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Abstract: Ubiquitous positioning provides continuous positional information in both indoor 

and outdoor environments for a wide spectrum of location based service (LBS) applications. 

With the rapid development of the low-cost and high speed data communication, Wi-Fi 

networks in many metropolitan cities, strength of signals propagated from the Wi-Fi access 

points (APs) namely received signal strength (RSS) have been cleverly adopted for indoor 

positioning. In this paper, a Wi-Fi positioning algorithm based on neural network modeling 

of Wi-Fi signal patterns is proposed. This algorithm is based on the correlation between the 

initial parameter setting for neural network training and output of the mean square error to 

obtain better modeling of the nonlinear highly complex Wi-Fi signal power propagation 

surface. The test results show that this neural network based data processing algorithm can 

significantly improve the neural network training surface to achieve the highest possible 

accuracy of the Wi-Fi fingerprinting positioning method. 
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1. Introduction 

Ubiquitous positioning technologies include but are not limited to Global Satellite Navigation 

Systems (GNSS) such as the American Global Positioning System (GPS), cellular and Wi-Fi networks, 

Radio Frequency Identification (RFID), Ultra-wide Band (UWB), ZigBee, and their integrations. 

Among these positioning technologies, Wi-Fi networks with the IEEE 802.11 license free 

communication standard have been rapidly developed in many metropolitan cities, e.g., in Australia, 

Hong Kong SAR of China, and Taiwan. The fundamental function of Wi-Fi networks is to provide a 

low-cost and effective platform for multimedia communications. In addition, the propagation of Wi-Fi 

signals, if properly modeled, can provide real-time positional information of mobile devices in both 

indoor and outdoor environments. Different Wi-Fi positioning approaches include Cell-Identification 

(Cell-ID), trilateration and fingerprinting. Detailed explanation of these approaches can be found in, for 

example [1,2].  

Cell-Identification is the simplest method for signal strength based positioning systems such as 

cellular mobile network and Wi-Fi positioning. However, only very crude positioning results can be 

obtained. At an unknown mobile device’s position where signal strengths from m numbers of nearby 

access points (Aps) can be detected, the AP’s position with the strongest detected RSS would be used to 

approximate the position of the mobile device. For example, if RSS2 from AP2 is the strongest among 

RSSi from APi, for i = 1, 2, …, m, then (X2, Y2) will be used to approximate the mobile device’s position. 

With this approach, the accuracy would depend on the effective signal propagation distance, as well as 

density and distribution of the APs installed. This approach was further improved by for example, the 

weighted centroid localization (WCL) proposed by [3]. For the trilateration approach, the mobile 

device’s position, normally in two dimensions, is determined using a set of measured distances from the 

nearby known APs. Least squares solution is normally applied when more than two distances are 

observed. It should be noted that the terrestrial land surveying techniques adopt measured distance as 

raw observations, while for the Wi-Fi based techniques, the raw data are RSSs, therefore a 

RSS-to-distance conversion method is to be applied, and the known APs’ positions will be treated as 

control points. The general RSS-to-distance conversion approach is by curve fitting with for example, 

parabolic or logarithmic regression, based on free space propagation model [4]. By further considering 

the complex real site conditions such as path loss of signal due to attenuation, reflection and refraction, 

as well as the geometrical effects on length resection, different RSS-to-distance conversion algorithms 

such as the Gaussian process regression [5] and the statistical path loss parameter estimation [6] were 

proposed. Regarding the fingerprinting approach that is more suitable for indoor environments, it has the 

advantage that the APs coordinates are not required in the position determination process. However, it 

requires preliminary efforts of database development. The database, also called radio map (Figure 1), 

contains a collection of calibration points at different locations in the area where Wi-Fi positioning is to 

be performed. The database development process is normally carried out if there are no significant 

factors that would seriously affect the RSS patterns due to for example, relocation of large objects and 

removal or addition of fixed structures in the Wi-Fi positioning area.  
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Figure 1. An example of radio map generated from a Wi-Fi signal strength database.  

 

In real-time positioning, the RSSs collected at an unknown position are compared with radio map’s 

pattern. The pattern comparison algorithms can be generally classified into deterministic and statistical 

approaches which include point matching, area based probability and Bayesian network [7]. Recent 

research outputs on the statistical methods include but not limited to, for example, the 

Expectation–Maximization (EM) algorithm [8], Coverage Area Estimates [9], and floor determination 

algorithms for Wi-Fi positioning in multi-storey buildings proposed by [10,11].  

In this paper, our proposed neural network algorithm is compared with the point matching approach 

based on the minimum norm principle as described below. 

The minimum norm point matching method can be mathematically expressed as: 

                                        
 

   

            (1) 

where SSRM (i,j) is the RSS value of the signal transmitted from access point (i) at radio map point (j), 

and SSMEAS (i) is the measured RSS of the signal transmitted from access point (i). The radio map point 

(j) having the minimum norm is considered to be the most probable position. Since in the real-time 

positioning process the Wi-Fi sensor can be in any direction, a practical approach in the database 

development process is that, at each sampling point, the RSS data is firstly collected in a reference 0°, 

then 90°, 180°, and 270° directions, and the mean RSS value of the data collected in these four directions 

is used in the computation. It is obvious from Equation (1) that the positioning accuracy is dependent on 

the resolution of the calibration points, and the positioning results are always snapped to the discrete 

points’ position. Hence, the higher resolution the calibration points, the more accurate the result. 

However, as shown in Figure 1, the signal propagation from each available AP is a continuous 

non-linear surface. Therefore, a model that can best describe the surface of all APs’ signal propagation 

will help to improve the positioning accuracy. Due to the reflections of waves by obstacles and other 

interferences, the structure of the above functions could be rather complex. The traditional statistical 

methods based on some smoothing approximation may fail to capture the widely fluctuating 

characteristics of these wave patterns. 
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Since their emergence, the Neural Network of different types and structures has been used effectively 

in a number of cognitive processes. They have been shown to be able to detect some very subtle changes 

in observable data patterns. The activation (or transfer) functions that link one layer of neurons to the 

next are sigmoid instead of ordinary algebraic functions which render it highly responsive to any abrupt 

changes in the input data. In fact, it was proved by [12] that the Feed-forward Neural Networks with one 

input layer, one output layer and a single hidden layer with sigmoid activation functions are capable of 

approximating any Borel measurable function (that includes those functions described by the above 

patterns) to any desired degree of accuracy, provided sufficiently many hidden neuron units are 

available. Based on this finding, [13] introduced a 3-layer recurrent neural network with an efficient 

learning algorithm able to perform accurate currency exchange rates forecasting. In the following, the 

neural network modeling for the fingerprinting approach and experimental tests to validate the proposed 

algorithm are discussed. 

2. Neural Network Modeling 

From the above introduction of the fingerprinting positioning approach, it is possible to consider the 

co-ordinates ((x,y) in 2-dimensional case) of a point as a function of the signal strengths from several 

access points {si}, i = 1, 2, …, m, where, x = f(s1, s2, …, sm) and y = g(s1, s2, …, sm). If a sample of 

uniform (or random) distribution of points with known positions and the signal strengths from those 

access points can be measured accurately, the minimum norm as shown in Equation (1) or some well 

known statistical methods can sometimes give a fairly good approximation of the position of any other 

points in this region based on the measured signal strengths at this position. As explained in the previous 

section, the traditional statistical methods based on some smoothing approximation may fail to capture 

the widely fluctuating characteristics of these wave patterns produced by those access points. This 

explains the high errors in Wi-Fi positioning inside certain buildings [1]. 

With the above reason, a simple 3 layer Feed-forward Neural Network is considered to be an efficient 

learning algorithm for a more accurate position determination using Wi-Fi networks, and this Neural 

Network model is described below. 

Let xi be the input of the average measured signal strength from access point i at the position P, where, 

i = 1, 2, …, m. 

The output from neuron j in the hidden layer is given by 

                

 

   

  (2) 

where j is the threshold parameter, and j = 1, 2, …, n, and the output coordinates (z1, z2) is given by  

              

 

   

 (3) 

where,    is the threshold parameter.  

Combining Equations (2) and (3), we have,  
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for k = 1, 2. 

(4) 

From Equation (4), we see that given a set of average weighted signal strengths from a set of m access 

points, with weights    ’s, the coordinates (z1, z2) correspond as the output from the network. Consider 
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where i,l are parameters to be included in our learning process with 
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to give the best approximation. 

The configuration of our proposed neural network is shown in Figure 2. It should be noted that the 

signal strength xi at a point P from access point i is initially taken to be the arithmetic mean of p (p = 3 or 4) 

signal levels measured at p appropriately chosen directions. Our learning process involves the 

determination of Parameters {jk}, {ij}, {j}, {k} and {i,l} so that the discrepancy output coordinates 

and the actual coordinates on a chosen set of points is minimal. More precisely; it is the actual 

coordinates           of a given point in our training set corresponding to the output (z1, z2); and the 

above parameters should be determined with the condition that the sum of squares of their difference is 

minimized. That is to minimize the expression 

   222

2
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Figure 2. A three-layer feed-forward Neural Network for Wi-Fi positioning. 
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Here the summation is taken over the entire training set. We shall see that the success of our learning 

process depends on whether we can get the smallest possible value for the above sum of squares of their 

difference or, in other words, the best learning surface that describes the actual RSS pattern generated by 

all the access points covering the whole region. 

The minimization algorithm was adapted and modified from [14] that has been shown to be very 

efficient for solving a number of very difficult problems in least squares minimization. Since the 

objective function is nonlinear, a simple but effective heuristic optimization method introduced by [14] 

is used. It has been demonstrated to be efficient in a number of complex least squares minimization 

problems including the training of a recurrent neural network. The method contains three basic steps: 

(i) full local exploration  

(ii) partial local movement and  

(iii) exploratory movements  

Each step is described briefly as follows. 

(i) Full local exploration 

Let x
(k)

 be the k
th

 approximation to the point where the minimum occurs and h be the step-length. The 

objective function at two sets of points about x
(k)

 defined in Equations (8) and (9) is evaluated.  

S1: x
(k + 1)

 = x
(k)

 ± hei 
(8) 

S2: x
(k + 1)

 = x
(k)

 ± hei ± hej 

i = 1,2, …, n, j = 1,2, …, n, and j  i 
(9) 

where ej = (0, …, 1, 0, …, 0) is the unit vector whose j
th

 coordinate is one while the remaining 

coordinates are zero. 

Consider that the first set of points lies uniformly on a sphere of radius h, while the second set S2 lies on 

a sphere of radius   h with the centre at x
(k)

 obtained by taking the respective lengths of x
(k+1)

 defined in 

Equations (8) and (9). This means that the total number of function evaluations is 2n(n − 1) + 2n = 2n
2
. It 

can be shown that the global minimum, if it exists, would most likely be entrapped lying inside this 

neighborhood. 

The search direction can be further refined as follows: 

If f(x
(k + 1)

) ≤ f(x
(k)

) for some choices of i and j, then the function values at an additional set of 2(n − 1) 

points about x
(k + 1) 

will be evaluated before performing partial local exploration in order to finely adjust 

search direction, that is, to set:  

x
(k + 1)

 = x
(k + 1)

 + het (or − het) (10) 

for some integer t values belonging to the set {1, 2, …, n} that gives the best function value. 
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(ii) Partial Local Movement 

This procedure helps us to decide when we should take a more aggressive move to reach the optimum 

from far away or when to take a more cautiously slow approach, when the true optimum is close by. The 

basic procedure is given in the following: 

Let b = x
(k+1)

 − x
(k)

. We evaluate f at the following sets of points about x
(k + 1)

: 

S1: xs = x
(k + 1)

 + b (11) 

S2: xs = x
(k + 1)

 + b − ihei (12) 

for i = 1, 2, …, n, and i = 1 or −1 according to the sign of the coordinates of b. Otherwise, set 

xs = x
(k+1)

 ± b − hei and ei along the direction of b is excluded.  

Now, if f(xs) ≤ f(x
(k+1)

) for some choice of i, then xs − x
(k+1)

 definitely gives a better direction of 

descent and we can make exploratory moves, as described in (iii) below, along this direction. Otherwise, 

we have to reduce the step-length by D and start the full exploration again at x
(k + 1)

. It should be noted 

that the order of iteration is linear with respect to n.  

(iii) Exploratory Movement 

The classical exploratory movement in “pattern search” heuristics or the corresponding “gradient 

method” can never be taken to full advantage if the path of displacement cannot be modified as the move 

proceeds. By properly adjusting the direction as the move proceeds from point to point, we can help 

guide our search much quicker to the true optimum. This could be done as follows: 

Let m = xs − x
(k)

, and evaluate f at the following points: 

S1: x
(k + 2)

 = xs + m (13) 

S2: x
(k + 2)

 = xs + m + hei (14) 

and ei along the direction of b is excluded.  

Notice that at most 2n + 1 function evaluations has to be performed. 

(iv) Effect of Contraction Ratio and Initial Step Length 

A contraction ratio of D = 4 can be seen to be the most appropriate choice. For, in the lower 

dimensional cases (i.e., the number of variables or parameters is not too large), if the true minimum 

happens to lie outside the reduced cube around the search position, it can be reached in a few steps. 

However, if the minimum happens to lie inside the reduced cube, the size of search space is significant 

comparing with that using contraction ratio of D = 2. The contraction ratio D = 3, though simple, would 

increase computer’s truncation error that would affect the computational accuracy. In the case where D = 4, 

the contracted length is one fourth of the original step size. If the minimum point happens to be x
(k)

 

again, one can be assured that the actual minimum point lies within these contracted spheres. Now, if the 

minimum value is at either one of the points on the contracted sphere S'1, (i.e., x
(k + 1)

 = x
(k)

 ± (h/4)ei for 

some i ) or one of the points on the contracted sphere S'2,(i.e., x
(k + 1)

 = x
(k)

 ± (h/4)ei ± (h/4)ej for some i 

and j), again only one full exploration around this point with step length h/4 will be needed to determine 

that the actual minimum probably lies within the contracted spheres; otherwise, one additional partial 

movement will lead the search outside this region. On the other hand, if the actual minimum point lies 

between the contracted outer sphere S'2 and the original outer sphere S2, it is easy to see that no more 
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than four combined local or exploratory moves are required to reach it. In all cases, the order of 

complexity of search is n
2
, similar to those with lower contraction ratios. It was found by [14,15] that, for 

experimenting with most of the benchmark test examples, the best contraction ratios were D = 4, followed 

by D = 5. There was no gain in further increasing the contraction ratio, except in some rare cases.  

(V) Termination Criteria  

Terminate the search, if the step size is reduced to be less than a prescribed tolerance level. Care must be 

taken not to set the tolerance too low, otherwise, poorer results will be obtained even at the expense of longer 

computer time. In our learning process, we found from experimentation that the best tolerance is 1e
−7

. 

The initial step-length affects the rate of convergence. In our test runs, the initial step-length of 0.25 

gave satisfactory results in most of the benchmark test examples. Except in the cases where the objective 

function fluctuates wildly in part of the search region, a shorter step-length or a rescaling of the objective 

function might help in giving a more satisfactory convergence. Often, whether the initial step length is 

suitable or not, could be detected in the first few iterations. 

To obtain the best learning result, the optimization process has to be rerun one or two more times with 

a new restarting point each time and select the best solution (i.e., the one that gives the least sum of 

square error). These restarting points can be chosen at random, but at a good distance from the previous 

starting positions or by following the procedure described in [15]. 

3. Algorithm Validation 

The above algorithm was validated using data collected inside a building of the Hong Kong 

Polytechnic University (HKPolyU) campus, with the APs’ distribution shown in Figure 3. 

Figure 3. Floor plan showing the distribution of access points in the test site. 

 

The 14 numbers of APs were labeled according to area number from A to N respectively. In our 

investigation, signal strength data from 3 and 4 numbers of APs were used for training by the neural 

network. As shown in Figure 4, each area contains about 4 to 5 training points separated between 3 and 

4 m depending on the shape and size of the area. Data collected at other points, as an example shown in 

Figure 5 were then used to verify the accuracy achievement with the trained signal strength propagation 

surface. All locations shown in Figures 4 and 5 were able to receive AP signals from adjacent rooms as 
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well as from other rooms within about 30 m radius. However, in our validation process, only signals 

from the nearest APs were used. As the IEEE 802.11 b/g standard Wi-Fi card was used for data 

collection, the signals received were at the same 2.4 GHz frequency.  

Figure 4. An example of points selected for training by the neural network. 

 

Figure 5. Points with known position were used to verify the accuracy achievement of the 

neural network results. 

 

Table 1 shows the processed results using different combinations of four APs. For example, 

G_D_E_F represents the test verified with the data collected in rooms G, D, E and F with the RSS data 

transmitted from APs G, D, E and F (refer to Figure 3). The Table shows the success rate at different 

accuracy levels, the Mean Square Error (MSE) indicating the average minimization results in the neural 

network training process, and the total number of points used for verification. The MSE is computed by 

the formula 
   

N

zzzz
2

22

2

11
ˆˆ 

, where N represents the total number of points used for training.  

Table 1. Accuracy achievement based on signal reception of four access points (APs).  

4-AP 

Combination 
0–1 m 1.1–2 m 2.1–3 m 3.1–4 m >4 m 0–4 m 

Mean Square 

Error 

Total No. of 

Points 

G_D_E_F 3.5% 14.1% 28.2% 15.3% 38.8% 61.2% 5.5 85 

H_I_J_K 0.9% 7.8% 12.1% 15.5% 63.8% 36.2% 26.7 116 

L_K_J_M 7.7% 24.0% 32.7% 14.4% 21.2% 78.8% 10.8 104 

L_N_A_B 9.8% 24.5% 26.5% 13.7% 25.5% 74.5% 2.6 102 

L_C_J_B 1.8% 8.3% 14.7% 20.2% 55.0% 45.0% 23.2 109 

N_L_B_M 18.1% 28.7% 20.2% 9.6% 23.4% 76.6% 2.7 94 

C_G_D_H 14.0% 23.3% 22.1% 10.5% 30.2% 69.8% 8.7 86 

C_J_H_L 1.3% 8.8% 8.8% 15.0% 66.3% 33.8% 5.1 80 

D_F_G_E 1.1% 7.7% 24.2% 22.0% 45.1% 54.9% 13.6 91 

H_I_G_D 2.9% 10.8% 13.7% 19.6% 52.9% 47.1% 12.3 102 

Note: Initialization parameters used: βij = 0.25, ωij = 0.25, ηjk = 0.5, θj = 300, φk = 1. 
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Likewise, the processed results using different combinations of three APs are shown in Table 2. It 

should be noted that the results shown in Tables 1 and 2 are processed by only one set of generally 

accepted initialization parameters. It will be shown below that different assignments of signal strength 

input sequence and the initialization parameters will result in the change in the direction and the scale of 

the input vector, and hence will generate different trained surfaces for position estimation, and the MSE 

can be used to effectively verify which input vector assignment will be most likely to provide the best 

positioning solution. 

Table 2. Accuracy achievement based on signal reception of three APs. 

3-AP 

Combination 
0–1 m 1.1–2 m 2.1–3 m 3.1–4 m >4 m 0–4 m 

Mean Square 

Error 

Total No. 

of Points 

G_E_F 17.6% 24.7% 11.8% 20.0% 25.9% 74.1% 4.0 85 

H_I_K 9.5% 40.5% 28.4% 19.8% 1.7% 98.3% 4.8 116 

K_J_M 6.7% 20.2% 26.0% 24.0% 23.1% 76.9% 3.7 104 

L_N_B 5.9% 12.7% 20.6% 17.6% 43.1% 56.9% 7.7 102 

C_J_B 15.6% 40.4% 26.6% 5.5% 11.9% 88.1% 5.3 109 

N_L_M 2.1% 14.9% 17.0% 19.1% 46.8% 53.2% 8.2 94 

G_D_H 22.1% 37.2% 24.4% 3.5% 12.8% 87.2% 4.3 86 

C_J_H 8.8% 11.3% 30.0% 22.5% 27.5% 72.5% 9.8 80 

D_G_E 5.5% 17.6% 28.6% 17.6% 30.8% 69.2% 12.7 91 

H_I_G 2.0% 6.9% 7.8% 14.7% 68.6% 31.4% 14.3 102 

H_I_J 1.7% 9.5% 18.1% 21.6% 49.1% 50.9% 13.4  116  

I_J_K 5.2% 14.7% 26.7% 18.1% 35.3% 64.7% 8.9 116 

H_J_K 10.3% 19.0% 25.0% 19.0% 26.7% 73.3% 6.1 116 

Note: Initialization parameters used : βij = 0.25, ωij = 0.25, ηjk = 0.5, θj = 300, φk = 1. 

It can be seen from Tables 1 and 2 that different AP combinations would yield different accuracy 

achievement. It is understandable that the signal propagation paths are different, resulting in different 

signal interferences. Moreover, by inspecting the 0–4 m success rate and the MSE columns, an obvious 

trend can be found is that, the lower the MSE, the higher the achievement percentage. In order to further 

investigate this trend, all processed results were used to plot the graph of percentage of accuracy against 

MSE. It is clearly shown in Figure 6 that, in addition to the obvious negative correlation between the two 

components, most results with the MSE less than 5 would yield 80%–100% success rate. This initial 

analysis indicates that some of the results shown in Tables 1 and 2, particularly those with high MSE, 

were not determined based on the best fitted neural network trained surface. Nevertheless, to verify the 

validity of the algorithm, the data of 3-AP combinations with MSE less than 5 shown in Table 2 were 

extracted compare with the minimum point matching method, with the neural network’s training data 

used as calibration points stored in the radio map’s database. Since the radio map’s data are largely 

distributed in a 3 m grid, the point matching method would have the advantage of snapping the test 

points to the neighboring grid points, therefore the a high success rate of 2 m or better, and very high 4 m 

or better accuracy achievements are expected. The point matching results can hence form a good 

comparison base as the highest possible solution for verifying the effectiveness of the neural network 

algorithm. Their comparisons are summarized in Table 3.  
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Figure 6. Relationship between mean square error and accuracy. 

 

Table 3. Comparison of accuracy achievement between the neural network and the 

minimum point matching methods. 

 Neural Network  Point Matching  

3-AP 

Combination 
0–2 m 2.1–4 m 

Mean Square 

Error 
0–2 m 2.1–4 m 

Total No. of 

Points 

G_E_F 42.3% 31.8% 4.0 47.1% 31.8% 85 

H_I_K 50.0% 48.2% 4.8 59.5% 29.3% 116 

K_J_M 26.9% 50.0% 3.7 63.4% 25.9% 104 

G_D_H 59.3% 27.9% 4.3 58.1%  30.2% 86 

It can be seen that the success rate of the two approaches are in general very similar except the 

K_J_M combination that, the 0–2 m accuracy for the point matching method is significantly better. It 

should be noted that only a set of constant initialization parameters was used in the neural network 

training process. This set of parameters may not produce the best trained surface for position 

determination. In fact, some of the solutions so obtained may just be local minima due to high 

complexity of our problem. Thus the actual implementation of the 3 steps proposed in Section 2 for 

generating the optimum RSS surface for Wi-Fi positioning need to be further investigated and verified. 

Observe that the 3-AP combination of I_J_K shown in Table 2 has the MSE of 8.9 and a low 0–4 m 

accuracy of 64.7%. This combination is used to illustrate our investigation.  

The first investigation is the effect of the trained surface by varying the initial parameters. Parameters 

βij = 0.25, θj = 300 and φk = 1 were considered to be acceptable settings, they were fixed in our 

investigation in order to improve the training efficiency. Parameters ωij and ηjk were varied between the 

following ranges and increments, 

ωij = 0.10 to 0.50, step 0.05 

ηjk = 0.1 to 0.9, step 0.1 

Table 4 shows the processed results of I_J_K using three different sets of initialization parameters. It 

can be seen that the second set of parameters yields the least MSE of 4.2 among the three, and the 4 m or 

better accuracy has been increased from 31.0% to 91.4%. Further compare the set 2 results with the point 

matching results, it can be seen in Table 5 that the overall success rate (4 m or better) of the neural 

network method is better than the point matching method. 
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Table 4. Results of varied initialization parameters for the 3-AP I_J_K combination. 

Initialization 

Parameters 
0–1 m 1.1–2 m 2.1–3 m 3.1–4 m >4 m 0–4 m 

Mean Square 

Error 

Total No. 

of Points 

Set 1 8.6% 19.8% 26.7% 20.7% 24.1% 75.9% 7.9 116 

Set 2 12.9% 34.5% 37.1% 6.9% 8.6% 91.4% 4.2 116 

Set 3 2.6% 8.6% 7.8% 12.1% 69.0% 31.0% 22.7 116 

Set 1: βil = 0.25, ωij = 0.1, ηjk = 0.9, θj = 300, φk = 1;  

Set 2 : βil = 0.25, ωij = 0.5, ηjk = 0.1, θj = 300, φk = 1;  

Set 3 : βil = 0.25, ωij = 0.5, ηjk = 0.9, θj = 300, φk = 1.
 

Table 5. Comparison of the neural network and the point matching method using the lowest 

MSE of the I_J_K combination. 

Accuracy Point Matching Neural Network 

0–2 m 60.4% 44.8% 

2.1–4 m 26.7% 46.5% 

0–4 m 87.1% 91.3% 

The second investigation is the variation of the input order of the signal strength from the three APs 

with a set of fixed parameter setting. A typical set of results is shown in Table 6. It can be seen that the 

variation of the APs’ input order would significantly change the MSE as well as the accuracy 

achievement. (Observe that the two input order sequences in the middle rows of the table reduce the 

mean square error by approximately 20%, while increase the proportion of 0–4 m accuracy by at least 

4.5% relative to the remaining four settings).  

Table 6. Results of different order of three APs used for neural network training. 

Sequence of 

Combination 
0–1 m 1.1–2 m 2.1–3 m 3.1–4 m >4 m 0–4 m 

Mean Square 

Error 

I_J_K 8.5% 19.1% 24.0% 18.1% 30.4% 69.6% 8.7 

I_K_J 8.1% 20.2% 24.4% 17.1% 30.2% 69.8% 8.2 

J_I_K 11.4% 24.6% 26.6% 15.8% 21.6% 78.4% 6.4 

J_K_I 11.3% 24.7% 25.8% 16.7% 21.4% 78.6% 6.4 

K_I_J 9.0% 20.9% 24.6% 19.2% 26.3% 73.7% 8.1 

K_J_I 9.9% 22.0% 24.6% 17.4% 26.1% 73.9% 7.8 

The above tests and comparison studies have confirmed the effectiveness of our proposed algorithm. 

Based on our experience, the 3-step heuristic optimization method can be effectively implemented by 

varying parameters ωij (0.1 to 0.5) and ηjk (0.1 to 0.9), and changing the input order of the AP 

combination to obtain the best trained surface.  

4. Conclusions 

From our investigations, Wi-Fi positioning can generally achieve 1 to 4 m of accuracy in an arbitrary 

Wi-Fi network area using the neural network approach. However, the training process and parameter 

selection of the neural network is the key for achieving the highest possible accuracy of Wi-Fi positioning 

results. Our experimental results show that the proposed neural network improves the accuracy of 
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positioning significantly by improving the nonlinear, highly complex Wi-Fi signal propagation patterns. 

To avoid being trapped in a local minimum, training should be permitted to retry with different initial 

parameter settings and different order of AP data inputs, so that the best set of parameters (i.e., the one that 

gives the lowest objective value) can be found. This will improve the overall accuracy. We have shown 

that there is a negative relationship between the mean square error value attained in our training process 

and the percentage of accuracy in our positioning. This means that based on the plot in Figure 6, one can 

repeat the training process as described above in order to achieve the highest possible accuracy.  

The following summarizes the advantages of our proposed algorithm: 

1. This algorithm is based on the Wi-Fi fingerprinting approach that, Wi-Fi AP’s coordinates are 

not required in the position determination process. It is suitable for establishing a Wi-Fi based 

positioning system in areas such as inside shopping malls where APs’ positions are difficult or 

not possible to be precisely determined.  

2. This approach is entirely general and flexible. Whenever there are some changes in the existing 

Wi-Fi network (e.g., some addition, or deletion or reposition of access points), all we have to 

do is to retrain our neural network properly. 

3. There is no limit to how close our neural network approximation is to the actual radio data 

pattern (or hyper-surface), as long as we have sufficiently large number of neurons in the 

hidden layer of our simple three layer feed-forward neural network. However, it should be 

noted that, a too large number of neurons in the middle layer may render the learning process 

less tractable and higher truncation error. This is because the more complex structure of the 

function to be minimized may offset some of its improved accuracy. 

4. Since the percentage of better than four meter accuracy is found graphically to be inversely 

proportional to the mean square error in our training process, one can improve it to any desirable 

proportion by further minimizing. It has been illustrated that one can get closer to the actual 

minimum square error by retraining the neural network with different initial parameter settings, 

our optimization algorithm is simple and effective, and can be further improved or replaced by 

another even more powerful one with basically no change in our model structure. 

In our investigation, only the minimum norm point matching method is compared with our 

proposed algorithm. As addressed in the Introduction section, many other effective Wi-Fi positioning 

algorithms have been proposed recently. It would be worthwhile to further investigate the strengths of 

each approach under different geometrical, access point availability and distribution, and influence 

conditions, for developing a reliable ubiquitous positioning system with the best achievable accuracy, 

to also support Global Satellite Navigation Systems (GNSS) in case satellite positioning fails in highly 

obstructed outdoor environments.  
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