,S2,S3,S4

AP
DP

AP

DP

AP

DP

(a) (b) (c)

Figure 8. Experiments environment and setting. (a) Floor plan of experimental environment,
setting and scenarios. S1 to S5 refer to the user’s location relative to the access point (AP) and detection
point (DP) in scenarios 1–5; (b) Experimental environment and settings; (c) Two WB-2400D300 antennas.

5.2. Experiment Results

We implement our proposed system in a lab with six volunteer users. For each scenario,
three users are asked to perform the proposed gestures individually. We collect a total of 300 samples
of each gesture from these three users for each scenario—a total of 100 samples of each gesture from
each user collected over three sessions, comprising 30, 30, and 40 samples of each gesture, respectively,
as shown in Table 2.

Table 2. Collected samples of each gesture in each scenario.

Session Samples from 3 Users Samples-per-User Training Samples Testing Samples

Session 1 90 30 60 30
Session 2 90 30 60 30
Session 2 120 40 80 40

We train our classifier for each session using the whole samples of each gesture collected from
two different users. Then, we test the samples of each gesture that were collected from another user.
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We do the test for the three users. In each test, the training samples do not include samples from the
target user, and we leave the target user out for cross validation.

We evaluate the accuracy of the experimental results in terms of average accuracy per gesture for
each user and the average accuracy on all the implemented gestures for each user. Generally, accuracy can
be computed as shown in Equation (9):

Accuracy =
∑ TP + ∑ TN

∑ TP + ∑ TN + ∑ FP + ∑ FN
× 100 (11)

where TP, TN, FP and FN refer to true positive, true negative, false positive and false negative results,
respectively. We show the results of each scenario using a confusion matrix.

Figure 9 shows confusion matrices for different scenarios. Figure 9a shows the accuracy
of scenario 1; the average accuracy is 97.28%. The accuracy scores for scenarios 2 and 3 are 91.8%
and 95.5%, respectively, as shown in Figure 10b,c. As the figure shows, the gesture recognition
accuracy increases when the user is closer to the DP. Figure 9d shows the accuracy of scenario 4,
which decreased to 83.85% due to the extended distance and the wall between the user and the AP
and DP.
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Figure 9. Confusion matrices for seven proposed interaction gestures in different scenarios.
(a) Confusion matrix for scenario 1; (b) Confusion matrix for scenario 2; (c) Confusion matrix for
scenario 3; (d) Confusion matrix for scenario 4; (e) Confusion matrix for scenario 4 with WB-2400D300
antennas; (f) Confusion matrix for scenario 5.
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Figure 10. The recognition accuracy rates for user security and device selection gestures in all scenarios.
S1–S5 denote scenario 1 to scenario 5, S4b denotes scenario 4 with the added WB-2400D300.

To overcome this problem, we used two WB-2400D300 antennas (Figure 8c). The WB-2400D300
is a commercial antenna available in [37]; it is a 300 M, 16 dB dual-polarized directional antenna
that enhances the power of wireless transmission and reception and can be used with a transmitter,
a receiver, or a relay station. This type of antenna can be used for long-distance wireless video
monitoring with network cameras and supports remote wireless high-definition video transmission.
Overall, it is an excellent and high throughput antenna that provides a high transmission rate and good
stability at a low cost (the antenna cost the same as the router). We connect two WB-2400D300 antennas
to the router and set up the router in the main lab room as the AP. Otherwise, the experimental set up
was the same as before for scenarios 4 and 5.

After making this antenna change, the results shown in Figure 9e,f reflect the improved gesture
recognition accuracy (94.4% and 91% for scenarios 4 and 5, respectively). Using a more powerful
antenna helps solve the problem of recognizing gestures through multiple walls. At the same time,
such antennas do not cost more than an ordinary router.

Moreover, we also use precision, recall and F-measure to evaluate experimental results. Precision
is the positive predictive value, recall is the sensitivity, and F-measure or F1 score is the weighted
average of both the precision and the recall. Precision, recall, and F-measure are calculated as the
following expressions:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 = 2× precision× recall
precision + recall

(14)

From Figure 9, we see the precision, recall, and F1 values of each gesture in each scenario.
The achieved results of precision, recall, and F1 confirmed the efficacy of the proposed system.

Overall, the system is more accurate at recognizing the security gestures and device selection
gestures than the interaction gestures because performing the air-drawn gestures takes more time than
the seven interactive gestures and, consequently, the variations in CSI are clearer. Figure 10 shows the
accuracy rates for users and device gestures in all the scenarios.

We experimentally compare WiGeR with WiG [31] to verify the advantages of our approach.
We choose four gestures for the comparison: two gestures from the gestures proposed for WiGeR
(leftward and rightward swipes) and two gestures from the gestures proposed by WiG (push and pull).
We set up the AP and the DP the same as in the LOS and NLOS scenarios described in [31]. We collect
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data from one volunteer user in our lab room. For each scenario, 90 samples of each gesture are
collected from this single user over 3 sessions. During each session, we collect 30 samples of each
gesture. We use the methodology in WiG [31] to classify the gestures. Thereafter, we compare the
results of WiG with the results of WiGeR. The comparison results show that WiGeR outperforms WiG
in both LOS and NLOS scenarios, as shown in Figure 11.
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Figure 11. Classification accuracy rate of WiGeR and WiG. (a) Accuracy rate in line-of-sight (LOS)
scenarios; (b) Accuracy rate in non-line-of-sight (NLOS) scenarios.

As these results show, WiGeR outperforms previous approaches in hand gesture classification
accuracy and in its ability to recognize gestures through multiple walls. Moreover, WiGeR addresses
the issues of security and device selection using a simple and fast mechanism.

6. Conclusions and Future Work

In this paper, we present WiGeR, a device-free gesture recognition system that works by leveraging
the channel state information of WiFi signals. Our system enables humans to communicate with
household appliances connected to a WiFi router. The human user can control a target device using
simple hand gestures. We propose seven hand gestures intended to control various functions of
several home appliances. To our knowledge, our approach is the first device-free gesture recognition
system that includes both user security and device selection capabilities. We conduct more than
300 experiments for each gesture in an enclosed laboratory using complex scenarios and different
volunteer users to evaluate our proposed system. The results show that our system achieves a
high accuracy rate in different scenarios due to our robust pattern segmentation and classification
methods. Improvements in home device hardware receiver antennas can make this system more
flexible and reliable.

We plan to extend this system to classify gestures for multiple users with multiple devices
all implemented concurrently. In addition, we aim to extend this work to classify the hand
gestures of various human activities, which will allow users to communicate with devices in any
situation. This work will lead to the development of a comprehensive device-free sensing system
that can accurately classify human movements such as walking, falling, standing, lying down,
performing gestures, and so on. Furthermore, we are interested in extending this approach to build a
virtual keyboard by developing air-drawn gestures for all the potential letters, punctuation marks,
and symbols.
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The following abbreviations are used in this manuscript:

WiGeR: WiFi-based gesture recognition system
CSI: Channel State Information
AP: Access Point
DP: Detection Point
STE: Short-Time Energy
DTW: Dynamic Time Warping
LOS: Line-of-sight
NLOS: Non-line-of-sight
RSS: Received signal strength
OFDM: Orthogonal frequency-division multiplexing
SDR: Software Defined Radio
TP: True positive
FP: False positive
TN: True negative
FN: False negative
USRP: Universal Software Radio Peripheral
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