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Abstract: Recent disasters, such as the 2010 Haiti earthquake, have drawn attention to the 

potential role of citizens as active information producers. By using location-aware devices 

such as smartphones to collect geographic information in the form of geo-tagged text, photos, 

or videos, and sharing this information through online social media, such as Twitter, citizens 

create Volunteered Geographic Information (VGI). To effectively use this information for 

disaster management, we developed a VGI framework for the discovery of VGI. This 

framework consists of four components: (i) a VGI brokering module to provide a standard 

service interface to retrieve VGI from multiple resources based on spatial, temporal, and 

semantic parameters; (ii) a VGI quality control component, which employs semantic filtering 

and cross-referencing techniques to evaluate VGI; (iii) a VGI publisher module, which uses 

a service-based delivery mechanism to disseminate VGI, and (iv) a VGI discovery 

component to locate, browse, and query metadata about available VGI datasets. In a case 

study we employed a FOSS (Free and Open Source Software) strategy, open 

standards/specifications, and free/open data to show the utility of the framework. We 

demonstrate that the framework can facilitate data discovery for disaster management. The 

addition of quality metrics and a single aggregated source of relevant crisis VGI will allow 
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users to make informed policy choices that could save lives, meet basic humanitarian needs 

earlier, and perhaps limit environmental and economic damage. 

Keywords: disaster management; volunteered geographic information; content discovery; 

quality assessment; interoperability 

 

1. Introduction 

Sharing up-to-date and accurate information is an effective strategy for improving disaster management 

activities [1]. Information sharing plays an important role in raising situational awareness, delivering 

assistance to those affected by the crisis, and aiding in the development of mitigation plans [2,3]. Disaster 

management platforms have the potential to foster that strategy by providing (online) tools that allow 

the collection, analysis, and distribution of spatial, temporal, and thematic information. Such platforms 

should be able to handle incoming crisis data, visualize information, and develop future scenarios, which, 

ideally, help mitigate further negative disaster effects [4]. As such, these systems have the potential to 

minimize destruction, economic loss, and death that might otherwise result from a disaster event. For 

example, Ushahidi (http://www.ushahidi.com/) has been used extensively to help people find and use 

critical emergency information in different situations, from political crises [5] to natural disasters [6]. 

To create such platforms, some data management challenges need to be addressed. For example, an 

emergency situation can change rapidly during a disaster event due to the occurrence of post-disaster 

incidents (e.g., power outages, road and bridge closures, etc.) and the progress of disaster response 

operations (e.g., deployment of emergency crews). Hence, these systems should be able to regularly, if not 

continuously, collect and share up-to-date crisis information from different resources. Such information 

should include (real-time) citizen-generated data delivered by Web 2.0 services (i.e., social networking 

websites) from people who are reporting from/about difficult situations, since there is limited time to 

update formal data repositories [7]. The creation of geographic information by the public using Web 2.0-

enabled collaborative methods has been labelled Volunteered Geographic Information (VGI) [8]. 

Although there are several successful examples of VGI used for emergency response [9], there is still 

a lack of efficient interoperable mechanisms for discovery, access, and use of VGI by disaster 

management platforms. For instance, Web 2.0 services provide access to VGI through different 

application programming interfaces (APIs) and data encodings. This can make data access and retrieval 

difficult for client applications because they need to implement different APIs and understand specific 

data encodings to be able to access and retrieve data from various Web 2.0 services [10]. Moreover, 

these platforms should be able to integrate heterogeneous (geospatial) data of different type and quality 

from different resources, for example, VGI data from Web 2.0 services and authoritative data from 

spatial data infrastructures (SDIs). The integration and use of VGI data together with existing 

authoritative data requires quality control tools to better understand the uncertainty and completeness of 

VGI datasets. It also requires standardization mechanisms to overcome heterogeneity in data description 

and data formats. A further point is that it is difficult to verify volunteer-provided information from a 

particular source. Triangulating, i.e., crosschecking, multiple VGI sources may lead to results with a 

higher level of credibility and confidence [11]. 
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The main goal of this paper is to present a framework for the effective use of user-generated content 

in disaster management platforms to enable bottom-up data creation and distribution approaches. This, 

in turn, will support integration of authoritative SDI data and VGI. We first analyze the current state of 

disaster management platforms and evaluate data-related challenges from a technical perspective. We 

then develop a framework for the discovery and use of VGI in disaster management platforms that 

consists of four components: (i) a VGI brokering module to provide a standard service interface to 

retrieve VGI from multiple resources based on spatial, temporal, and quality search parameters; (ii) a 

VGI quality control component to evaluate the spatiotemporal relevance and credibility of VGI; (iii) a 

VGI publisher module, which uses a service-based delivery mechanism to disseminate VGI; and (iv) a 

VGI discovery component, which acts as a catalog service to find, browse, and query metadata about 

available VGI datasets. A first set of quality metrics that may be used for VGI evaluation is suggested. 

Then we present the technical architecture of a prototype implementation and test this prototype with 

social media data collected during Typhoon Hagupit (i.e., Typhoon Ruby), which hit the Philippines 

during December 2014. Finally, we evaluate and discuss the prototype with respect to technical attributes, 

such as platform flexibility and portability, and the preliminary set of quality metrics with respect to the 

case studies’ social media data. 

2. Previous Works 

Information and communication infrastructure components are the building blocks of disaster 

management systems. Many systems have been developed over the past decade—moving from 

traditional telephone-, radio-, and television-based systems towards modern web-based platforms [11]. 

In the early 2000s, disasters, such as the terrorist attacks of 9/11 and Hurricane Katrina in the US, 

demonstrated that traditional disaster management systems are limited in their ability to meet 

community-wide information sharing and communication needs of all stakeholders, e.g., jurisdictional 

authorities, emergency respondents, and citizens [12]. Compared to the Internet, the amount of information 

published by telephone, radio, or television is limited, and the systems focus on one-direction 

information flow. This limits the level of interaction possible [13]. Hence, there is a need for platforms 

that can provide many-to-many communication and offer effective information sharing mechanisms that 

facilitate rather than impede disaster management. 

Over the past decade, different approaches to the design and development of disaster management 

systems have been investigated. We can group these works into three generations: the first generation 

covers systems that were designed based on SDI principles [14]. A spatial data infrastructure [15] 

presents a promising framework to facilitate and coordinate the exchange and sharing of spatial data in 

disaster management systems, resulting in improved quality of decision-making and increased efficiency 

of disaster management activities [1,16–18]. Several implementations of SDI frameworks for disaster 

management have been tested in different case studies, such as (1-i) evacuation scenarios after a bomb 

threat [19], (1-ii) wild fire risk assessment [20], and a flood alert system [21]. See Table 1 for a technical 

description of these systems. 
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Table 1. A comparison of web-based disaster management platforms. 

  

Generation 1 Generation 2 Generation 3 

1-i 1-ii 1-iii 2-i 2-ii 2-iii 3-i 3-ii 

Weiser & Zipf [19] Mazzetti et al. [20] Agosto et al. [21] Okolloh [5] De Longueville et al. [22] Zook et al. [6] Díaz et al. [23] Schade et al. [24] 

Enabling 

Infrastructure 

Communication 

Networks and 

Protocols 

HTTP HTTP HTTP HTTP, SMS HTTP, Social media HTTP, SMS HTTP 
HTTP, Social 

media 

System 

Architectures 1 Client-server SOA Client-server Client-server Client-server Client-server SOA Client-server 

Computing 

Platforms 2 
Local/Cloud Grid Grid Cloud Local Local/Cloud Local/Cloud Local/Cloud 

Standards 3 W3C, OGC W3C, OGC W3C, OGC W3C  W3C  W3C  W3C, OGC W3C, OGC 

Data 

Frameworks 
Authoritative data Authoritative data 

Authoritative 

data 
VGI VGI 

Authoritative 

data, VGI 

Authoritative 

data, VGI 

Authoritative data, 

VGI 

Function 

Discovery  

and Access 4 

Service-based 

discovery  

and access 

Service-based 

access 

Service-based 

access 

Ad hoc 

discovery 
Ad hoc discovery 

Ad hoc 

discovery and 

access 

Service-based 

discovery, 

access 

Service-based 

discovery, access 

Quality Control No Yes (QoS) No 
Yes 

(manually) 
No 

Yes 

(manually) 
No 

Yes 

(spatiotemporal 

validation) 

Dissemination 4 
Service-based 

dissemination 

Service-based 

dissemination 

Service-based 

dissemination 

Ad hoc 

dissemination 
Ad hoc dissemination 

Ad hoc 

dissemination 

Service-based 

dissemination 

Service-based 

dissemination 

1 System Architectures: “Client-server” refers to a traditional distributed architecture where a service requester (i.e., client) and a service provider (i.e., server) work together 

to accomplish a task in a tightly coupled, ad hoc manner. In SOA, a service is the basic computing unit (independent from service requesters or clients) developed based on 

a set of communication and data exchange standards. This promotes interoperability, loose coupling, and reusability of the system components [25]. 2 Computing Platforms: 

Depending on the case study requirements, the platform can be deployed on a “local” or “cloud”-computing environment. Thereby, “cloud” refers to a large-scale 

infrastructure that delivers on-demand, dynamically scalable resources to external consumers over the Internet [26]. “Grid” platforms” indicates a distributed system that 

consists of a collection of (pre-reserved) computer resources (e.g., computing power and storage) working together to reach a common goal. 3 The category “Standards” 

focuses on open IT standards for web services (also known as W3C services) and open geospatial standards for geospatial web services (also known as OGC services). 

4 Service-based vs. Ad hoc: the use of “service-based” access methods requires the definition of communication procedures and vocabulary, i.e., standards. Subsequently we 

use the term “ad hoc” to refer to non-standards-based communication. 
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Although SDIs facilitate data sharing and management, SDI implementation follows a top-down 

approach that does not consider that non-institutional users might contribute data in a participatory 

fashion [27]. This leads to a provide-consume paradigm, where only official data providers such as national 

mapping or environmental agencies are permitted to collect, deploy, and maintain resources [23]. 

Moreover, official data providers have strict update and release cycles that may hinder access to timely 

information, especially during a disaster. For example, in Haiti, although GIS (Geographic Information 

System) databases were available, they lacked critical up-to-date post-earthquake information that 

complicated rescue and recovery efforts in the first days following the earthquake. In the Haiti case, 

high-quality satellite images of post-earthquake Haiti were collected and made freely available within 24 

hours of the disaster by commercial geospatial content providers like DigitalGlobe. However, as reported 

by Zook et al. [6], there was still a need to process the images to extract useful information (e.g., tracing 

roads and buildings) and perform required analyses (e.g., damage assessment analysis). SDI-based 

platforms also tend to use a complex deployment mechanism, which can impede citizens' participation 

during data collection and resource deployment [23]. However, during the Haiti event, a volunteer 

community was able to quickly build an information infrastructure that permitted collaborative data 

collection and distribution by using free and open source tools and services such as OpenStreetMap 

(http://www.openstreetmap.org/) and Ushahidi. The approach placed appropriate tools in the hands of a 

concerned public who were able to increase situational awareness that ultimately facilitated emergency 

response activities [6]. 

The 2010 Haiti earthquake has highlighted the role that the Internet can have in a participatory 

environment [6], in which people not only consume content, but also produce new content [28]. The idea 

of “citizens as sensors” [8] underscores the potential that citizens have to be active information producers 

who can provide timely and cost-effective information (i.e., VGI) in support of disaster management 

activities [8,29]. In addition, local people often have a greater awareness of what is happening on the 

ground during a disaster than do traditional authoritative data collectors. This local knowledge should be 

used to complement authoritative scientific knowledge [30]. Subsequently, the second generation of 

disaster management platforms places VGI at the center of the management system. 

The use of VGI in disaster management has four main benefits: (i) it significantly decreases the time 

required to collect crisis information [3]; (ii) it often has comparable accuracy to authoritative sources [31]; 

(iii) its update and refresh rates are generally very rapid, especially for the affected area [32]; and (iv) as 

the data is open and freely accessible, different crisis management platforms from, perhaps, different 

organizations can discover, process, and publish them without restrictions [11]. Several research works 

have reported the successful use of VGI-centric platforms in events such as (2-i) the 2008 post-election 

violence in Kenya [5], (2-ii) the 2009 forest fire around Marseille, France [22], and (2-iii) the 2010 Haiti 

earthquake [6]. 

As outlined by De Longueville et al. [29], VGI is a rich and complementary source of information 

for SDIs, especially in the context of disaster management. Therefore, the third generation of disaster 

management systems finally aims to incorporate VGI into SDI. Here, the user’s role in an SDI changes 

from a passive recipient of data to an active “producer” [33]. In this context, Genovese & Roche [34] 

discuss the strengths, weaknesses, opportunities, and threats of VGI for improving SDI in the global 

context of north vs. south (i.e., developed vs. developing countries). Their investigation suggests that 

although substantial funding has been dedicated to the creation of SDIs in developed countries, there are 
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still issues that hinder VGI-SDI integration. For example, one weakness is the ability of users to 

understand VGI quality and credibility. Therefore, VGI inclusion in official SDIs may pose a threat to 

data integrity, and tools for quality evaluations are needed. 

Genovese & Roche [34] identify economics to be a limiting factor regarding SDI infrastructure 

development, particularly in developing countries. They also highlight that SDI map coverage seems to 

not be uniform: urban areas tend to have more complete coverage than rural areas. To address these 

drawbacks there may be opportunities to use VGI to fill existing administrative geospatial data holes in 

SDIs. Works by (3-i) Díaz et al. [23] and (3-ii) Schade et al. [24] discuss the different aspects of 

integration of VGI with authoritative (official) data under an SDI paradigm. 

Table 1 lists prominent web-based disaster management platforms and characterizes them based on 

their functionality and enabling infrastructure. It is not an exhaustive inventory, since we aim to give a 

short overview of, in our opinion, notable, recent work. 

Enabling infrastructures: In terms of enabling infrastructures, the World Wide Web is the underlying 

communication channel for all the platforms, although some of them employ additional communication 

mediums such as SMS and social networking websites (e.g., generation 2 and 3). From a system architecture 

perspective, most of the online disaster management platforms were developed using a client-server 

architecture. However, the prototypes developed by Mazzetti et al. [20] and Díaz et al. [23] were 

implemented based on a service-oriented architecture (SOA).  

The use of SOA for online disaster management applications is useful for three reasons. First, SOA 

supports a “Data as a Service” (DaaS) approach [35], which provides an interoperable solution to access 

data stored at different locations, as is usually the case with data needed for disaster management. Second, 

the adoption of SOA leads to an architecture that enables functions to be delivered based on a “Software 

as a Service” (SaaS) mechanism [36] utilizing common communication standards. This way, disaster data 

management and analysis functions can be provided for users in different locations with different access 

levels. It also enables distributed deployment of functionality so that distributed processing can be 

employed during high-demand times [37]. Third, an SOA-based development approach enables the 

production of systems that can be adapted to changing requirements and technologies. These are easier 

to maintain and allow a consistent treatment of data and functionality [38]. 

In an SOA-based approach, a service design strategy (DaaS and SaaS) is necessary to maintain an 

appropriate balance between multiple criteria such as flexibility, reusability, and performance [39,40]. To 

achieve this goal and have services tailored to specific application use cases, it is necessary to consider 

different architectural design patterns and principles such as the workflow control pattern, the data 

interaction pattern, and the communication pattern [41]. These patterns control (i) the management and 

execution of a workflow of services, (ii) the data transfer among services in a workflow or between a client 

and a service chain, and (iii) the message exchange mechanisms among services or between a client and 

services (for a detailed discussion, see Poorazizi et al. [25]). 

In terms of deployment, most of the platforms reviewed can be deployed on a local-, grid-, or  

cloud-computing environment (for the differences, see the notes of Table 1). With respect to standard 

compliance and interoperability, all platforms were developed based on SDI guidelines (e.g., OGC 

(Open Geospatial Consortium) standards) except for generation 2 systems, which followed W3C-

compatible approaches for platform development. Most of the platforms use authoritative data as the 

main source of information, while some of them support real-time data streams such as VGI. 
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Platform Functions: All the platforms support discovery of and access to (spatial) data. To do so, 

most use standard-based approaches, but some adopt non-standard ad hoc methods, for instance, the 

generation 2 systems. Okolloh’s [5] Ushahidi platform permits users to search and contribute 

information using Ushahidi’s geoportal component, or by sending mobile phone text messages (SMS). 

De Longueville et al. [22] utilized Twitter’s API (https://dev.twitter.com/) to search and retrieve  

crisis-related information (i.e., tweets), and web-crawling scripts to filter and classify the content.  

Zook et al. [6] described an infrastructure based on free and open source tools and services that was  

used in the 2010 Haiti earthquake and included OpenStreetMap, Ushahidi, and GeoCommons 

(http://geocommons.com/) to support emergency response activities. All systems provided a geoportal 

for volunteers to contribute and report crisis information, while Ushahidi and GeoCommons also fetched 

data from external resources such as SMS and social networking websites (e.g., Twitter). 

There is still a lack of effective, flexible, and interoperable mechanisms for discovery of VGI. For example, 

recent approaches used spatial, temporal, and textual (e.g., type of disaster) criteria to search and retrieve 

VGI [10,24,42]. However, data quality is not considered, which, from our perspective, it should be when 

searching for content on the web. This need emerges, for example, from the existence of spam and biased 

content [43,44]. Therefore, there is a need to develop a discovery mechanism that considers  

quality-related parameters when searching for VGI, especially when considering VGI-SDI integration. 

Data Quality Assessment: Except for the generation 1 systems, all platforms are capable of handling 

VGI generated by citizens. However, automated quality control functionality is implemented in only two 

of eight platforms in Table 1. Poser and Dransch [45] discussed two general approaches to VGI quality 

assessment: quality-as-accuracy, and quality-as-credibility. The first concept measures the level of 

similarity between the data produced and the real-world phenomena it describes. This approach is mainly 

used by data providers [45]. The second concept, often applied in the context of Web 2.0, refers to the 

credibility of data, especially data generated by (non-expert) users. While accuracy is an objective 

property, credibility is subjective, and tends to rely on users rating the credibility of other users and the 

information they contributed [46]. 

Poser and Dransch [45] propose different quality assessment approaches for different phases of the 

disaster management cycle, i.e., for mitigation, preparedness, response, and recovery. They suggest 

using the quality-as-credibility approach in the mitigation and preparedness phases, where there are 

continuous contributions from citizens. They then propose the use of the quality-as-accuracy approach 

during the response phase, where there is a need to collect factual information about the crisis to 

determine its impact. Examples of quality evaluation following either one of the two general approaches 

are presented by several authors (see Fan, Zipf, Fu, & Neis [47], Bishr & Mantelas [48], Bishr & Kuhn [49], 

Goodchild & Li [50], Schade et al. [24], De Longueville et al. [22]) and are discussed below. 

Fan, Zipf, Fu, & Neis [47] evaluated the quality of building footprint data in OpenStreetMap for 

Munich, Germany, based on the quality-as-accuracy approach. In their work, they used completeness, 

semantic accuracy, position accuracy, and shape accuracy as quality evaluation criteria. Based on the 

quality-as-credibility approach, Bishr & Mantelas [48] and Bishr & Kuhn [49] proposed a trust and 

reputation model for quality assessment of VGI. They constructed a computational model that considers 

spatiotemporal context for urban planning [48] and water quality management applications [49]. 

Another quality assessment approach proposed by Goodchild & Li [50] emphasized the use of 

procedures to control and enhance quality during the acquisition and compilation of spatial data. This is 
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similar to quality assurance processes used by traditional mapping agencies. The method requires 

mechanisms to generate quality metrics for data being generated, and mechanisms to evaluate the VGI 

against authoritative reference sources. 

Finally, Schade et al. [24] proposed a cross-validation mechanism to overcome VGI’s credibility 

challenge. The main idea in their work was to aggregate VGI from multiple sources such as Twitter, 

Flickr, OpenStreetMap, etc., and process these VGI data to determine their relevance in a given context. 

Among the validation techniques, k-fold cross-validation is a common approach used for VGI 

verification and validation [7,51,52]. 

Additionally, spatiotemporal analysis has been used to evaluate the quality of VGI. For example,  

De Longueville et al. [22] extracted spatial information from VGI such as contributors’ location and 

place names to assess the relevance of the content to the 2009 forest fire around Marseille, France. They 

then performed a temporal analysis to estimate the temporal accuracy of the content compared to the 

actual event. Ostermann & Spinsanti [53] recommended using spatial analysis to determine the 

correlation between the spatial information attached to the content (e.g., geo-tagged tweets), extracted 

from the content (e.g., geocoded place names), and associated with contributors’ profiles (e.g., a user’s 

location). The information can then be used to rate the content based on the distance from the 

contributor’s location to the event location and evaluate the credibility of the VGI. 

Data Distribution: In terms of VGI dissemination, a number of solutions have been developed, as 

listed in Table 1. All the SDI-based platforms (generation 1) support standard service-based data 

dissemination using OGC’s WMS (Web Map Service) [54]. In contrast, VGI-centered generation 2 

systems distribute data using ad hoc, i.e., non-standard, approaches, for example, by using an open data 

format such as JSON. The two generation 3 examples also utilize service-based approaches. 

The generation 3 platform by Díaz et al. [23] uses OGC services such as WFS (Web Feature  

Service) [55], WMS, and WCS (Web Coverage Service) [56] to publish VGI. Although this approach 

facilitates sharing of user-generated information, it does not cover the temporal dimension of VGI, which 

is crucial in disaster management activities. This issue is addressed by the other generation 3 platform 

by Schade et al. [24]. They propose a new approach for VGI data management, called VGI Sensing, 

which uses OGC’s SWE (Sensor Web Enablement) framework [57] to publish VGI. As a part of OGC’s 

Interoperability Testbed-10 (OWS-10), Bröring et al. [58] also investigated a framework for integrating 

VGI into SDI through the use of OGC’s SWE and WFS standards. However, these platforms do not 

support dissemination of quality information, which is a major concern especially in the context of VGI-

SDI integration [59]. While Cornford et al. [60] and Devaraju et al. [61] do suggest how OGC’s SWE 

framework and the UncertML specification [62] can be used to provide quality information (e.g., 

uncertainty) about sensor observations, there is currently no interoperable approach for the dissemination 

of VGI data that addresses the need for integrated data quality assessment tools. 

Consequently, our work aims to address the limitations of previously developed web-based disaster 

management platform with respect to: (i) enabling a hybrid data-sharing paradigm that supports both  

top-down and bottom-up data creation and distribution approaches; and (ii) a flexible system architecture 

that supports interoperability and extensibility through standard compliance and modularization. 
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3. The VGI Framework 

As described above, our objective is to provide an effective and interoperable approach for VGI 

discovery, quality control, and dissemination. To guide platform development, we identified a set of 

platform quality attributes/requirements and business goals [63,64]. The requirements were prioritized 

according to their importance for disaster management and can be found in graphical form in Appendix. 

In addition to using the requirements in the framework design process, they were also helpful for the 

evaluation of the consequences of architectural decisions, and the identification of system architecture 

limitations/risks [65]. 

During the framework/platform design phase, first priority was given to the following quality 

attributes: (a) scalability/extensibility, (b) open systems/standards, and (c) interoperability. These 

attributes ensure that systems built using the VGI framework will work together efficiently, and that a 

set of services developed using this framework will be coherent, and at the same time will address 

legitimate disaster management issues such as crisis information sharing. The secondary design priorities 

were: (d) performance, (e) flexibility, (f) integrability, (g) security, (h) ease-of-installation,  

(i) ease-of-use, and (j) portability. These criteria focus on system capability and quality. Furthermore, 

there are additional low-level priorities, such as (k) distributed development and (l) ease-of-repair, along 

with a number of quality metrics (see Appendix) that should ideally be satisfied to achieve all business 

goals. In the following sections, we discuss the conceptual design of the framework, technical 

architecture, and implementation details. 

3.1. Conceptual Design 

Figure 1 illustrates the conceptual overview of the VGI framework, which was developed based on 

the functional and architectural requirements discussed above. The VGI Broker, VGI QC (Quality 

Control), VGI Discovery, and VGI Publisher are the building blocks of the proposed framework. 

 

Figure 1. A conceptual workflow for discovery, assessment, and dissemination of VGI. 

The VGI Broker provides a service interface to find and collate user-generated content from various 

social media platforms. Many social media platforms provide public APIs for clients to interact with 
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them using their specific request-response message system. Although they usually adopt REST 

(REpresentational State Transfer)-based interfaces and support popular data formats (e.g., JSON or 

XML), there is no uniform description of service interfaces and data encodings [10]. Hence, the VGI 

Broker module connects the platform user to different APIs, enabling data retrieval from multiple social 

media platforms via a single service interface. It translates a single query to multiple API-based queries 

and handles different request-response data formats. The retrieved data is then stored in the VGI 

Repository based on the data models designed for each platform (e.g., Twitter, Flickr, etc.). 

Having VGI data stored in the repository allows the VGI QC module to perform quality control 

checks on the data and to generate quality-related metadata that are stored in the VGI Repository. This 

is a crucial step, especially in the context of disaster management, where VGI can potentially be used 

along with authoritative data for decision-making. It also enables quality-based data retrieval, which is 

missing in current social media platforms. The VGI QC module manages the quality control procedures 

in the proposed framework. 

The VGI Publisher module is a data service that disseminates quality-assessed VGI following a DaaS 

approach. It also allows clients to access and retrieve VGI based on spatiotemporal and quality 

parameters in an interoperable manner. This means that unlike social media platforms that have different 

request-response paradigms, the VGI Publisher provides a single interface and a common data encoding 

for data dissemination. 

Finally, the VGI Discovery module acts as a catalog service to discover, browse, and query metadata 

about the available VGI datasets. It offers quality-based search options to the clients. A search returns a 

metadata document, which includes information about data such as time, location, and quality, as well 

as a link to the data itself. 

3.2. Quality Evaluation Metrics 

Based on the quality assessment approaches presented and discussed above (see [7,29,53,66–68]), we 

have adopted five metrics to evaluate VGI data quality and obtain data quality scores. We note that with 

this set of metrics we do not strive to define indefectible quality evaluation. Rather, the metrics are used 

as an initial test set to assess the general functionality of the proposed framework using Typhoon Ruby 

as a case study (described later). 

(1) Positional Nearness: Equation (1) is used to calculate the positional nearness score (PNS), where 

∆𝑑  is the distance (in kilometers) between each contribution (e.g., a tweet) and the centroid of all 

contributions (e.g., all tweets) for a given context, which can be calculated as the mean center using 

Equation (2). We note that there are numerous ways to estimate a centroid, the arithmetic mean, weighted 

mean, center of minimum distance, center of greatest intensity, etc.; for simplicity, we have used the 

arithmetic mean for this work as an initial starting point. 

(𝑘 > ∆𝑑 → 𝑃𝑁𝑆 = 1) ∧ (𝑘 < ∆𝑑 → 𝑃𝑁𝑆 = 𝑘
1

∆𝑑
) (1) 

𝑋̅ = ∑
𝑥𝑖

𝑛

𝑛

𝑖=1

 , 𝑌̅ =  ∑
𝑦𝑖

𝑛

𝑛

𝑖=1

 (2) 
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k is a scalar defined by the standard distance deviation of the set of contributions. Equation (3) is used 

to calculate the two-dimensional equivalent of a standard distance deviation, where di is the distance 

between each point i and the mean center, and n is the total number of points. In essence, this model 

gives greater weight to contributions closer to the center of the set of contributions. 

𝑘 =  √∑
(𝑑𝑖)2

𝑛 − 2

𝑛

𝑖=1

 (3) 

(2) Temporal Nearness: The creation date and time of each contribution (e.g., a tweet) is compared 

to the event time (or end of the event, if there is a duration) to determine the number of days since the 

event actually happened (∆𝑡). Equation (4) is used to calculate the temporal nearness score (TNS). As 

(∆𝑡) increases, TNS decreases. 

(∆𝑡 < 1 → 𝑇𝑁𝑆 = 1) ∧ (∆𝑡 > 1 → 𝑇𝑁𝑆 =
1

∆𝑡
) (4) 

(3) Semantic Similarity: Each contribution (e.g., a tweet) is compared to a pre-defined dictionary of 

disaster-related words and then Equation (5) is used to calculate the semantic similarity score (SSS), 

where Ni is the number of dictionary words appearing in a contribution and M is the number of words 

contained in the dictionary. 

𝑆𝑆𝑆 =
𝑁𝑖

𝑀
 (5) 

(4) Cross-referencing: The spatial extent in the form of an axis-parallel minimum-bounding rectangle 

(MBR) is calculated from all contributions for each social media platform (e.g., the Twitter dataset). 

Afterwards, the point-in-polygon operation is performed for each contribution (e.g., a tweet) on each 

social dataset MBR (e.g., the Twitter dataset). Equation (6) is then used to calculate the  

cross-referencing score (CRS), where Ni is the number of bounding boxes that a contribution falls within 

and M is the total number of bounding boxes/media streams. We note that spatial extent in terms of 

social media contributions is a vague concept. We use it here as a measure of nearness. We also note 

that there are many ways to represent nearness. We have chosen nearness to mean, for simplicity, 

“something is nearest if it falls within the intersection of all contribution MBRs”. 

𝐶𝑅𝑆 =
𝑁𝑖

𝑀
 (6) 

(5) Credibility: A set of credibility factors was defined and the maximum value of each factor within 

all the contributions (e.g., all the tweets) is calculated for each social media platform (e.g., Twitter) for 

a particular event (e.g., Typhoon Ruby) (M). For example, the Twitter API allows a client to collect a 

number of credibility factors for each tweet. They include: verification of the tweeter (a verified Twitter 

account formally validates the identity of the person or company that owns the account), the tweeter's 

followers count (the number of followers this account currently has; with more followers, a Twitter 

account gains more attention, thus increasing its popularity), how many times the tweet has been 

“favorited” (approximately how many times a tweet has been favorited by Twitter users; favoriting a 

tweet indicates that a user liked a specific tweet), and the retweet count (number of times this tweet has 

been retweeted; retweeting means a reposting or forwarding a message on Twitter). Equation (7) (a) is 
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then used to calculate a credibility score for each factor (CSi), where Nij is the value of each factor i for 

a contribution j and Mi is the maximum value of each factor within all j contributions. The total credibility 

score (CS) is calculated using Equation (7) (b). n is the number of factors used to assess credibility. 

(a) 𝐶𝑆𝑖 =
𝑁𝑖𝑗

𝑀𝑖
, (b) 𝐶𝑆 =  ∑ 𝐶𝑆𝑖

𝑛

𝑖=1

𝑛⁄  (7) 

In our implementation/case study we employ the following credibility factors: for Twitter,  

(i) verification (of the tweeter); (ii) the tweeter's followers count; (iii) how many times the tweet has 

been “favorited” and (iv) retweeted. For Flickr we use, as a surrogate for credibility, the number of times 

that a photo has been “viewed”. For Google Plus we evaluated the number of times a post has been  

“re-shared”, “replied” to, or “plus-oned” (a “plus-one” or “+1” indicates that a user liked a specific post 

on Google Plus). For Instagram we assessed how many times a photo/video has been “liked” and 

“commented” on, in addition to the follower count of an Instagram user. 

Quality Score: Finally, the VGI QC module calculates a total quality score (QS) for each contribution 

(e.g., a tweet), summing individual quality scores (n) calculated for each metric (Equation (8)). 

Summation is necessary since individual scores can be zero. For instance, the positional nearness score 

is zero when a contribution is without a spatial reference (i.e., coordinate). 

𝑄𝑆 = 𝑃𝑁𝑆𝑖 +  𝑇𝑁𝑆𝑖 +  𝑆𝑆𝑆𝑖 +  𝐶𝑅𝑆𝑖  +  𝐶𝑆𝑖 (8) 

All quality scores will return values between zero and five, with zero indicating comparatively low 

quality and five indicating a comparatively high-quality contribution for disaster management. 

Quality control is performed as an iterative process and, therefore, quality scores will evolve over 

time, as more data is added to the VGI Repository. To enable quality-based queries, all the quality scores 

(i.e., PNS, TNS, SSS, CRS, CS, and QS) for each contribution are stored in the VGI Repository. 

3.3. Technical Architecture  

Figure 2 illustrates a typical reference architecture with the VGI framework’s components 

incorporated. The result is an accessible, flexible, and maintainable disaster management platform. It is 

a layered architecture that exploits SOA design and delivery approaches, SDI principles, and Web 2.0 

technologies. It consists of four tiers of modules, including a presentation layer, an application layer, a 

service layer, and a data layer. This architecture is adapted from the e-Planning system architecture 

proposed by Poorazizi et al. [25]. As shown in Figure 2, the VGI framework’s components are classified 

as SDI service types deployed in the service layer. Hence, in the following, we only focus on the service 

layer components and refer to Poorazizi et al. [25] for a description of the other layers. 

The service layer contains a set of web services that provide capabilities to search, access, and analyze 

spatial data, including authoritative and VGI datasets. The web services are grouped based on SDI 

service types: (i) discovery service (e.g., OGC CSW [69]) to search and provide access to available 

spatial data and services; (ii) download service (e.g., WFS or WCS) to access spatial data at the 

geographic feature level in vector formats such as GML, KML, or GeoJSON; (iii) view service (e.g., 

WMS or WMTS [70]) to visualize data in map form; and (iv) processing service (e.g., WPS [71]) to 

execute statistical and geo-computational models. 
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Figure 2. A reference architecture incorporating proposed VGI framework components. 
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The VGI Broker module is developed as a processing service. It is implemented using the WPS 

standard, and, based on the number of brokers, consists of several service instances (i.e., a WPS instance 

per broker). Each WPS instance runs independently to search a social media platform to find, retrieve, 

and store VGI data in the VGI Repository. 

VGI QC has also been implemented as a set of WPS instances. For each of the five quality metrics 

above (i.e., PNS, TNS, SSS, CRS, and CS), we implemented a service instance. A further service 

instance is used to calculate the overall quality score (QS, see Section 3.1). The five quality metric 

service instances can be run individually or in parallel since the order of service execution is flexible. 

The VGI Publisher has been developed as a download service. We have adopted OGC’s SWE 

framework to publish quality-assessed VGI as a service. Therefore, we have extended the Sensor 

Observation Service (SOS) standard interface [72] and the Observations and Measurements (O&M) data 

model [73] to enable distribution of VGI together with quality metrics. This allows clients to retrieve 

VGI data based on spatiotemporal parameters and quality-related metrics. 

Finally, VGI Discovery is developed as a discovery service to publish metadata about the VGI data 

available. We have adopted OGC’s OpenSearch Geo and Time Extensions (OSGTE) specification [74] 

to develop VGI Discovery as a standard web service that returns VGI datasets (i.e., the VGI data 

published by VGI Publisher) based on spatial, temporal, and quality search parameters to a client. 

4. The VGI Framework in Action 

To demonstrate how the VGI framework works and to assess its performance, we studied  

weather and social media data related to Typhoon Ruby [75]. In the following sections, we briefly 

describe the disaster event and implementation details of the VGI framework, and then discuss the results 

of experiments undertaken. 

4.1. Case Study 

Typhoon Ruby was a catastrophic typhoon, which ranked as the most intense tropical cyclone of  

2014 [76,77]. During the typhoon, 18 people lost their lives and significant damage to private and public 

property and infrastructure (~$114 million USD) occurred [78]. The typhoon entered the Philippines on 

4 December 2014, made first landfall over Eastern Samar on 6 December 2014 with wind speeds 

reaching a maximum velocity of 175 km/h (kilometer per hour), and exited the country on 10 December 

2014 as a tropical storm [79]. 

We collected user-generated content from Twitter, Flickr, Google Plus, and Instagram using the VGI 

Broker between 4 December and 17 December 2014 based on a set of predefined search parameters, 

hashtags, and keywords (see Table 2). Four brokers were implemented using the social media platforms’ 

Python API using HTTP GET/POST requests. The brokers were then wrapped using GeoServer WPS and 

exposed as a set of standard WPS instances. We designed a data model for each social media dataset and 

deployed four PostgreSQL/PostGIS databases to store and manage the incoming data stream. Table 2 lists 

the Python APIs used to develop the brokers and the search parameters used to invoke them. It should 

be noted that the search parameters were chosen through an initial investigation of each social media 

platform's public stream to find a relevant sample of data with relatively little noise. 
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Table 2. Python APIs used to develop the VGI Broker and search parameters. 

 Search Parameters (Hashtag/Keyword) Python API 

Twitter 
Hashtag: rubyph, hagupit, Keyword: Typhoon 

Hagupit, Typhoon Ruby 
twitter 1.15.0 1 

Flickr 
Hashtag: rubyph, hagupit, Keyword: Typhoon 

Hagupit, Typhoon Ruby 
flickrapi 2.0 2 

Google Plus Keyword: Typhoon Ruby, Typhoon Hagupit googleapiclient 1.3.1 3 

Instagram Hashtag: typhoonruby, typhoonhagupit python-instagram 1.3.0 4 

1 https://pypi.python.org/pypi/twitter; 2 https://pypi.python.org/pypi/flickrapi/2.0; 3 http://google.github.io/ 

google-api-python-client/; 4 https://github.com/Instagram/python-instagram. 

Following data collection, VGI QC processing was undertaken. The quality score calculators were 

implemented as web accessible (HTTP GET/POST) Python applications. Therefore, the quality metric 

functionality was developed using Python libraries. The quality score calculators were then wrapped and 

exposed as standard WPS instances using the GeoServer WPS framework. PostGIS spatial functions 

were used to perform geometric computations, such as calculating distances between pairs of points and 

point-in-polygon tests (for the cross-referencing metric). 

VGI Discovery and VGI Publisher were developed as service endpoints. To develop VGI Discovery, 

we used and extended the pycsw (http://pycsw.org/) libraries to enable quality-supported publishing and 

discovery. For the VGI Publisher, we adopted 52°North’s SOS server (http://52north.org/communities/ 

sensorweb/sos/index.html) to enable data access and retrieval based on quality attributes. 

4.2. Results 

In this section, we describe the characteristics of contributions from each dataset and present results 

for quality control scores. For simpler presentation, values of the five quality scores were classified into 

Levels 1 to 4 representing values between 0.00 and 0.25, 0.25 and 0.50, 0.50 and 0.75, and 0.75 and 

1.00, respectively. Similarly, the QS values, ranging from 0 to 5, were classified as Level 1 to Level 5, 

corresponding to values between 0 and 5 with a step value of 1. Consequently, a higher valued level 

(score) corresponds to a higher quality contribution, which is assumed to have better utility for disaster 

management given the metric models used. 

Positional Nearness: We collected about 117,300 contributions from the four different data sources, 

Twitter, Flickr, Google Plus, and Instagram, that referenced Typhoon Ruby [75]. Of these contributions, 

only 2,440 (~2%) were geo-tagged with coordinate (location) information. In Table 3 we show the 

number of contributions for each positional nearness score (PNS) according to their source. PNS level 1 

contributions were not geo-referenced. It appears that for this case study we had only two geo-referenced 

contributions from both Flickr and Google Plus. Hence, Google Plus provided the lowest proportion of 

geo-tagged content (2 out of 935 ~ 0.2%), followed by Twitter (440 out of 110,249 ~ 0.3%), then Flickr 

(2 out of 66 ~ 3.0%), with Instagram providing a significantly greater proportion of geo-tagged 

contributions (1,996 out of 6,022 ~ 33.1%). A 2-sample test for equality of proportions was carried out 

indicating a significant difference between the two proportions (𝜒2 = 30,051, d.f. = 1, 𝑝 ≪ 0.001). 

Three of the data streams, Twitter, Flickr, and Google Plus, were conflated as both Flickr and Google 

Plus provided fewer than five contributions with coordinates, which could result in an unreliable 
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solution. There was also no significant difference between the count proportions for those services. The 

greater proportion of geo-tagged Instagram contributions can be partially explained by the fact that 

Instagram’s users can only publish photos and videos via their mobile phones, whereby Instagram may 

deduce spatial information from the users’ GPS or IP addresses. Figure 3 shows the spatial distribution 

of the retrieved data from social media. 

 

Figure 3. Spatial distribution of social media content. Each circle represents a certain 

number of social media contributions. 

Table 3. Counts of positional nearness score (PNS) values for each media stream. 

 Twitter Flickr Google Plus Instagram 

PNS 

Level 1 110,239 64 935 4,165 

Level 2 8 0 0 35 

Level 3 2 0 0 5 

Level 4 0 2 0 1,817 

Temporal Nearness: During the data collection period, social media feeds were streaming at an 

average rate of 2,129 contributions per day. As shown in Figure 4, of the contributions collected, most 

were published between 4 December 2014 and 10 December 2014, when the event itself took place in 

the Philippines. It is evident from Figure 4 that while we did capture data prior to the arrival of the 

typhoon in the Philippines, there was already a considerable volume of contributions being created on 

Twitter, etc., at the time we deployed the VGI Broker. 

The temporal nearness evaluation indicates that more than 76% of all contributions were streamed 

during the event, which were assigned the highest temporal nearness score (i.e., Level 4). Level 1 

contributions were all published several days before or after the event. Of the four contributing streams, 

Flickr had the highest proportion of Level 4 TNS contributions at 98.5%, followed by Instagram at 

82.4%, then Twitter at 76.6%, and finally Google Plus at 56.9% (see Table 4). A pairwise comparison 

of proportions indicates that there is a significant difference in temporal performance of all social media 

streams, 𝜒2 = 331.6, d. f. =  3, 𝑝 ≪ 0.001. For instance, Instagram photo and video contributions were 
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posted, predominantly, during the event, whereas Twitter contributions were also published prior to the 

typhoon as forms of warnings, and then post-typhoon, as messages of hope to those affected. 

 

Figure 4. Temporal dynamics of users’ contributions on social media. 

Semantic Similarity: The most frequently employed (determined post-event) hashtags/keywords used 

to describe the event were rubyph, hagupit, typhoonruby, typhoonhagupit, and philippines. However, in 

order to collect data in real-time, we used a reference dictionary of trending crisis-related words as of 

December 4 2014, containing the four keywords typhoon, ruby, hagupit, and philippines to perform the 

semantic similarity assessment. Contributions classified as Level 1 in Table 5 matched few of the reference 

words exactly—they actually had partial hashtag/keyword matches, as this was necessary to enter the event 

database. Level 2 contributions had at least one match with a reference-word. 

Table 4. Counts of temporal nearness score (TNS) values for each dataset. 

 Twitter Flickr Google Plus Instagram 

TNS 

Level 1 1,746 0 65 29 

Level 2 24,041 1 338 1,033 

Level 3 * 0 0 0 0 

Level 4 84,462 65 532 4,960 

* Please note that given the model used (see Equation (4)), Level 3 is not possible. 
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Table 5. Counts of semantic similarity score (SSS) values of each dataset. 

 Twitter Flickr Google Plus Instagram 

SSS 

Level 1 38,967 1 0 5,236 

Level 2 41,561 0 0 560 

Level 3 29,390 17 1 187 

Level 4 331 48 934 39 

Google Plus’s content was semantically very similar to the reference dictionary since 100% of the 

collected data was classified as Level 3 or 4. This is, however, not significantly more than the 

contributions for the data retrieved from Flickr (98.5% achieved Level 3 or 4). Overall, a 4-sample test 

for equality of proportions along with a pairwise comparison indicates that there is no significant 

difference in the semantic quality of contributions between the four social media streams, 

χ2 = 4,384, d.f. =  3, p ≪ 0.001. Twitter data contained enough tags from the reference dictionary to 

achieve Level 3 or 4 27% of the time, while Instagram did so 3.7% of the time. 

Cross-referencing: The cross-referencing process focused on the spatial component of the 

contributions, measuring how many times each contribution did fall within the MBR of each social 

media stream. Contributions that were assigned to Level 1 had either no spatial reference or did not fall 

in a bounding box other than their own. As can be seen from a pairwise comparison of proportions 

indicates that Instagram contributions are more likely to be within or near the geographic intersection of 

the social media data sources. 

Table 6, and few contributions (~0.1%) were located in the bounding box of at least two other  

datasets. There were only 684 tweets that fell within the MBRs of two other datasets. No  

contributions fell in the intersection of all MBBs. A 3-sample test for equality of proportions reports that 

there is a significant difference in cross-referencing across the four social media streams with 

𝜒2 = 26,554, d. f. = 2, 𝑝 ≪ 0.001. In this test, Flickr and Google Plus were conflated, as were Levels 2 

to 4, to ensure that the 𝜒2 approximation would be correct. A pairwise comparison of proportions indicates 

that Instagram contributions are more likely to be within or near the geographic intersection of the social 

media data sources. 

Table 6. Counts of cross-referencing score (CRS) values of each dataset. 

 Twitter Flickr Google Plus Instagram 

CRS 

Level 1 109,545 64 933 4,040 

Level 2 684 0 2 1,852 

Level 3 20 2 0 130 

Level 4 0 0 0 0 

Credibility: Given the different characteristics of the social media platforms (e.g., data model), we 

selected a different set of factors for credibility assessment for each media stream as described above. 

Depending on the media source, Level 1 contributions will have no shares, likes, contributors, or 

followers. As indicated in Table 7, few contributions obtained a high credibility score. A 2-sample test 

for equality of proportions reports that there is a significant difference in credibility across the four social 

media streams, with 𝜒2 = 111.4, d.f. =  1, 𝑝 ≪ 0.001. In this test, Flickr, Google Plus and Instagram 
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were conflated, as were Levels 2 to 4, to ensure that the 𝜒2 approximation would be correct. The data 

suggests that Twitter offers more credible information. 

Table 7. Counts of credibility score (CS) values of each dataset. 

 Twitter Flickr Google Plus Instagram 

CS 

Level 1 108,060 64 926 6,018 

Level 2 2183 0 6 1 

Level 3 6 0 2 2 

Level 4 0 2 1 1 

Overall Score: Table 8 presents a summary of the final quality score calculations for each dataset. Given 

the data, most of the content published on the social media services fell in levels 2 and 3. No dataset 

contained a contribution that was identified as Level 5, the highest quality. Indeed, contributions without 

any geographical reference can only reach a quality level of 3. A 4-sample test for equality of proportions 

along with a pairwise comparison indicates that there are significant differences in the quality of each 

social media data stream with 𝜒2 = 22,003, d.f. =  3, 𝑝 ≪ 0.001 . In this test, Levels 3 to 5 were 

conflated to ensure that the 𝜒2 approximation would be correct. We state with caution that given the data, 

our results indicate that Flickr provides the highest quality data with 72.7% of the data falling in Level 3 

or higher, followed by Instagram (30.6%), Google Plus (19.2%), and Twitter with 0.9%. 

Table 8. Counts of total quality score (QS) values of each dataset. 

 Twitter Flickr Google Plus Instagram 

QS 

Level 1 13,674 0 0 626 

Level 2 95,566 18 755 3,550 

Level 3 1,009 46 180 1,655 

Level 4 0 2 0 190 

Level 5 0 0 0 0 

5. Evaluations and Discussion 

The evaluation and discussion of this work has been split following the two themes contained in the 

work. First we evaluate the VGI framework in terms of the framework objectives set out in Section 3. 

This is followed by an evaluation of the quality assessment model and metrics. 

5.1. Evaluation of the Technical Framework 

To evaluate the proposed framework, it is useful to use both qualitative and quantitative criteria to 

verify whether the system design successfully meets users’ needs and to evaluate how well it performs 

under different conditions [80]. In this section, we will discuss qualitative criteria. A quantitative 

evaluation, which may, for instance, address the computational performance of search and storage 

capabilities of the framework, and the thorough analysis of media streams, are a focus of future work. 

To implement the architecture, we employed a FOSS (Free and Open Source Software) strategy for 

two reasons. First, it minimizes the potential cost required to implement, modify, or customize the 
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system. Second, it facilitates the free adoption of the platform by organizations tasked with disaster 

management responsibilities [81,82]. With respect to the properties of the architecture, we can say:  

(i) The proposed framework follows open geospatial and World Wide Web standards (i.e., OGC 

and W3C), which facilitate machine-machine and human-machine interactions in an 

interoperable manner;  

(ii) It allows developers to design and build system components (i.e., services) using various 

technologies and tools (e.g., FOSS or proprietary);  

(iii) The architecture supports a service-based development approach, which provides the flexibility 

necessary to allow changes or customization of the system; and 

(iv) It provides a flexible deployment solution where the system components can be easily “plugged 

into” existing systems, and allows deployment in both local and distributed (e.g., cloud) environments. 

Consequently, regarding the primary quality attribute requirements and business goals [63,64] that 

drove system development (see Appendix), we conclude that quality attributes such as 

scalability/extensibility, open systems/standards, and interoperability are (theoretically) all met in the 

proposed framework. The secondary priorities of flexibility, integrability, ease-of-installation, and 

functionality have been built into the system through the adoption of development “best practices” 

throughout the design process. Lower level priorities such as portability and ease-of-repair are also met 

(see Table 9). 

However, as outlined, there is still a need to assess the framework in terms of practical technical 

performance, scalability, and usability. This will be necessary to understand how the system responds in 

real emergency operations to ensure that system operators are able to put the VGI framework to good 

use. There is also a need to study mechanisms that enable integration of the VGI framework into existing 

(enterprise) information and decision-making workflows. This will facilitate incorporation of more data 

sources (i.e., authoritative and user-generated data) into the platform, which subsequently permits 

refinement of the quality control procedures so as to achieve more realistic results. 

Table 9. Quality attribute requirements and business goals addressed by the VGI framework. 

Framework Characteristics Business Goals 

OGC- and W3C-compatible service 

interfaces and data encodings 

Interoperability  

Integrability  

Flexibility  

Ease-of-use 

Service-based development approach 

Portability  

Integrability  

Ease-of-installation  

Flexibility  

Ease-of–repair  

Scalability  

Functionality 

FOSS development strategy 

Portability  

Flexibility  

Ease-of-repair  

Functionality 
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5.2. Evaluation of Quality Control Metrics 

Several works have investigated spatial data quality requirements for the creation of authoritative and 

organizational spatial data, such as data collected by national mapping agencies [83–86]. Examples of 

such quality standards concern “lineage”, “positional accuracy”, “attribute accuracy”, “logical 

consistency”, “completeness”, and “temporal accuracy”. Although some of these quality metrics may 

seem independent of a specific application, they need to be defined with respect to the particular context 

of data (or map) use to ensure that the data are fit-for-purpose [87]. 

Fitness-for-purpose is a critical issue for quality assurance of VGI [87], whereby VGI demands a 

somewhat different approach to quality assessment. This difference emerges from (1) the different 

procedures undertaken to produce authoritative data and VGI, (2) the socio-technical nature of VGI 

systems, and (3) the heterogeneity of VGI (see [87] for a detailed discussion). Therefore, several 

approaches have been proposed by researchers to fill this gap, including “crowdsourcing”, “social”, 

“geographic”, “domain”, “instrumental observation”, and “process-oriented” approaches [50,87]. These 

approaches are not necessarily used in isolation for a given use case, but rather combined for real-world 

applications [87]. For example, in this study, we used three approaches to ensure that the quality 

assurance fits the disaster management purpose: (a) “crowdsourcing” to evaluate user ratings and to 

measure the quality of a contribution (e.g., retweets); (b) “geographic” analysis to evaluate the spatial 

quality of the information; and (c) “domain” analysis to ensure the relevance of the information to a 

given context (e.g., Typhoon Ruby). Consequently, positional nearness and cross-referencing are 

“geographic” analysis approaches, temporal nearness and semantic similarity evaluations can be 

considered “domain” approaches, and credibility is a “crowdsourcing” approach. 

The current set of quality assessment metrics is to be regarded as an experimental set with its primary 

purpose being to demonstrate the utility of the proposed architecture for quality-based VGI data retrieval. 

However, our case study also permits us to evaluate the metrics and identify which ones may work, and 

which require rework or refinement. 

Positional Nearness: Although the Philippines was the center of the crisis, there was a substantial 

amount of data streaming from other parts of the world (see Figure 3). These contributions have been 

referred to as a response to a “cyber event” by social media [88]. This means that they are not reports of 

the crisis itself, but, rather, reactions to its coverage in social media. Therefore, such contributions should 

receive lower positional nearness scores as they may have a negative effect on attempts to localize the 

crisis using social media feeds [88]. For example, the mean center of all Twitter contributions is located 

in the Arabian Sea (65.66996° E, 19.57687° N), 750 km east of Mumbai, India, which is about 6,000 

km away from the center of the crisis. 

Instagram contributions are significantly more tightly clustered than Twitter contributions, and closer 

to the actual typhoon with the proportion of Level 4 contributions reaching 30.2%. A 2-sample test for 

equality of proportions indicates that Instagram produced a significantly higher proportion of 

contributions that were clustered near each other  (χ2 = 34,35, d.f. = 1, p ≪ 0.001) . For statistical 

accuracy, Twitter, Google Plus, and Flickr were grouped to ensure that the 𝜒2 approximation would be 

correct, as were Levels 1 to 3 within each grouping. That Instagram contributions are closer to the actual 

typhoon might be because Instagram contributions generally contain photos and videos related to the 

typhoon—not text messages as with Twitter. Hence, Instagram contributors are more likely to have 
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created the photos or videos in the vicinity of the event, whereas the other contributions can in reality be 

created from anywhere in the world. This is also seen in our data where Instagram nearness scores have 

a higher proportion of Level 3 and 4 scores than other media streams (see Tables 3 and 4). 

We are left, however, with two problems: First, it is difficult to apply this metric for events with  

a global response as these data sources will be biased by the coordinate system used to store geographic 

location, and may well generate geographic (arithmetic) centers that are far away from the crisis. Other 

metrics, such as the center of mean distance, or the center of intensity, may be more appropriate. Second, 

there are very few Google Plus and Flickr contributions with a spatial reference. It would be desirable 

that each media stream has a substantial number of geo-referenced contributions for both the nearness 

and cross-referencing metrics. One of the reasons for having a small number of geo-tagged features is 

that we only used explicit spatial information attached to the contributions (i.e., geographic coordinates). 

However, geographic information retrieval techniques [89] need to be considered in future work to 

extract implicit spatial information (e.g., place names or POIs) that is embedded in the text, or to retrieve 

location information from users’ profiles to enrich the spatial component of the user contributions. 

Temporal Nearness: One of the reasons for having contributions with lower temporal nearness scores 

is that we started monitoring the event two days before the typhoon hit the Philippines and continued 

collecting data until after it exited the country. This means that the datasets contain social media 

contributions from different phases of the disaster, preparedness through response and then recovery. 

The differences in temporal patterns, as seen in Figure 4, may have two different reasons: (i) because 

contributors prefer to use different social media services during different phases of an event; and (ii) 

because of the different spatial distribution patterns of each of the social media datasets due to  

world-wide responses to the “cyber event”. This latter point suggests that the metric should be combined 

with positional nearness scores to identify the spatiotemporal center, or moving center, of an event. An 

additional question to consider is, however, what time-span should be used to best calculate the scores. 

In our case study we have qualified data in terms of “days” since the end of the event. This temporal unit 

seemed to work adequately as the typhoon was moving slowly given the spatial extent of the event area. 

However, other types of events, like an earthquake or an accident, of smaller spatial scale, may also 

require adjustment of the temporal unit. 

Semantic Similarity: The semantic similarity assessment suggested that contributions from Google 

Plus contained all dictionary reference tags in 99% of the cases. This might be because of the way that 

Google Plus functions as a social networking website. Compared to Twitter, a micro-blogging service 

with a 140 character limit, Instagram and Flickr, both photo/video sharing services, Google Plus allows 

users to post both short- and medium-length textual content directly to their stream, and share content 

(e.g., photos, videos, or news articles) from third-party websites. Hence, given the content types and 

word volume per contribution, Google may be favored by the semantic similarity calculation used. This 

indicates the need to weigh contributions for each social media stream and also for each media type 

(image, text, etc.). 

An issue that we observed with the current data is that sometimes words similar to the reference words 

were contained in the message but with different or incorrect spellings. Consequently, a different  

word-matching approach may be introduced that measures similarity using character-based distance, for 

example, such as the Hamming Distance [90]. Another challenge is to interpret different languages and 

terminologies in contributions, which is crucial when a disaster happens in a multilingual country or 
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where people use vernacular and alternative terms to describe an event [91]. A promising approach to 

minimize this issue is to use a data dictionary that covers different languages or terms in a given context, 

similar to CrisisLex proposed by Olteanu et al. [92].  

Cross-referencing: Looking at Tables 3 and 6, it appears that Google and Flickr have only two 

contributions each and that both have a high score, as these are geo-referenced contributions. This raises 

some concern about how the concept of nearness should be defined. We chose to use an MBR, but with 

worldwide social media contributions, Twitter, and Instagram, this may be of little value. Additionally, 

if there is little data obtained from a selected social media stream, the bounding boxes may potentially 

be very small (Flickr and Google Plus in our case), or in a different geographic location than the event 

location. Surprisingly, and due to the small Google and Flickr bounding boxes, we still arrived at 

“reasonable” results. However, we think that this metric could be improved or replaced by a density-

based metric, e.g., a standard deviation ellipse, 95% MBR (minimum bounding rectangle), or perhaps a 

core home range as used in animal home range estimation (see [93]). 

Credibility: This metric is fairly straightforward and enables us to weigh each contribution with its 

peers. However, it is interesting to observe that very few contributions have a credibility level of three 

or higher. This indicates two things: either the credibility criteria are too demanding, and it may be 

difficult to develop civic credibility within the context of a crisis because of bandwagon effects [94], or 

the media’s hierarchical network structure (i.e., network centrality and connectivity [95]) does not allow 

a more equal distribution of contributions among the credibility levels. A problem that we observed, 

relevant to the total quality score calculation, is that the maximal credibility scores (i.e., not levels) for 

the geo-reference data subsets reached 0.25 and not 1.0, as would be most desirable. Similarly, spam and 

biased content is another challenge when analyzing the credibility of social media content [96]. Hence, 

there is a need to investigate spam detection methods and subsequently improve the credibility 

evaluation algorithm. 

Total QS; It is somewhat difficult to assess the overall quality scores with this initial set of  

(un-refined) metrics and for this particular case study because of the problems mentioned above: 

positional nearness and cross-referencing appear to have limited utility if a dataset is global. Second, 

location information is double-weighted as we have two location-dependent metrics, leading to a 

limitation that contributions without any spatial reference can only score 3 at most. Third, the credibility 

scores are low, with a maximum score of 0.25 for the subset of spatially referenced contributions. 

Therefore, credibility is basically not accounted for. This raises the issue of the relative merit of each 

metric in relation to a crisis: should all metrics be weighted equally, or do some contribute greater value 

with respect to a crisis? If this is the case, then development of an appropriate weighting scheme using 

the Analytical Hierarchical Process [97], for example, is necessary. 

As a result of these three issues, the highest-ranking contributions for Twitter and Instagram still 

contain a lot of noise, and perhaps only half of the contributions can be considered informative (see 

Table 10–13). Additionally, a number of the results reported may well be affected by the disparity in 

sample size. This raises the question of how much value is contained in the 96,575 tweets that achieved 

QC Level 2 or 3 versus Flickr’s 64 contributions or Google Plus’ 935. To this end, any metrics that are 

used should also be (qualitatively) validated before being widely adopted. 
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Table 10. A sample of Twitter contributions with the highest total quality score. 

Tweet 
Total 

QS 
PNS TNS SSS CRS CS 

Trust in the Lord always!! Pray for our country! 

Philippines! Typhoon #hagupit! 

http://t.co/bm3w1eR7FN 

2.753 0.503 1 0.75 0.5 0 

Typhoon #Hagupit Kills 21 In The Philippines 

@IanWoodsSky reports from south of Manila 

http://t.co/ARrJlw5LNA 

2.619 0.118 1 0.75 0.5 0.25 

An evacuated family in #Borongan, waits as 

#Philippines prepares for typhoon #RubyPH #Hagupit 

@UNDPPH @UNDPasiapac http://t.co/PjB0aWyRnn 

2.594 0.084 1 0.75 0.5 0.26 

Philippines Braces For Typhoon #Hagupit: 

http://t.co/zWpIp2wU07 http://t.co/zlT74zmv8x 
2.585 0.084 1 0.75 0.5 0.251 

As Typhoon #Hagupit nears, millions in the 

#Philippines are preparing for wind speeds of up to 

286 km/h and 4 metre storm surges. 

2.585 0.084 1 0.75 0.5 0.251 

Table 11. A sample of Google Plus contributions with the highest total quality score. 

Text Attachment title Total QS PNS TNS SSS CRS CS 

Bed weather... me, still in bed 

literally!!! So apparently 

according to the latest updates 

about typhoon… 

Bed weather... me, still in bed 

literally!!! So apparently according to 

the latest updates about typhoon…, the 

expected 4th landfall is around  

8 pm tonight. 

2.556 0 1 1 0 0.556 

www.Suspicious0bservers.org 

www.ObservatoryProject.com 

TODAY''s LINKS: Unzicker: 

http://www.euroscientist.com… 

Big Earthquake, Magnetic Storm | S0 

News December 7, 2014 
2.55 0 1 1 0 0.55 

Manila - NO CLASSES 

TOMORROW...The picture 

below showed some situation in 

some provinces that been … 

Manila - NO CLASSES 

TOMORROW… The picture below 

showed some situation in some 

provinces that been hit by the typhoon 

Hagupit. The typhoon Ruby with it''s 

international name Hagupit is expected 

to hit Manila tonight until tomorrow 

morning.. Please continue to pray for 

my country. THANK YOU! 

2.368 0 1 1 0 0.368 

Super Typhoon Hagupit/Ruby 

from Space #Typhoon 

#Philippines #RubyPH 

Super Typhoon Hagupit/Ruby from 

Space #Typhoon #Philippines 

#RubyPH 

2.344 0 1 1 0 0.344 

PAGASA: Typhoon 'Ruby' has 

slightly weakened as it 

continues to threaten the Samar 

provinces while maintaining... 

Typhoon Ruby (Hagupit): December 6, 

2014 Update 
2.317 0 1 1 0 0.317 
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However, implementation of the metrics has shown that the workflow itself, from VGI data retrieval 

to data quality evaluation, worked as designed. Only the set of quality metrics needs refinement and 

further experimentation with different event datasets. We expect that additional events would have 

different spatial and temporal characteristics that will enable better evaluation and understanding of 

metric correlation and usability. 

Table 12. A sample of Flickr contributions* with the highest total quality score. 

Caption Photo 
Total 

QS 
PNS TNS SSS CRS CS 

Calm before the Storm 

 

3.968 1 1 1 0.75 0.218 

Pre Ruby 

 

3.957 1 1 1 0.75 0.207 

Typhoon Hagupit 

 

3 0 1 1 0 1 

Super Typhoon Hagupit 

 

2.266 0 0.5 1 0 0.766 

Week 46/52: I will trust in the 

shelter of your wings 

 

2.24 0 1 1 0 0.24 

* Source: this information is retrieved from Flickr using its photo search API based on the hashtags/keywords 

related to Typhoon Ruby. The images above are copyrighted to ilovestrawberries (Carmi) 

(https://www.flickr.com/photos/ilovestrawberries), Klaus Stiefel (https://www.flickr.com/photos/pacificklaus), 

and EUMETSAT (https://www.flickr.com/photos/eumetsat). 
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Table 13. A sample of Instagram contributions* with the highest total quality score. 

Caption Photo Total QS PNS TNS SSS CRS CS 

Typhoon ruby is coming in now. The wind is 

building and it’s quite rainy. There are a few Poole on 

the street, mostly looking around but the majority 

have taken shelter. #Philippines #tacloban 

#typhoonruby #hagupit #cnn  

3.523 1 1 1 0.5 0.023 

#RUBYPH Latest satellite image of Typhoon Ruby 

(Super Typhoon Hagupit as it makes it way to the 

Philippines. 19 days before Christmas we will be hit 

by a devastating typhoon #SuperTyphoonHagupit 

#TyphoonRuby #PAGASA #Philippines 

#PrayForPhilippines 
 

3.503 1 1 1 0.5 0.003 

Welcoming new members for Miracles Do Happen! 

Yep, that’s right! MDH Philippines is back to serve. 

Excited to donate and participate in charity work? 

Stay tune for more updates as we are going to help 

people affected by the typhoon #Ruby add us on 

Facebook and learn how you can be a miracle to 

others. #mdhphilippines #miraclesdohappen 

#beamiracle #typhoonruby #hagupit #volunteer 

 

3.502 1 1 1 0.5 0.002 

My lovely neighbours always smile even if it's rains, 

even if their houses are flood... #lovethem #locals 

#typhoonhagupit #tocute #neighbors #girls #kids 

#bacolod #filipinas #philippines #pilipinas #rain 

#hagupit #ruby  

3.501 1 1 
0.7

5 
0.75 0.001 

Just over a year ago, our C.O.O. snapped this photo 

while visiting a small mountain town in Northern 

Cebu as part of a relief team in the days after Super 

Typhoon Haiyan ravaged the Philippines...sadly, 

these same children just had to brave Super Typhoon 

Hagupit The Just Picked CoCoWater team are 

sending all our love to the people of the Philippines 

and asking for you to help in any way you can 

#Philippines #TyphoonHagupit #BeStrong #Love 

 

3.501 1 1 
0.7

5 
0.75 0.001 

* Source: this information is retrieved from Instagram using its media search API based on the hashtags related 

to Typhoon Ruby. The images above are copyrighted to @cnnbrad (https://instagram.com/cnnbrad/), 

@doberdoggies (https://instagram.com/doberdoggies/), @jessicalorriz (https://instagram.com/jessicalorriz/), 

@merinsbcn (https://instagram.com/merinsbcn/), and @justpickedcoco 

(https://instagram.com/justpickedcoco/).  
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6. Conclusions 

In this paper, we introduced a VGI framework for discovery and use of user-generated content within 

the context of disaster management. We considered both functional and architectural requirements to 

develop the framework. We have also shown that compliance to open standards and specifications, 

following a FOSS strategy, and the use of a service-based development approach were key factors for 

building a prototype platform. As a result, this platform enables interoperability and is flexible in terms 

of component integration for new or existing disaster management platforms. Although the system was 

used for the specific use case of Typhoon Ruby, the proposed framework can be easily adapted to support 

other types of disaster events. 

Results of the case study on Typhoon Ruby highlight the difference between contributions from the 

four media streams. These differences include different types of media (text, images, etc.), different 

temporal contribution patterns, and different credibility information. However, due to a lack of  

geo-referenced contributions, no conclusive statement can be made about differences in spatial 

contribution patterns. For this type of event, a typhoon, Instagram looks to be a promising source of 

information in comparison to Flickr and Google Plus. However, given the differences mentioned above, 

these media streams should most likely be used in a complementary fashion. 

Our discussion of the metric evaluation has also been manifold, showing that there is a need to 

develop more sophisticated algorithms and models for quality metrics for a hurricane-type event. Thus, 

further investigation of the metrics requires different event datasets to evaluate model parameterization 

options and robustness. 

There is a need for ongoing evaluation of the framework and platform in terms of both technical and 

usability aspects to assure efficiency and effectiveness of the platform in meeting users’ needs during a 

disaster. In particular, it needs to be validated if high-quality-ranked contributions are indeed useful for 

disaster management. This can partly be achieved by evaluation of official sources of information such 

as newspapers or government-managed disaster response websites. As an example, the government of 

the Philippines set up a website (http://www.gov.ph/crisis-response/typhoon-ruby/) to keep the public 

informed of Typhoon Ruby. We will peruse these tasks in our future research. 

There are some limitations to using the proposed platform as a tool for disaster management. For 

instance, people living in remote and less developed areas may have limited access to the Internet and 

social networking websites such as Twitter. Moreover, some social networking websites such as Twitter 

have API restrictions, such as the API rate limits (https://dev.twitter.com/rest/public/rate-limiting) or 

restricted historical data download (for example, Twitter’s Search API index includes between 6–9 days 

of tweets (https://dev.twitter.com/rest/public/search)), which hinders data access during a disaster event. 

Also Internet censorship, which may be imposed by governments, private organizations, or a group of 

people, to control what can be accessed, published, or viewed on the Internet [13,98,99], can hinder 

adoption of VGI-based disaster management platforms. However, before these particular cases are to be 

addressed, there exists the challenge of obtaining political support to enable integration of bottom-up 

disaster management platforms into emergency management strategies. Privacy, intellectual property 

rights, and data ownership and copyright are some examples of controversial issues in this context [100,101]. 

To address the issues, government organizations need to re-evaluate and perhaps adapt the legal and 
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policy frameworks that currently facilitate governance of SDIs so that they can be extended to allow 

integration and management of VGI with authoritative data. 
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