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Abstract: The NDVI dataset with high temporal and spatial resolution (HTSN) is significant 

for extracting information about the phenological change of vegetation in regions with a 

complex earth surface. The Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) has been successfully applied to synthesize the HTSN by fusing the data with 

different characteristics. Based on the model, there are two different schemes for 

synthesizing the HTSN. One scheme is that red reflectance and near-infrared (NIR) 

reflectance are synthesized, respectively, and the HTSN is then obtained through algebraic 

operation (Scheme 1); the other scheme is that the red and NIR reflectance are used to 

calculate NDVI, which is directly taken as input data to synthesize the HTSN (Scheme 2). 

In this paper, taking the hill areas in eastern Sichuan China as a case, the two schemes were 

compared with each other. Seven Landsat images and time-series MOD13Q1 datasets 

spanning from October 2001 to February 2003 were used as the test data. The results showed 

the prediction accuracies of both derived HTSNs by the two different schemes were 

generally in good agreement, and Scheme 2 was slightly superior to Scheme 1  

(R2: 0.14 < Scheme 1 < 0.53; 0.15 < Scheme 2 < 0.53). Although the two HTSNs showed 

high temporal and spatial consistence, the small spatiotemporal difference between them had 
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a different influence on different applications. The coincidence rate of cropping intensity 

extracted from two derived HTSNs was fairly high, reaching up to 93.86%, while the 

coincidence rate of crop peak dates (i.e., the emerging dates of peaks in an annual  

time-series NDVI curve) was only 70.95%. Therefore, it is deemed that Scheme 2 can 

replace Scheme 1 in the application of extracting cropping intensity, so that more calculation 

time and memory space can be saved. For extracting more quantitative crop phenological 

information like crop peak dates, more tests are still needed in order to compare the absolute 

accuracy for both schemes. 

Keywords: high temporal and spatial resolutions; time-series NDVI; Spatial and Temporal 

Adaptive Reflectance Fusion Model (STARFM); cropping intensity; crop peak date; hills area 

 

1. Introduction 

The NDVI dataset with high temporal and spatial resolution (HTSN) is significant for extracting the 

phenology of vegetation or crops in regions with a complex earth surface. However, due to financial and 

technological limitations, many traditional sensors (i.e., Landsat Thematic Mapper (TM)/Enhanced 

Thematic Mapper Plus (ETM+) or Terra/Aqua Moderate Resolution Imaging Spectroradiometer 

(MODIS)) are not capable of obtaining remotely sensed data with high temporal and spatial resolutions 

simultaneously. Therefore, it is still difficult to synthesize the HTSN by use of surface reflectance data 

provided by a single sensor. It is a feasible idea to obtain the HTSN by developing relevant data fusion 

algorithms for fusing data with different characteristics provided by different sensors [1–4]. 

Some scholars obtained the HTSN through unmixing low spatial resolution pixels on the spatial 

domain on the basis of the least squares theory [5,6], due to the fact that the NDVI conforms basically 

to the linear spectral mixing model [7,8]. Some other scholars synthesized the dataset of red band and 

near-infrared (NIR) band with high temporal and spatial resolutions firstly based on the reflectance 

fusion model (e.g., Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM [9]), and then 

calculated the corresponding HTSN. The fusion model based on the unmixing theory often requires a 

land use/cover map with a high spatial resolution as auxiliary data [6,10], while the STARFM algorithm 

does not need other auxiliary data and it is therefore more practical and has become the most widely 

applied algorithm for synthesizing reflectance or an NDVI dataset with high spatial and temporal 

resolutions [11–13], since it is easier to realize [14]. For example, Hilker et al. [15] proved that the 

HTSN synthesized by the STARFM algorithm can reflect the law of vicissitude of different vegetation 

in a one-year term well; Bhandari et al. [16] obtained the reflectance dataset at an eight-day interval and 

with a 30 m spatial resolution by fusing Landsat TM and MODIS Nadir BRDF Adjusted Reflectance 

(NBAR) data along with use of the STARFM algorithm, and then constructed the HTSN. 

The STARFM algorithm was originally used to synthesize surface reflectance data with high temporal 

and spatial resolutions by fusing data with different characteristics (e.g., Landsat and MODIS surface 

reflectance) [9]. In consideration of the transition relation between the NDVI band, red band, and NIR 

band, the algorithm can also be indirectly used for synthesizing the HTSN [15,16] (Scheme 1). 

Alternatively, the algorithm can be also directly used to synthesize the HTSN taking the NDVI as only 
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one band of input data [17] (Scheme 2). Little research has focused on the difference between the two 

schemes. However, there exists the nonlinear transition relation between NDVI band, red band, and NIR 

band [18]. Will such a relation cause any difference between the synthesized HTSNs based on the two 

different schemes? Furthermore, will the synthesized HTSNs cause a significant difference in practical 

applications, such as extracting the crop phenological information? The answers to these questions will be 

helpful for selecting a proper scheme to generate the HTSN for different applications. If there is no 

significant difference between two synthesized HTSNs or between the effects in the same application in 

use of the two synthesized HTSNs, it would be more reasonable to choose Scheme 2. Because only one 

band (i.e., NDVI) is required to operate Scheme 2, it will save quite a lot of time and memory space. 

In this paper, taking the hill areas in the eastern Sichuan province in China as the case region which 

is characterized by high spatial heterogeneous land cover, the above-mentioned questions were studied 

by selecting Landsat and MODIS data as the data source. The rest of this paper is organized as follows. 

Section 2 reviews the study area background. Data and its preprocessing are introduced in Section 3. 

Methods are described in Section 4. Experimental results and analysis are demonstrated in Section 5, 

and are discussed in Section 6. Conclusions are proposed in Section 7. 

2. Study Area 

An area of about 8100 km2 (90 km × 90 km) in the eastern Sichuan province was selected as the case 

region (Figure 1A). The region is a typical hilly area with a high spatial heterogeneity of land cover 

(Figure 1C) and many types of surface features, among which farmland and forestland are the most 

widely distributed (Figure 1B). Mianyang, the second largest city in Sichuan, lies in the left middle of 

the area. The Fujiang River flows through the area from the northwest to the southeast (Figure 1B). 

 

Figure 1. (A) Location of the study area; (B) Land cover map of the study area; the 

abbreviation in the legend is defined as AL (arable lands), EF (evergreen forests), DF 

(deciduous forests), WB (water bodies), and RL (residential lands); (C) DEM of study area 

showing the terrain topography. 

The area is located in the zone of the Sichuan Basin subtropical moist monsoon climate. The rainfall 

differs in the dry season and the wet season. It takes more than 80% of the annual rainfall capacity in the 

wet season (approximately from May to October) [19]. The temperature differs obviously in the four 
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seasons: it is highest in summer, about 25 °C, moderate in spring and autumn, about 16–17 °C, and 

lowest in winter, only about 6 °C [20]. The pleasant climate allows a multiple-cropping system. The 

summer cropping season is approximately from May to October, and the winter cropping season is 

approximately from November to May of the next year. The types of vegetation are complex, the 

landscapes are fragmentary, and the farmlands are widely distributed and multiple cropping is common 

in the study area. With these features, the area is very suitable for the comparative analysis on the 

difference between the two different synthesizing schemes. 

3. Data and Preprocessing 

High quality Landsat images are needed to assess the prediction accuracy of the two schemes in this 

paper; while Landsat ETM+ images since May of 2003 are not suitable for validation due to the  

ill-scanned lines, seven Landsat TM or ETM+ scenes with little or no cloud during 2001 and 2002 were 

used as the experiment data (see Figure 2). In order to minimize the negative influence from cloud and 

shadow, the MODIS 16-day optimum observation composites (i.e., MOD13Q1) were selected as the high 

temporal resolution data. The dataset contains 12 layers in total. Only the red, the NIR, the NDVI, and the 

pixel reliability layers were selected in our study. As seen in Figure 2, the Landsat TM image on 23 

December 2001 and the 23rd composite of MOD13Q1 data in 2001, corresponding to the TM image, were 

selected as the base images in the STARFM algorithm. The other 33 composites of MOD13Q1, from the 

16th composite of 2001 to the third composite of 2003, were used as the input data with the  

16-day temporal resolution. Because it requires additional adjacent data to eliminate the “edge effect” [21], 

the last seven composites of 2001 (i.e., the 16th to 22nd of 2001) and the first three composites of 2003 

(i.e., the first to third of 2003) were also selected, beside all composites from 2002 (shown in Figure 2). 

All Landsat and MODIS data were downloaded from USGS GLOVIS portal website [22].  

 

Figure 2. Acquisition dates of Landsat and MODIS scenes used for this study. The Landsat 

image at base date (23 December 2001) and the corresponding MOD13Q1 image at base 

date (the 23rd composite in 2001) are marked with red squares. The reference Landsat images 

for validation and their corresponding MOD13Q1 images are marked with underlines. Note 

that MODIS data were acquired as 16-day composites; the dates given in the figure are the 

first day of the 16-day acquisition period respectively. 

The projections and pixel sizes of the input Landsat and MODIS data must be same in the STARFM 

algorithm. Projection transformation, re-sampling, and cutting were done for MOD13Q1 products by 

the MRT (MODIS Reprojection Tool) to acquire 30 m-data with UTM projection. The LEDAPS 
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procedure (i.e., Landsat Ecosystem Disturbance Adaptive Processing System) [23] was first utilized for 

radiometric calibration and atmosphere correction for Landsat data. Additionally, the surface reflectance 

and NDVI data were finally obtained from the preprocessed Landsat data. 

A land cover map from 2000 was also applied for masking farmland while extracting crop 

information. The independent field validation showed that the accuracy of the land cover product 

surpassed 85%, which can meet the requirement of this study [24]. 

4. Methods 

4.1. The STARFM Algorithm 

As MODIS surface reflectance and Landsat surface reflectance are in high coincidence [25], if the 

MODIS surface reflectance is known at date t0 when the Landsat surface reflectance is unknown, the 

Landsat surface reflectance at t0 can be expressed as: 

0 0 0( , , ) ( , , )i j i jL x y t M x y t    (1) 

where (xi, yj) indicates a given pixel location for both Landsat and MODIS images; ε0 indicates the 

difference between MODIS surface reflectance and Landsat surface reflectance caused by different 

bandwidth and solar geometry. 

If both the MODIS and Landsat surface reflectance at another date tk are known, under the assumed 

precondition that the land cover and the system error do not change from t0 to tk (i.e., ε0 = εk), the 

unknown Landsat surface reflectance at t0 can be evaluated by the following equation [9]: 

0 0( , , ) ( , , ) ( , , ) ( , , )i j i j i j k i j kL x y t M x y t L x y t M x y t    (2) 

In consideration of the mixed-pixel effect, land cover or phenological change, and the solar geometry 

bidirectional reflectance distribution function (BRDF), by introducing the information of similar neighbor 

pixels in a searching window, the unknown Landsat reflectance of the center pixel (xω/2, yω/2) at t0 can 

be expressed as: 

/2 /2 0 0

1 1 1

( , , ) ( ( , , ) ( , , ) ( , , ))ijk i j i j k i j k

i j k

L x y t W M x y t L x y t M x y t
  

 
  

     (3) 

where ω indicates the searching window size; and Wijk indicates the weight of similar neighbor pixels in 

a window, determined by the following three factors: (1) the spectral distance (Sijk) between Landsat and 

MODIS data at a given location at tk; (2) the spatial distance (dijk) between a neighbor pixel and the 

central pixel; and (3) the time distance (Tijk) between the input and the predicted MODIS data. 

The condition for filtering similar neighbor pixels in a window is that it must provide more spectral 

and spatial information than the central pixel. An uncertainty parameter is added to the filtering condition, 

in consideration of the uncertainty during the preprocessing procedures for Landsat and MODIS surface 

reflectance. The original literature could be referred to for more detailed descriptions of the calculation 

methods of all parameters and the algorithm theory [9]. 
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4.2. Two Comparable Schemes 

Theoretically, there are two different schemes for synthesizing HTSNs based on the STARFM 

algorithm. They are described as follows. 

Scheme 1: Taking the test data introduced in Section 3 as an example, high temporal Landsat-like red 

and NIR reflectance images can be generated by using the TM image from the 23 December 2001 and 

time-series MOD13Q1 dataset by the STARFM algorithm, and then the high temporal Landsat-like NDVI 

data can be indirectly obtained through algebraic operation (Figure 3A). 

  

(A) (B) 

Figure 3. The flowchart of Scheme 1 (A) and Scheme 2 (B) for synthesizing the HTSNs. 

Scheme 2: First, all the reflectance images, including those in TM and MOD13Q1, are used to figure 

out the NDVI images, and then the high temporal Landsat-like NDVI data can be synthesized directly 

by fusing the derived NDVI images through the STARFM algorithm (Figure 3B). 

4.3. Parameter Settings 

For the STARFM algorithm, it is recommended that different parameter combinations should be used 

for regions with different spatial heterogeneity. The sliding window size should be set bigger, and a 

logarithmic formula that is insensitive to spectral distance should be applied for calculating the weights 

of similar neighbor pixels for regions with high heterogeneity [9]. Simultaneously, the uncertainty 

parameter should also be set according to the spatial heterogeneity and the fluctuation range of one band 

value. For regions with high spatial heterogeneity, the uncertainty of the red band is usually set as 0.01, 

and that of the NIR band is set as 0.015 [9]. In this study, in consideration of the fact that the study area 

is a hilly area with high spatial heterogeneity, the sliding window size was set as 3000 m × 3000 m. As 

the NDVI band fluctuates wider than the NIR band does, the uncertainty parameter of the NDVI band 

was set as 0.025. 
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4.4. Comparison and Evaluation Protocol 

4.4.1. Prediction Accuracy Evaluation 

Taking the acquired Landsat TM or ETM+ images as the validation data, the general prediction 

accuracy of different schemes can be compared with each other. The observed Landsat images and their 

corresponding predicted Landsat-like images were applied to figure out the determination coefficient (R2) 

and RMSE (root mean square error), which were taken as the evaluation indexes to evaluate the prediction 

accuracy of different schemes. Because MOD13Q1 data are composed in a 16-day period, the observed 

Landsat images cannot exactly coincide with the predicted Landsat-like images in terms of time. The date 

span of MOD13Q1 data and its corresponding predicted Landsat-like image should cover the observation 

date when the actual Landsat image was acquired. For example, the predicted Landsat-like image 

corresponding to the 21st composite of MOD13Q1 in 2001 was selected and compared with the acquired 

TM image from 29 November 2001 because the composite dates of the MOD13Q1 (i.e., from 17 

November to 2 December 2001) included the observation date of the actual TM image (i.e., 29 November 

2001). Furthermore, the prediction accuracies of the red band and NIR band were also calculated along 

with the NDVI band for Scheme 1, while only the prediction accuracy of the NDVI band was calculated 

for Scheme 2. 

4.4.2. Consistence Comparisons 

Two HTSNs synthesized by two different schemes were compared with each other from temporal 

and spatial domains: 

Temporal Consistence: The correlation coefficient R between the two same temporal NDVI images 

from two synthesized HTSNs was calculated, and a temporal curve of R was then laid out for presenting 

the temporal consistence between the two HTSNs (illustrated as Figure 4A). 

Spatial Consistence: The correlation coefficient R between the two time-series NDVIs extracted from 

two synthesized HTSNs was calculated for each pixel; then a spatial map of R for all the pixels was 

figured out and was used for describing the spatial consistence between the two HTSNs (illustrated as 

Figure 4B). 

4.4.3. Application Comparisons 

Time-series NDVI data are often used to extract important farming information like cropping intensity 

and crop phenology [26,27]. It was found that the peak of the time-series NDVI curve indicated that the 

ground biomass of crops reached the maximum and fluctuated with the crop-growing processes such as 

sowing, seeding, heading, ripeness, and harvesting within one year [28]. Correspondingly, cropping 

intensity is defined as the number of peaks and the crop peak date is defined as the timing when the 

emerging “peak” is in the time-series NDVI curve (Figure 5). In this paper, application comparisons 

were carried out for extracting the cropping intensity and the crop peak dates in the study area based on 

two HTSNs synthesized by two different schemes. Two results for the same application were compared 

with each other pixel by pixel. The coincidence rate, the percentage of the pixels whose results based on 

both HTSNs is exactly the same, was figured out for presenting the difference between them. An analysis 
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was then made to determine whether the difference between the two HTSNs would cause a significant 

impact on such applications. 

 

(A) 

 

(B) 

Figure 4. The illustrations for describing the temporal consistence and the spatial consistence 

between two HTSNs synthesized by two different schemes. (A) Temporal correlation: taking 

the 16th composite in 2001 as an example, the correlation coefficient R between the two 

synthesized NDVI images at the composite was calculated; the value was a point of the 

temporal curve of R between the two synthesized HTSNs; (B) Spatial correlation: taking one 

pixel as an example, two time-series NDVI values for the pixel were extracted, and the 

correlation coefficient R between them was calculated; the value was a point of the spatial 

map of R between two synthesized HTSNs for all the pixels. 

Two synthesized HTSNs were first filtered by the S-G filter [21,29] in order to eliminate the negative 

effect from clouds and shadows (see Figure 5). Possible peaks were then extracted by the second order 

difference algorithm [30,31], and the “fake peaks” were kicked out by the test conditions of the peak 

emerging date and the threshold of the peak value. The test conditions were set as the dates of crop peaks 

that should emerge within the potential crop growth seasons (see above Section 2), and the NDVI value of 

peaks should be more than 0.4. Subsequently, the cropping intensity was acquired through counting the 

number of peaks, and the date of each peak was simultaneously recorded. While extracting the cropping 

intensity and crop peak dates, the results were masked for the farmland using the land cover product. 
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Figure 5. The illustration for presenting cropping intensity and crop peak dates in the study. 

The 2002-01th on the horizontal axis indicates the first composite in 2002, and so on. 

5. Results and Analysis 

5.1. Prediction Accuracy Comparisons 

For seven acquired Landsat images (listed in Figure 2), R2 and RMSE between the actual Landsat 

images and the predicted images by the two different schemes are described in Table 1. The prediction 

accuracy of both schemes is similar. Scheme 2 is slightly superior to Scheme 1. Comparably, the NDVI 

prediction accuracies of both schemes are in good agreement (R2: 0.14 < Scheme 1 < 0.53;  

0.15 < Scheme 2 < 0.53), while the predictions of dates on 5 March 2002 and on 5 September 2002 are 

relative poor. Generally, rape blooms in the beginning of March and corn and rice mature gradually in 

the beginning of September. Thus, high heterogeneity exists in space at the two moments, which may 

lead to worse predictions according to the characteristics of the STARFM algorithm [9]. Similarly, the 

predictions of dates on 29 November 2001 and on 29 March 2002 are comparatively good (Table 1), 

likely because rape grows few leaves at the end of November or is close to the peak of the growing 

season at the end of March, when high homogeneity exists. For Scheme 1, the prediction accuracies on 

the three bands (i.e., red, NIR, and NDVI) are different from each other. 
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5.2. Consistence Comparisons 

5.2.1. Temporal Consistence 

The temporal curve of R between the two synthesized HTSNs is presented in Figure 6. The two 

HTSNs show fairly high temporal consistence in general, and most of the correlation coefficients are 

above 0.8, some even above 0.9. The composites with the high correlation coefficients are decentralized 

in all seasons except summer. Furthermore, the highest correlation coefficients are respectively 

corresponding to the 21st composite of year 2001 (winter, R = 0.92), the second composite of 2003 

(winter, R = 0.91), and the sixth composite of 2002 (spring, R = 0.90) (see the black arrows in Figure 6). 

The composites with comparatively lower correlation are concentrated, mostly from the 12th to the 17th, 

in the summer of 2002 (0.66 < R < 0.72, the acquisition dates from 26 June to 29 September 2002; see 

the red arrows in Figure 6). 

Table 1. Results of the pixel-based regression of the reference Landsat images versus the 

predicted images by two schemes for seven acquisition dates. The better result for each date 

is shown in bold. 

Acquisition Dates  

(MM-DD-YYYY) 

R2 RMSE 

Scheme 1 Scheme 2 Scheme 1 Scheme 2 

Red NIR NDVI NDVI Red NIR NDVI NDVI 

11-29-2001 0.42 0.72 0.42 0.46 0.02 0.03 0.10 0.09 

03-05-2002 0.01 0.42 0.14 0.15 0.07 0.06 0.29 0.30 

03-29-2002 0.64 0.67 0.53 0.53 0.02 0.04 0.09 0.10 

07-11-2002 0.32 0.45 0.30 0.36 0.02 0.07 0.09 0.11 

09-05-2002 0.45 0.42 0.23 0.15 0.02 0.07 0.10 0.11 

10-07-2002 0.45 0.29 0.23 0.27 0.02 0.05 0.11 0.12 

10-23-2002 0.56 0.36 0.28 0.29 0.02 0.04 0.13 0.13 

5.2.2. Spatial Consistence 

Figure 7 shows the spatial map of R between two synthesized HTSNs. The spatial consistence 

between them is fairly high, with R above 0.8 at most areas (see Figure 7 A), but it still reveals some 

difference in space. In contrast to the land cover map, the spatial map is seemingly associated with the 

land cover types (Figure 7A vs. Figure 7B). The spatial correlation at farmlands is fairly high, with the 

mean R of 0.91. The correlation at forestlands takes second place (b1 and b2 in Figure 7), with the average 

R of 0.86. While R at water body regions (e.g., α and β in Figure 7) is comparatively low, and even 

negative in areas of residence zones (see a1 vs. b1 in Figure 7)). 

The nonlinear relation between the NDVI band, red band, and NIR band may explain the spatiotemporal 

characteristics mentioned above. The larger the obvious nonlinear relation that exists, the bigger the 

difference between the two HTSNs will be, and the results will be in lower correlation. The temporal curve 

of R tends to be low in the summer (shown in Figure 6), likely because crops or vegetation grow 

prosperously in summer when the NDVI can reach fairly high values and the obvious nonlinear relation 

exists between the NDVI band, red band, and NIR band [18]. Similarly, the spatial map of R shows low 

values in water body and residence areas (see Figure 7), likely because the NDVI values in those areas are 
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fairly low and the obvious nonlinear relation also exists [18]. Additionally, following the spatiotemporal 

characteristics, two results based on the two HTSNs in the same application in farmlands or forests may have 

little difference, since the two HTSNs in those areas shows higher spatial consistence. However, more 

attention should be paid when the summer season is considered for comparisons of the two results, just 

because the two HTSNs show lower temporal consistence in summer. 

 

Figure 6. The temporal curve of R between two HTSNs synthesized by two different schemes. 

Three composites with high correlation coefficients are decentralized in all seasons except 

summer. The highest correlation coefficients marked with black arrows above 0.9 are 

respectively corresponding to the 21st composite of 2001 (winter, R = 0.92), the second 

composite of 2003 (winter, R = 0.91), and the sixth composite of 2002 (spring, R = 0.90). The 

lower correlation coefficients marked with red arrows are corresponding to the 12th through 

the 17th composites in summer of 2002. 

 

Figure 7. The spatial map of R between two HTSNs synthesized by two different schemes, 

(A) for the spatial map of R and (B) for the land cover map. The legend in (B) is same as 

that in Figure 1B. 
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5.3. Application Comparisons 

5.3.1. Cropping Intensity 

The statistics on the comparisons of cropping intensity extracted from the two HTSNs are listed in  

Table 2. The fallow pixels have low coincidence, being only 20.57%. However, the result has no statistical 

significance, as the numbers of fallow pixels extracted under both schemes are small (1810 pixels in 

Scheme 2 and only 1118 pixels in Scheme 1). Therefore, no further analysis is made on the fallow. For 

the pixels extracted on the single cropping system, the coincidence rate is low, only reaching 56.81%. 

From the pixel-by-pixel comparison map (Figure 8), it can be discovered that the nonconformity is 

mainly found in part of the transitional zone between the single cropping system and the double cropping 

system (Figure 8). The main reason for this inconformity is that the judgment of “whether the first crop 

has been cultivated” is different based on the two proposed schemes upon further inspection. It may be 

related to the complex spatial distribution of crops in the period. The single-cropping farmlands are 

mostly used for planting autumn grain crops in the area. Weeds would grow on the farmlands when there 

is no plantation. At the same time, summer grain crops grow on the double-cropping farmlands. The 

HTSNs in the transitional zone may be affected by either the weeds on the single-cropping farmlands or 

the summer grain crops on the double-cropping farmlands for the farmlands in the transitional zone. 

Thus, the judgments based on the HTSNs would be “the first crop has not been cultivated” impacted on 

the former, or “the first crop has been cultivated” impacted on the latter, finally resulting in that the 

cropping intensity results are usually different. However, the result for the pixels of the double cropping 

system is very high, reaching up to 96.12%, which is obviously consistent with the comparison map 

(Figure 8). Overall, the cropping intensity results of the two schemes generally coincide with each other 

fairly well, reaching up to 93.86%. 

Table 2. The statistics of comparisons in the results of cropping intensity and crop peak dates 

based on two HTSNs synthesized by two different schemes. The numbers in the table indicate 

the number of 30 m pixels. 

Cropping 

System 

Cropping Intensity Crop Peak Date 

Coincidence Total a 
Coincidence 

Rate b 
Coincidence Total a 

Coincidence 

Rate b 

No-till 230 1118 20.57% - - - 

Single crop 283,618 499,273 56.81% 176,034 499,273 35.26% 

Double crops 7,933,397 8,253,983 96.12% 11,890,458c 16,507,966 c 72.03% 

All 8,217,245 8,754,374 93.86% 12,066,492 17,007,239 70.95% 

Note: Total a is the number of the pixels in different cropping systems (i.e., no-till, single crop, or double crops) 

based on Scheme 2; Coincidence rate b is the percentage of the pixels whose results of cropping intensity based 

on Scheme 2 are the same as Scheme 1; the superior character c means that as the coincidence rate of the first crop 

and the second crop in the double cropping system are calculated respectively, the total number of pixels in double 

crops is 16,507,966 (8,253,983 × 2). 
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Figure 8. Comparison map between the results of cropping intensity based on two HTSNs 

synthesized by two different schemes. The former of the “x-x” in the map legend indicates 

the result of Scheme 1, and the latter indicates the result of Scheme 2. For example, 2-1 

indicates that the result for Scheme 1 is 2, while that for Scheme 2 is 1. 

5.3.2. Crop Peak Date 

The statistical results of the coincidence rate of crop peak dates extracted from two HTSNs are 

showed in Table 2. Compared to the results of cropping intensity, both coincidence rates of the crop 

peak dates are fairly low. Especially for the single cropping system, the coincidence rate is only 35.26%. 

This may be because the spatial distribution of single-cropping farmlands is fragmentation and their 

growing season supersedes with the double-cropping farmlands in time. Such superseding may cause 

that the peak date of the crop in single cropping system appear in advance influenced by the first crop in 

double cropping system, or that it may delay influenced by the second crop in double cropping system. 

For the double cropping system, the coincidence rate is also not very high, about 72.03%. In general, the 

coincidence rate for extracting crop peak date is about 70.95%, which is far lower than that of extracting 

cropping intensity. 

6. Discussions 

6.1. Parameter Settings 

According to the STARFM algorithm, three parameters (including sliding window size, uncertainty, 

and weighting strategy) are decisive for the predictions. The former two parameters determine how many 

and which pixels need to be involved as similar neighbor pixels in the prediction procedure, and the last 

one determines the contribution of candidate pixels to the central pixel in the window. Although the 

sliding window size was set as 1500 m in most of studies, the findings showed that such a setting did 

not always obtain good predictions in different regions. If the window size is set too big, more neighbor 

pixels would participate in the prediction procedure, resulting in predicted images that are vague [17]; 

however, if the window size is set too small, it may be difficult to find enough “pure” pixels, causing the 

prediction accuracy to be low [9]. The setting of uncertainty also encounters such a problem. One of the 

solutions is to observe some prediction results with different parameter combinations by series 

experiments so that one suitable parameter combination for a region can be obtained. The different 
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weighting strategies for neighbor pixels also have some impact on the predicted results [17]. The setting 

for the weighting strategies was fairly simple and the mechanism was not fully considered in the original 

algorithm. An improvement has been made in the calculation of the spectral weight through the simple 

classified statistic method [32]. If the internal relations between similar neighbor pixels in the study area 

can be found through geo-statistical methods, it may be more helpful for the optimization of the weighting 

strategies. While the applications of the STARFM algorithm are developing gradually in other fields, it is 

a more reasonable strategy to change the filtering method and the weighting strategy for similar neighbor 

pixels, according to the characteristics of the mechanism itself in specific applications [33,34]. 

6.2. Prediction Accuracy 

Similar to the previous research on constructing high temporal and spatial resolution data based on the 

STARFM algorithm, taking farmland as the main area [11,35], the correlations between the predicted 

images and the observed images at the red band and NIR band are both verified on the low side  

(R2: 0.01–0.72) in this paper. For the hilly area in eastern Sichuan where the terrain is comparatively 

complex, the crop structure on farmland is easily disturbed by human activity and the spatial heterogeneity 

is fairly high. It may potentially cause the correlation between the prediction values and the real values to 

be lower. Comparably, in some research taking forests or shrubs as the main area, there were better 

correlations between the predicted images and the observed images [12,15,16,36,37], due to the low spatial 

heterogeneity of the surface features. Therefore, combining specific applications such as crop phenology 

monitoring, it still requires the evaluation of how accurate and useful the synthesized time-series Landsat-

like NDVI data are when used in practical applications. As this is not the main objective of this paper, 

no further discussion is carried out about this issue. 

Because the shorter wavelength bands are more easily affected by the atmosphere condition [38], the 

verified correlation of the NIR band is generally superior to that of the red band (Table 1). This is the 

same as the results of some related research [11,15,35]. However, some other researchers showed totally 

opposite results [16,36]. The possible reason was analyzed in Walker et al. [36] who showed that the 

Landsat images in their research were not corrected for the view angle effects while the MODIS images 

were NBAR data-corrected for solar- and view- angle. Such differences can be amplified in areas where 

there are multiple layers of tall vegetation cover because these areas would cause higher scattering of 

the NIR band. Therefore, in areas where the number of layers of vegetation cover is few or the height of 

vegetation is low (e.g., farmland), the correlation of the NIR band is still superior to that of the red band.  

In the prediction of three bands (red, NIR and NDVI) in Scheme 1, the verified correlations of the NDVI 

band are lower than those of the red and NIR bands (Table 1). It is discovered that the correlation of the 

NDVI band is slightly lower than those of the red and NIR bands in dry land and forest areas [12], while 

the result is completely opposite in forest areas in temperate zones [15]. If NDVI can be deemed as a band 

with a longer wavelength than the NIR band, the reason for this difference may be the different atmosphere 

conditions in the research areas. In the research area of Hilke et al. [15], compared to NDVI, the red and 

NIR bands with shorter wavelength are more easily affected by the atmosphere conditions [12]. Comparing 

the predicted results of the two schemes on the NDVI bands with each other, Tian et al. [37] declared 

that the verified correlation of Scheme 2 is obviously superior to that of Scheme 1. The likely explanation 

is that the effect of atmosphere is further reduced after the red band and NIR band are used to calculate the 
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NDVI band. However, it is worth noticing that the results in this paper show that Scheme 2 is only 

slightly superior to Scheme 1. The main surface cover is shrubs in Tian et al.’s research area, where the 

high NDVI value in the growing season may be often saturated. Thus, the difference between the two 

schemes is amplified because of the more obvious nonlinear relation at high values. However, the NDVI 

is often at medium values even in the growing season of crops, and the nonlinear relation is not obvious 

in such areas [18]. As a result, there is little difference between the predicted results of Scheme 1 and 

Scheme 2 in this paper. 

6.3. Applications 

Small differences exist between the two HTSNs, though they are generally in good agreement (Table 1, 

Figures 6 and 7). However, such differences have very different effects on different specific applications. 

The results of the experiment show the application of extracting cropping intensity is not sensitive to 

such differences. The coincidence rate of such an application between two synthesized HTSNs is about 

93.86%. Since the high coincidence rate means that it gets almost the same results of extracting cropping 

intensity based on two different schemes, Scheme 2 can then be considered an alternate scheme for 

Scheme 1, so that more time and memory space can be saved, because only one band (i.e., NDVI) is 

operated in Scheme 2. Especially for the hilly areas, existing research demonstrated that the time-series 

NDVI with coarse spatial resolution (e.g., MODIS) cannot get satisficatory accuracy for retrieving the 

cropping intensity [30,39]. Such a design (i.e., Scheme 2 instead of Scheme 1) will be very useful for 

generating the HTSNs, which may improve the accuracy. However, the application of recording crop 

peak dates is very sensitive to the difference. The coincidence rate of that application between the two 

schemes is only about 70.95%. It should be noted that the MODIS data synthesized to the HTSN is a 

composite of 16-day optimum observations, which means that, in fact, the difference may be 0 to 32 

day(s) between the two results of crop peak dates for one pixel. Thus, the coincidence rate may be lower, 

if the temporal scale is decreased to eight days or less. Therefore, for more quantitative applications such 

as extracting the crop peak dates, Scheme 2 cannot be used to replace Scheme 1 because of the low 

coincidence rate. Their absolute accuracy should be compared with ground observations in subsequent 

research in order to judge which scheme is more suitable for extracting crop peak date information. 

Besides, as the spatial consistence between the two HTSNs in shrub lands is lower than that in 

farmlands, careful execution is needed when selecting a scheme for these areas. Although existing 

research shows that the prediction accuracy of Scheme 2 is superior to Scheme 1 in bush areas [37],  

it cannot be inferred that Scheme 2 is still superior to Scheme 1 in specific applications. In the follow-up 

research, more reliable verification data (e.g., the ground measurement data) are needed to compare the 

application effect of the two schemes. 

7. Conclusions 

The STARFM algorithm was popularly used for synthesizing the surface reflectance as well as NDVI 

with high temporal and spatial resolutions. As mentioned in the paper, there are two different schemes 

for synthesize the NDVI dataset with high temporal and temporal resolutions (HTSN) through the 

STARFM algorithm. Two HTSNs based on the two schemes were compared with each other in this 

paper. Selecting the hilly area in eastern Sichuan province of China as the research area, seven scenes of 
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Landsat images and time-series MOD13Q1 spanning from October 2001 to February 2003 were chosen 

as test data. The comparison results showed that the different procedures in the two schemes did not 

greatly influence the synthesized time-series Landsat-like NDVI dataset. In general, the prediction 

accuracies of both HTSNs are almost the same (R2: 0.14 < Scheme 1 < 0.53; 0.15 < Scheme 2 < 0.53), 

and the two HTSNs are high in temporal and spatial consistence. However, different applications 

presented different sensitivities to the small spatiotemporal difference between them, judging from the 

fact that the results were significantly different when the two HTSNs were applied in applications of 

extracting cropping intensity and crop peak dates. In the case of extracting cropping intensity, there was 

a fairly high coincidence rate, reaching up to 93.86%; however, in the case of extracting the crop peak 

dates, the coincidence rate was low at only 70.95%. Therefore, it is believed in this paper that Scheme 2 

(i.e., the NDVI band is directly inputted to the STARFM) can replace Scheme 1 in the application of 

extracting cropping intensity in order to save more time and memory space because Scheme 2 requires 

only one band input (i.e., NDVI). 

The HTSN is needed urgently for obtaining agricultural information in areas with a complex earth 

surface. In addition to selecting suitable algorithms for synthesizing the HTSN, it is also necessary to 

compare different schemes based on the same algorithm. For the STARFM algorithm, considering that 

Scheme 2 requires a shorter time and smaller memory space and that it is easier to obtain the NDVI 

dataset with it compared with surface reflectance data, the research result of this paper provides evidence 

for synthesizing the HTSN in complex surface areas in a simpler way and for further extracting the 

cropping intensity information of farmland. However, for more quantitative applications such as 

extracting the crop peak dates, the low general coincidence rate means that fairly different results may 

come out based on the two HTSNs. Therefore, it is necessary to compare the absolute accuracy of both 

schemes in subsequent research in order to select which scheme is better for extracting the phenological 

information of crops. 
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