
Citation: Li, J.; Song, W.; Chen, J.; Wei,

Q.; Wang, J. Study on Spatio-Temporal

Indexing Model of Geohazard

Monitoring Data Based on Data

Stream Clustering Algorithm. ISPRS

Int. J. Geo-Inf. 2024, 13, 93. https://

doi.org/10.3390/ijgi13030093

Academic Editor: Wolfgang Kainz

Received: 13 December 2023

Revised: 2 February 2024

Accepted: 12 March 2024

Published: 15 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Study on Spatio-Temporal Indexing Model of Geohazard
Monitoring Data Based on Data Stream Clustering Algorithm
Jiahao Li, Weiwei Song *, Jianglong Chen, Qunlan Wei and Jinxia Wang

Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China;
gahaoli@stu.kust.edu.cn (J.L.); 20222201082@kust.edu.cn (J.C.); weiqunlan@kust.edu.cn (Q.W.);
18708780866@kust.edu.cn (J.W.)
* Correspondence: weiweisong@kust.edu.cn

Abstract: Yunnan Province, residing in the eastern segment of the Qinghai–Tibet Plateau and the
western part of the Yunnan–Guizhou Plateau, faces significant challenges due to its intricate geo-
logical structures and frequent geohazards. These pose monumental risks to community safety and
infrastructure. Unfortunately, conventional spatial indexing methods struggle with the enormous
influx of geohazard data, exhibiting inadequacies in efficient spatio-temporal querying and failing to
meet the swift response imperatives for real-time geohazard monitoring and early warning mecha-
nisms. In response to these challenges, this study proffers a cutting-edge spatio-temporal indexing
model, the BCHR-index, undergirded by data stream clustering algorithms. The operational schema
of the BCHR-index model is bifurcated into two stages: real-time and offline. The real-time phase pro-
ficiently uses micro-clusters shaped by the CluStream algorithm in unison with a B+ tree to construct
indices in memory, thereby satisfying the exigent response necessities for geohazard data streams.
Conversely, the offline stage employs the CluStream algorithm and the Hilbert curve to manage
heterogeneously distributed spatial objects. Paired with a B+ tree, this framework promotes efficient
spatio-temporal querying of geohazard data. The empirical results indicate that the indexing model
implemented in this study affords millisecond-level responses when faced with query requests from
real-time geohazard data streams. Moreover, in aspects of spatial query efficiency and data-insertion
performance, it demonstrates superior results compared to the R-tree and Hilbert-R tree models.

Keywords: BCHR tree; CluStream; B+ tree; Hilbert curve; Hilbert-R tree; HBase

1. Introduction

Yunnan Province, with its complex geological and topographical diversity, is notably
prone to geologic hazards such as landslides, mudslides, and avalanches. These recurrent
geohazards pose significant threats to human safety, social stability, and sustainable eco-
nomic progress. As of 2020, the province had recorded 23,267 geohazards, posing risks to
approximately 3,780,400 people, and causing an estimated CNY 79.673 billion in property
damage. Particularly during the “14th Five-Year Plan” period, accelerated urbanization
and infrastructure development have magnified the impact of anthropogenic activities
on the geological environment. Moreover, climate anomalies and frequent earthquakes
compound the prevailing problem of geohazards [1]. The effective monitoring, analy-
sis, and prevention of geologic disasters necessitate an efficient spatio-temporal index.
Such an index is not only crucial for real-time monitoring and early warning of geologic
disasters—allowing for a quick analysis, understanding of geological event evolution, and
implementation of necessary emergency measures to protect lives and property—but also
aids in effectively managing and querying data on geological phenomena, changes, and
trends, thereby offering valuable support for decision-making processes.

Spatial indexes (e.g., quadtrees [2], KD-tree [3], R-tree [4], grid indexes [5], etc.) are the
key to realizing efficient retrieval and storage of spatial data [6–8]. In recent years, a large

ISPRS Int. J. Geo-Inf. 2024, 13, 93. https://doi.org/10.3390/ijgi13030093 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13030093
https://doi.org/10.3390/ijgi13030093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi13030093
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13030093?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2024, 13, 93 2 of 17

number of spatial indexing techniques and methods have been proposed by domestic and
foreign scholars and related researchers, with a wealth of spatial indexing techniques and
methodologies emerging in recent times. Although a myriad of indexing techniques exist,
the predominant dynamic spatial indexing structure in current use is the R-tree, as originally
proposed by Guttman, along with its numerous variants [9–16]. These include the VoR-tree,
as proposed by Mehdi Sharifzadeh, which effectively amalgamates Voronoi diagrams into
the R-tree to enable efficient nearest-neighbor querying. Also worth mentioning is the
LAZY R-tree, suggested by Y. Yang, which enhances the R-tree construction process with
a delayed splitting method to bolster indexing efficiency. Poonam Goyal contributed to
the Grid-R-tree, a merging of the R-tree with the grid, designed explicitly to cater to the
querying requirements of diverse data mining algorithms, etc.

The R-tree is a variant of the B-tree-based indexing structure with a fully dynamic
indexing structure. However, since the R-tree is composed based on MBR (Minimum
Bounding Rectangle), the spatial objects in the index as well as the nodes at each level
are represented by it, which can easily lead to rectangle overlapping, thus triggering a
multiplex query situation during querying [17]; not only that, the space utilization of the
R-tree’s leaf nodes is also low, and the space within the nodes cannot be fully utilized [18].
For this reason, Kamel et al. [19] proposed the Hilbert-R tree, which utilizes the Hilbert
curve to encode and arrange spatial objects to obtain the MBR, which reduces the overlap
rate and improves the querying efficiency of the spatial data, but the shortcoming is that
the performance is low when the spatial data distribution is not uniform.

Addressing the inherent limitations of R-tree’s ability to handle unequally distributed
data, various scholars have begun to explore the amalgamation of tree-based spatial in-
dexing techniques with clustering methodologies. Among them, Liu et al. [20] proposed
a K-means algorithm-based technique for generating a static R-tree. By leveraging the
characteristics of clustering, they managed to enhance the data similarity within nodes and
reduce the similarity between nodes, thus diminishing the overlap of Minimum Bounding
Rectangles (MBRs). Wang et al. [21] proposed the construction of an R-tree based on the
K-medoids algorithm, which compensates for the K-means algorithm’s susceptibility to
spatial data noise points and promotes data compactness. Jiang et al. [22], on the other
hand, proposed a Gaussian Mixture Model (GMM) clustering-algorithm-based Hilbert-R
tree structure. By using GMM to preprocess the spatial data, they achieved high intra-
cluster data similarity and low inter-cluster similarity, ensuring that neighboring data
points resided in the same leaf node while reducing the MBR overlap rate. To address
the challenge of handling voluminous geological data, Yu-Hang Zhang [23] innovatively
integrated the deep clustering algorithm into the construction of a Hilbert-R tree, creating
an efficient data indexing structure. Huan Cheng [24], on the other hand, endeavored to
expedite the storage of unevenly distributed data and the construction of rapid indexing for
substantial data. To achieve this, he enhanced the K-means clustering algorithm, producing
the CUK, and coupled it with the stacked long short-term memory (LSTM) model, thereby
optimizing the utility of the Hilbert-R tree.

Geohazard monitoring typically deals with spatial data that are unevenly distributed.
While the Hilbert-R tree, constructed through the integration of clustering algorithms,
does offer expedited indexing of these data, it grapples with numerous challenges within
real-time monitoring and early warning applications. Key among these is the dynamic
nature of geohazard data, which necessitates real-time updating. While the Hilbert-R tree is
well equipped to handle static data, it offers limited capabilities in managing the real-time
updating of significant data. Furthermore, its indexing ability is largely confined to the
spatial dimension, rendering it unable to satisfy the multidimensional query requirement,
particularly the temporal dimension. Moreover, due to the sheer volume of data associ-
ated with geohazard monitoring, there arises a need for efficient processing and storage
capabilities for large-scale data. Taking these problems into consideration, we propose
an improved scheme in this paper based on the stream clustering algorithm CluStream’s
spatio-temporal indexing model BCHR-index, which has the following contributions:

ISPRS Int. J. Geo-Inf. 2024, 13, 93 3 of 17

(1) Confronting the limitation of traditional spatial indexing, which excludes the temporal
dimension, we utilize the joint B+ tree to index the temporal dimension, thereby
facilitating multidimensional spatio-temporal queries;

(2) We capitalize on the micro-clusters generated by the CluStream algorithm in our
stream processing stage. In combination with the B+ tree, we construct in-memory
indexes to satisfy the necessities of real-time geohazard data stream monitoring and
enable a rapid response during the warning process;

(3) We leverage the Hilbert-R tree enhanced with the CluStream data stream clustering al-
gorithm to preprocess multidimensional spatial data. This strategy serves to minimize
the areas of node MBRs and reduce their similarities, thus avoiding excessive overlap
between MBRs and unnecessary multi-path retrieval during querying processes;

(4) Employing the open-source columnar database, HBase, within the Hadoop big data
processing framework, we achieve efficient storage of geohazard data.

The remainder of the paper is structured as follows: Section 2 introduces the overall
model architecture and the structure of the BCHR tree. Section 3 explains the imple-
mentation of the Hilbert-R tree, based on the CluStream clustering algorithm and the
multidimensional range query algorithm. In Section 4, we conduct relevant experiments
on the model. Section 5 concludes the study, discussing the limitations and suggesting new
directions for future work.

2. Model Overview

Figure 1 shows in detail the model architecture realized in this paper, i.e., the BCHR-
index, which contains three main parts: the client, index layer, and storage layer. The client
is mainly responsible for initiating requests and accepting responses; not directly involved
in data storage and processing, it is responsible for continuously outputting real-time
streaming data and sending query requests to the index layer, and the real-time streaming
data will be sent to the index layer and the storage layer for processing, respectively, and
before the data transmission, the client will also transform the time information of the data
into Unix timestamps, and at the same time, the spatial coordinates will be transformed
into a Hilbert code to facilitate the subsequent construction of the index.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 4 of 18

Figure 1. System architecture. (The Index Layer is shown in Figure 6).

Concurrently, the storage layer shoulders the responsibility of accommodating

voluminous geohazard data utilizing the HBase database. We opt to store historical

geohazard data in the underlying HDFS while sourcing high-incidence geohazard point

data into the Block Cache. For the consistent influx of real-time streaming data from the

client, the Client-side Caching function of HBase is employed to steer and inscribe the

data into memory, culminating in data batch writing into HBase at fixed intervals. This

methodology enhances the response speed for incoming real-time geohazard streaming

data and optimizes data writing efficiency, all while diminishing the frequency of index

updates. HDFS ensures that multiple copies of a single datum are dispersed across

different nodes. This ensures swift data recovery through copies from other nodes even if

one node fails, and this ensures business continuity and the preservation of geohazard

data integrity. Meanwhile, with the growth of data volume, there is no need to make

significant changes to the existing application architecture, just adding more server nodes

to the HBase cluster to expand the system’s storage capacity and processing capacity,

which can effectively deal with a large number of geohazard monitoring data storage and

access requirements, as well as read and write operations.

The indexing layer, the BCHR tree, is mainly responsible for the corresponding query

operation in the face of the request sent by the client, and its work is separate from HBase,

including indexing of the current data, as well as indexing of historical data in two parts.

Figure 2 shows the principle and framework of the indexing layer. Four of the sub-

structures play different roles, described as follows:

(1) The Hilbert-R tree serves as the principal component for facilitating spatio-temporal

queries, executing spatial dimension queries based on the spatial coordinates of the

objects under consideration.

(2) The CluStream algorithm processes spatial objects in the leaf nodes of a Hilbert-R

tree. This technique streamlines the clustering of spatial datasets and minimizes node

overlap, as well as dead space.

(3) The B+ tree is employed for indexing the time dimension of the BCHR tree, enabling

the filtering of temporal information during spatio-temporal queries.

(4) The Rowkey of HBase is designed for data querying, and is a composite of the Hilbert

code and Unix timestamp in this study. Utilizing the query results from both the B+

tree and the Hilbert-R tree, the Rowkey can directly pinpoint the location of data in

HBase and identify the data needed to meet the query parameters.

Figure 1. System architecture. (The Index Layer is shown in Figure 6).

ISPRS Int. J. Geo-Inf. 2024, 13, 93 4 of 17

Concurrently, the storage layer shoulders the responsibility of accommodating volu-
minous geohazard data utilizing the HBase database. We opt to store historical geohazard
data in the underlying HDFS while sourcing high-incidence geohazard point data into the
Block Cache. For the consistent influx of real-time streaming data from the client, the Client-
side Caching function of HBase is employed to steer and inscribe the data into memory,
culminating in data batch writing into HBase at fixed intervals. This methodology enhances
the response speed for incoming real-time geohazard streaming data and optimizes data
writing efficiency, all while diminishing the frequency of index updates. HDFS ensures that
multiple copies of a single datum are dispersed across different nodes. This ensures swift
data recovery through copies from other nodes even if one node fails, and this ensures
business continuity and the preservation of geohazard data integrity. Meanwhile, with
the growth of data volume, there is no need to make significant changes to the existing
application architecture, just adding more server nodes to the HBase cluster to expand the
system’s storage capacity and processing capacity, which can effectively deal with a large
number of geohazard monitoring data storage and access requirements, as well as read
and write operations.

The indexing layer, the BCHR tree, is mainly responsible for the corresponding query
operation in the face of the request sent by the client, and its work is separate from HBase,
including indexing of the current data, as well as indexing of historical data in two parts.
Figure 2 shows the principle and framework of the indexing layer. Four of the sub-structures
play different roles, described as follows:

(1) The Hilbert-R tree serves as the principal component for facilitating spatio-temporal
queries, executing spatial dimension queries based on the spatial coordinates of the
objects under consideration.

(2) The CluStream algorithm processes spatial objects in the leaf nodes of a Hilbert-R
tree. This technique streamlines the clustering of spatial datasets and minimizes node
overlap, as well as dead space.

(3) The B+ tree is employed for indexing the time dimension of the BCHR tree, enabling
the filtering of temporal information during spatio-temporal queries.

(4) The Rowkey of HBase is designed for data querying, and is a composite of the Hilbert
code and Unix timestamp in this study. Utilizing the query results from both the B+
tree and the Hilbert-R tree, the Rowkey can directly pinpoint the location of data in
HBase and identify the data needed to meet the query parameters.

In dealing with geohazard data, it is demonstrated that the traditional R-tree is ill
equipped to support multidimensional spatio-temporal queries or respond expediently to
real-time geohazard monitoring data. To address this, this paper defines a time threshold,
T1. If the timestamp of incoming data is less than T1, the data are committed to memory
and regarded as ‘current data’; conversely, when the timestamp surpasses T1, the data are
written to HBase and branded as ‘historical data’. For instantaneous data, the indexing
layer retrieves data cached in memory, whereas, for historical data, it queries the data
stored in HBase. This strategy notably mitigates the maintenance overhead of the Hilbert-R
tree. As elucidated in Figure 3, during query processing, the temporal dimension is first
filtered using a B+ tree, effectively narrowing down the query range to determine the
data region. Thereafter, onward queries on the spatial dimension are conducted via the
Hilbert-R tree. The final querying results are a composite of the B+ tree and Hilbert-R tree
queries, yielding the Rowkey of the prospective spatial object, revealing its information
stored in HBase.

ISPRS Int. J. Geo-Inf. 2024, 13, 93 5 of 17ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 5 of 18

Figure 2. The framework of BCHR tree.

In dealing with geohazard data, it is demonstrated that the traditional R-tree is ill

equipped to support multidimensional spatio-temporal queries or respond expediently to

real-time geohazard monitoring data. To address this, this paper defines a time threshold,

T1. If the timestamp of incoming data is less than T1, the data are committed to memory

and regarded as ‘current data’; conversely, when the timestamp surpasses T1, the data are

written to HBase and branded as ‘historical data’. For instantaneous data, the indexing

layer retrieves data cached in memory, whereas, for historical data, it queries the data

stored in HBase. This strategy notably mitigates the maintenance overhead of the Hilbert-

R tree. As elucidated in Figure 3, during query processing, the temporal dimension is first

filtered using a B+ tree, effectively narrowing down the query range to determine the data

region. Thereafter, onward queries on the spatial dimension are conducted via the Hilbert-

R tree. The final querying results are a composite of the B+ tree and Hilbert-R tree queries,

yielding the Rowkey of the prospective spatial object, revealing its information stored in

HBase.

Figure 2. The framework of BCHR tree.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 6 of 18

Figure 3. Spatial–temporal query.

3. Indexing Implementation Details

3.1. B+ Tree

Geohazard data processing frequently necessitates time-range queries. Unix

timestamps, characterized as monotonically increasing integers, possess properties that

perfectly complement the sorting functionality of B+ trees, facilitating an effective pairing

for chronological data sorting and retrieval. Furthermore, Unix timestamps enable

uncomplicated numerical comparisons for time-range queries. For the purposes of this

study, we employ Unix timestamps as keys and spatial coordinates as values to construct

B+ trees. The analysis utilizes 32-bit Unix timestamps, delivering millisecond-level

precision. Recognizing that several geohazard events could transpire concurrently, we

engineer the B+ tree as a multivariate index, wherein a single Unix timestamp can be

associated with multiple spatial coordinates. This approach simplifies queries for specific

temporal information. We independently construct B+ trees to index real-time data for the

T0 to T1 phase. Upon storage of data into HBase, B+ trees within historic data undergo

updates.

3.2. Hilbert-R Tree

3.2.1. CluStream Algorithm

The CluStream algorithm, a stream clustering algorithm, was devised by Aggarwal

et al. [25] and is renowned for its ability to process real-time data efficiently. It stands as

one of the most popular baseline stream clustering algorithms [26]. The algorithm

employs a two-tier processing framework, dividing the data clustering process into two

stages: online micro-clustering and offline macro-clustering. The online micro-clustering

stage focuses on real-time clustering of the latest data stream, while the offline macro-

clustering phase implements a comprehensive clustering analysis on the complete dataset.

Figure 4. illustrates the processing model of the CluStream algorithm:

Figure 3. Spatial–temporal query.

3. Indexing Implementation Details
3.1. B+ Tree

Geohazard data processing frequently necessitates time-range queries. Unix times-
tamps, characterized as monotonically increasing integers, possess properties that perfectly
complement the sorting functionality of B+ trees, facilitating an effective pairing for chrono-
logical data sorting and retrieval. Furthermore, Unix timestamps enable uncomplicated
numerical comparisons for time-range queries. For the purposes of this study, we employ
Unix timestamps as keys and spatial coordinates as values to construct B+ trees. The anal-

ISPRS Int. J. Geo-Inf. 2024, 13, 93 6 of 17

ysis utilizes 32-bit Unix timestamps, delivering millisecond-level precision. Recognizing
that several geohazard events could transpire concurrently, we engineer the B+ tree as
a multivariate index, wherein a single Unix timestamp can be associated with multiple
spatial coordinates. This approach simplifies queries for specific temporal information.
We independently construct B+ trees to index real-time data for the T0 to T1 phase. Upon
storage of data into HBase, B+ trees within historic data undergo updates.

3.2. Hilbert-R Tree
3.2.1. CluStream Algorithm

The CluStream algorithm, a stream clustering algorithm, was devised by Aggarwal
et al. [25] and is renowned for its ability to process real-time data efficiently. It stands as
one of the most popular baseline stream clustering algorithms [26]. The algorithm employs
a two-tier processing framework, dividing the data clustering process into two stages:
online micro-clustering and offline macro-clustering. The online micro-clustering stage
focuses on real-time clustering of the latest data stream, while the offline macro-clustering
phase implements a comprehensive clustering analysis on the complete dataset. Figure 4.
illustrates the processing model of the CluStream algorithm:

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 7 of 18

Figure 4. CluStream dual–layer processing model.

Online micro-clustering phase: the model first processes the selected data objects in

the data stream by the k-means algorithm to generate k-initialized micro-clusters, then

performs real-time clustering processing on the data stream, calculates the Euclidean

distance between Xi and the center of each micro-cluster, finds the nearest micro-cluster

Mq, and calculates the distance between Xi and the center boundary value of the micro-

cluster Mq, and if it is within the boundary range, it will add Xi to the micro-cluster Mq.

If not, a new micro-cluster is created with Xi as the center, the two closest micro-clusters

are merged into one micro-cluster, and the old micro-clusters that have not been joined

by new data points in the recent period are deleted.

Offline macro-clustering phase: the offline macro-clustering phase performs the final

clustering of micro-clusters by the k-means algorithm based on the user input parameter

t (query time) and the number of clusters K. The CluStream algorithm proposes clustering

feature vectors based on the concept of a clustering feature tree, where n data points Xi1,

..., Xin forms a micro-cluster, the dimension of each data point is d, and the respective

timestamps of the data points are Ti1, ..., Tin. Each micro-cluster is described by a

clustering feature vector (CF), defined as a 2 × d + 3 tuple with CF = (CF2X̅̅ ̅̅ ̅̅ ̅, CF1X̅̅ ̅̅ ̅̅ ̅, CF2t,

CF1t, n), where CF2X̅̅ ̅̅ ̅̅ ̅ denotes the sum of squares of each data dimension within the

cluster and CF1X̅̅ ̅̅ ̅̅ ̅ denotes the sum of the data of each dimension within the cluster, CF2t

denotes the sum of the squares of the times of the data within each cluster, CF1t denotes

the sum of the times of the data within each cluster, and n denotes the number of data

points within the micro-cluster.

3.2.2. Hilbert-R Tree Optimized Based on the CluStream Algorithm

The Hilbert curve, a space-filling trajectory known for its exceptional locality

preservation and dimension reduction properties, is used by the Hilbert-R tree to

transform multidimensional data onto a two-dimensional plane [27]. By organizing

Hilbert codes in a sequential manner, the Hilbert-R tree generates an R-tree, which in

comparison to a traditional R-tree, reduces rectangle overlap, elevates indexing efficiency,

and exudes distinct clustering characteristics [28]. Despite these advantages, the

Figure 4. CluStream dual–layer processing model.

Online micro-clustering phase: the model first processes the selected data objects in
the data stream by the k-means algorithm to generate k-initialized micro-clusters, then
performs real-time clustering processing on the data stream, calculates the Euclidean
distance between Xi and the center of each micro-cluster, finds the nearest micro-cluster Mq,
and calculates the distance between Xi and the center boundary value of the micro-cluster
Mq, and if it is within the boundary range, it will add Xi to the micro-cluster Mq. If not, a
new micro-cluster is created with Xi as the center, the two closest micro-clusters are merged
into one micro-cluster, and the old micro-clusters that have not been joined by new data
points in the recent period are deleted.

Offline macro-clustering phase: the offline macro-clustering phase performs the final
clustering of micro-clusters by the k-means algorithm based on the user input parameter t
(query time) and the number of clusters K. The CluStream algorithm proposes clustering
feature vectors based on the concept of a clustering feature tree, where n data points

ISPRS Int. J. Geo-Inf. 2024, 13, 93 7 of 17

Xi1,. . ., Xin forms a micro-cluster, the dimension of each data point is d, and the respective
timestamps of the data points are Ti1,. . ., Tin. Each micro-cluster is described by a clustering
feature vector (CF), defined as a 2 × d + 3 tuple with CF = (CF2X, CF1X, CF2t, CF1t, n),
where CF2X denotes the sum of squares of each data dimension within the cluster and
CF1X denotes the sum of the data of each dimension within the cluster, CF2t denotes the
sum of the squares of the times of the data within each cluster, CF1t denotes the sum of the
times of the data within each cluster, and n denotes the number of data points within the
micro-cluster.

3.2.2. Hilbert-R Tree Optimized Based on the CluStream Algorithm

The Hilbert curve, a space-filling trajectory known for its exceptional locality preser-
vation and dimension reduction properties, is used by the Hilbert-R tree to transform
multidimensional data onto a two-dimensional plane [27]. By organizing Hilbert codes
in a sequential manner, the Hilbert-R tree generates an R-tree, which in comparison to
a traditional R-tree, reduces rectangle overlap, elevates indexing efficiency, and exudes
distinct clustering characteristics [28]. Despite these advantages, the traditional Hilbert-R
tree encounters challenges when dealing with unevenly distributed data within large leaf
nodes, often leading to substantial overlaps and dead space.

To address the aforementioned challenges, this paper integrates the CluStream clus-
tering algorithm into the Hilbert-R tree spatial indexing algorithm. This fusion permits
a judicious organization of the spatial object clustering results and optimizes the node
structure of the Hilbert-R tree [29,30]. As depicted in Figure 5, the improvements brought
about by the CluStream clustering algorithm optimize spatial data division, reduce overlap
and dead space, and place spatially proximate objects into neighboring leaf nodes, reducing
the area of leaf and intermediate nodes and thereby enhancing space utilization.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 18

traditional Hilbert-R tree encounters challenges when dealing with unevenly distributed

data within large leaf nodes, often leading to substantial overlaps and dead space.

To address the aforementioned challenges, this paper integrates the CluStream

clustering algorithm into the Hilbert-R tree spatial indexing algorithm. This fusion

permits a judicious organization of the spatial object clustering results and optimizes the

node structure of the Hilbert-R tree [29,30]. As depicted in Figure 5, the improvements

brought about by the CluStream clustering algorithm optimize spatial data division,

reduce overlap and dead space, and place spatially proximate objects into neighboring

leaf nodes, reducing the area of leaf and intermediate nodes and thereby enhancing space

utilization.

(a) (b)

Figure 5. Partitioning of Hilbert-R tree leaf nodes using CluStream algorithm; (a) before using

CluStream algorithm and (b) after using CluStream algorithm.

The dual-phase (online–offline) clustering processing framework of the CluStream

algorithm is uniquely suited to handle the real-time stream of geohazard data [31].

Continuous geohazard stream data, generated in the time period from T0 to T1, align with

the online micro-clustering phase of the CluStream algorithm. This phase equates to the

time window stage of the CluStream clustering algorithm, during which the leaf nodes of

the Hilbert-R tree are composed of processed micro-clusters. Conversely, data generated

within the T1 to Tn time period correspond to the offline macro-clustering phase of the

CluStream algorithm, during which the leaf nodes of the Hilbert-R tree comprise macro-

clustered data. Such a design ensures a swift response to real-time geohazard data

streams. Combined with the B+ tree mentioned earlier, the structure of a complete BCHR

tree is illustrated in Figure 6:

Figure 5. Partitioning of Hilbert-R tree leaf nodes using CluStream algorithm; (a) before using
CluStream algorithm and (b) after using CluStream algorithm.

The dual-phase (online–offline) clustering processing framework of the CluStream algo-
rithm is uniquely suited to handle the real-time stream of geohazard data [31]. Continuous
geohazard stream data, generated in the time period from T0 to T1, align with the online
micro-clustering phase of the CluStream algorithm. This phase equates to the time window
stage of the CluStream clustering algorithm, during which the leaf nodes of the Hilbert-R
tree are composed of processed micro-clusters. Conversely, data generated within the T1 to
Tn time period correspond to the offline macro-clustering phase of the CluStream algorithm,

ISPRS Int. J. Geo-Inf. 2024, 13, 93 8 of 17

during which the leaf nodes of the Hilbert-R tree comprise macro-clustered data. Such a
design ensures a swift response to real-time geohazard data streams. Combined with the B+
tree mentioned earlier, the structure of a complete BCHR tree is illustrated in Figure 6.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 9 of 18

Figure 6. BCHR tree.

Compared with the traditional spatio-temporal index, the BCHR tree adopts a two-

layer processing framework, which is designed to consider the characteristics of a large

volume, uneven spatial distribution, and real-time updating of geohazard monitoring

data, and is constructed by combining the B+ tree and the Hilbert-R tree based on the

CluStream algorithm, which has a strong ability to process large-scale geospatial data in

real time. During a spatio-temporal query, the B+ tree is employed to index the temporal

dimension—essentially filtrating the time data. With the advantage of sequential access

characteristics, it swiftly pinpoints the precise time phase of the query subject before

proceeding with the corresponding spatial query. When the query is confined to the

spatial dimension solely, there is no requirement for the application of the B+ tree for

temporal dimension filtration, thereby further boosting the query efficiency. This

conflation can be suitably tailored to match diverse business stipulations.

During the two stages of the query process, the BCHR tree utilizes the CluStream

algorithm in the real-time phase to build indices in the memory based on the micro-

clusters generated in the online stage, effectively reducing both the time required for the

data query and process, and the system’s storage demand. Given the relatively small data

volume of real-time streaming data in the real-time processing stage and the rapid index

creation speed, the BCHR tree is noted for greatly enhancing the efficiency of real-time

monitoring of geological hazards, illustrating its robust real-time performance. In the

offline stage, a substantial quantity of geohazard monitoring data is stored in HBase,

which can be directly accessed through the BCHR tree query results, bypassing the need

for additional time expenditure. This proposes an efficient storage mechanism for large-

scale geohazard monitoring data and facilitates prompt retrieval and real-time updating

capabilities.

In the realm of spatial data handling, the BCHR tree employs the CluStream

algorithm and Hilbert curve for spatial object treatment, clustering geographically

proximate data within a specific time range. The data are symbolized by the cluster

centers, acting as the index tree nodes, thereby optimizing the query efficiency. This

approach safeguards the continuity and integrity of the spatial distribution of geological

hazards, elevating the spatial query efficiency during geological hazard monitoring.

Figure 6. BCHR tree.

Compared with the traditional spatio-temporal index, the BCHR tree adopts a
two-layer processing framework, which is designed to consider the characteristics of a
large volume, uneven spatial distribution, and real-time updating of geohazard monitor-
ing data, and is constructed by combining the B+ tree and the Hilbert-R tree based on the
CluStream algorithm, which has a strong ability to process large-scale geospatial data in
real time. During a spatio-temporal query, the B+ tree is employed to index the temporal
dimension—essentially filtrating the time data. With the advantage of sequential access
characteristics, it swiftly pinpoints the precise time phase of the query subject before pro-
ceeding with the corresponding spatial query. When the query is confined to the spatial
dimension solely, there is no requirement for the application of the B+ tree for temporal
dimension filtration, thereby further boosting the query efficiency. This conflation can
be suitably tailored to match diverse business stipulations.

During the two stages of the query process, the BCHR tree utilizes the CluStream
algorithm in the real-time phase to build indices in the memory based on the micro-
clusters generated in the online stage, effectively reducing both the time required for the
data query and process, and the system’s storage demand. Given the relatively small
data volume of real-time streaming data in the real-time processing stage and the rapid
index creation speed, the BCHR tree is noted for greatly enhancing the efficiency of
real-time monitoring of geological hazards, illustrating its robust real-time performance.
In the offline stage, a substantial quantity of geohazard monitoring data is stored in
HBase, which can be directly accessed through the BCHR tree query results, bypassing
the need for additional time expenditure. This proposes an efficient storage mechanism
for large-scale geohazard monitoring data and facilitates prompt retrieval and real-time
updating capabilities.

In the realm of spatial data handling, the BCHR tree employs the CluStream algo-
rithm and Hilbert curve for spatial object treatment, clustering geographically proximate
data within a specific time range. The data are symbolized by the cluster centers, act-

ISPRS Int. J. Geo-Inf. 2024, 13, 93 9 of 17

ing as the index tree nodes, thereby optimizing the query efficiency. This approach
safeguards the continuity and integrity of the spatial distribution of geological hazards,
elevating the spatial query efficiency during geological hazard monitoring. When real-
time data mature into historical data, specifically when data from the T0 to T1 phase
evolve into data from the T1 to Tn phase, an update of the index tree ensues. There
exists no necessity for frequent amalgamation, deletion, and other operations pertaining
to BCHR tree nodes, which reduces computational burden and amplifies the system’s
efficiency in handling real-time data. These highly advantageous features of the BCHR
tree greatly streamline the process of geological hazard monitoring and provide innate
benefits for early warning systems.

3.2.3. Algorithm for Generating the BCHR Tree

The main part of the BCHR tree is the construction of the Hilbert-R tree in con-
junction with the CluStream algorithm. Algorithm 1 provides the methodology for the
generation of the BCHR tree. The algorithm requires four input parameters: the dataset
S, the time period T, the number of clusters K, and the maximum number of data objects
that each node can hold M. In the initial phase, an empty tree, T, is first created, and
then each object O in the dataset S is processed to find its Minimum Bounding Rectangle
(MBR) and compute its center. Next, the CluStream algorithm is applied to generate
K clusters based on these centers. Subsequently, using the MBR centers of the objects,
the Hilbert values for each time period (T0 to T1 for micro-clusters and T1 to Tn for
macro-clusters) were computed and the generated clusters were sorted in ascending
order of Hilbert values. In the sorted set of clusters, its Hilbert value is calculated for
each cluster center. If the number of spatial objects within cluster C does not exceed M,
a leaf node is created through all spatial objects in the cluster. Conversely, if it exceeds
M, all spatial objects are sorted according to their Hilbert values, and groups containing
M spatial objects are created (the last group may contain less than M objects). A leaf
node is then created for each object group. These leaf nodes are further sorted based on
their Hilbert values and subsequently inserted into the Hilbert-R tree. Ultimately, the
Hilbert-R tree is constructed from the bottom to top using these leaf nodes.

Algorithm 1: GenerateBCHRTree

Require: Dataset S, Time segmentation T, Number of clusters K, Maximum capacity of a node M
Ensure: Hilbert-R Tree
Initialize an empty tree T
for each object o in S do

Compute its MBR and the center of its MBR
Use CluStream algorithm to generate K clusters based on these centers
Calculate all objects’ Hilbert values from their MBR centers in time frames (T0 to T1 for

micro-clusters and T1 to Tn for macro clusters)
end for
for each cluster c in Clusters do

Calculate the Hilbert value of the cluster center
if number of space objects in c ≤M then
Create a leaf node by all space objects in

else
Sort all the space objects according to their Hilbert values in ascending order
Create groups containing M space objects (the last group may have objects < M)
Create a leaf node for each grouped space objects

end if
Sort the leaf nodes to be inserted into the Hilbert R-tree based on Hilbert values

end for
From bottom-up, construct the Hilbert R-tree using the sorted leaf nodes
return T

ISPRS Int. J. Geo-Inf. 2024, 13, 93 10 of 17

3.2.4. Spatio-Temporal Range Query Algorithm for BCHR Tree

Spatial range queries and spatio-temporal range queries are frequently utilized query-
ing methodologies. These methods play a pivotal role in facilitating quick responses to
geohazards and proficient management of geohazard activity. The following section will
introduce these two query algorithms in detail:

(1) Spatial scope query

Algorithm 2 delineates the processing steps of the spatial extent query algorithm
within the BCHR tree. The primary objective is to pinpoint rectangles that intersect in a
delineated bounding box. The algorithm proceeds by iterating through each entry, denoted
as ‘e’, encompassed within the node ‘n’. For each ‘e’, the algorithm calculates the corre-
sponding Minimum Bounding Rectangle (MBR) and evaluates whether it intersects with
the bounding box ‘bb’. If ‘n’ is a leaf node, the algorithm incorporates the intersecting
rectangle into the output ‘results’. On the other hand, if ‘n’ is an internal node, the inter-
secting rectangle signifies a subtree. The algorithm continues the IntersectSearch process,
recursively over the ‘e.node’ and the bounding box ‘bb’, amalgamating any discovered
intersecting rectangles into ‘results’. Ultimately, the algorithm returns the result set ‘results’,
encompassing all intersecting rectangles found within the subtree of the node ‘n’ and
bounding box ‘bb’.

Algorithm 2: IntersectSearch

Result: results
Input: n (Node), bb (Bounding Box)
Output: results
results = {}; // An empty list to hold Rectangles found within ‘bb’.
for each entry e within the node n do

Get the Minimum Bounding Rectangle (MBR) for the entry e.
if bb intersects with the MBR of the entry e then

if n is a leaf node then
results = results ∪ e;

else
results = results ∪ IntersectSearch(e.node, bb);

end if
end if
end for
return results;

(2) Real-time temporal and spatial range queries

Traditional R-trees and their variants fall short of supporting real-time spatio-temporal
range queries. To overcome this limitation, we design a spatio-temporal indexing model
that merges the B+ tree and CluStream algorithm, thereby enabling enhancements in this
regard [32]. As elucidated in Algorithm 3, upon receiving a query request from a client,
the model initially retrieves the micro-clusters, all the data consolidated up to the current
time within a given time window, from the CluStream algorithm. Subsequently, the model
constructs B+ trees as well as the Hilbert-R tree based on the fetched micro-cluster files.
The B+ tree is employed to perform temporal range queries while the Hilbert-R tree is
utilized for spatial range queries. The separately retrieved results are then compared, and
the outcomes meeting both the temporal and spatial query conditions are returned.

ISPRS Int. J. Geo-Inf. 2024, 13, 93 11 of 17

Algorithm 3: RealTimeSpatialTemporalQuery

Result: finalResults
Input: bb (Bounding Box), t1, t2
Initialize microClusters← Read from CluStream algorithm
Initialize HilbertRT← Constructed by microClusters
Initialize BplusTree← Constructed by (time, microCluster) pairs from microClusters
Initialize timeResults← searchRange(BplusTree, t1, t)
Initialize spaceResults← searchIntersect(HilbertRT, bb)
Initialize finalResults← Ø
for eachresultintimeResults do
If result ∈ spaceResults then

finalResults← finalResults ∪ result
end

end
return finalResults

4. Experiments
4.1. Experimental Design

To evaluate the real-time query performance of the proposed spatio-temporal indexing
model, the BCHR tree, and its optimization impact on inhomogeneous data for the Hilbert-
R tree, we carried out a comparison study with BCHR tree, Hilbert-R tree, Elasticsearch,
and R-tree. The specific experimental environment is detailed in Table 1.

Table 1. Hardware Configurations and Software Environment of the Experimental Platform.

Category Configuration

Number of VM 3
Processor Intel Core (4 cores)

RAM 8 GB
Hard Drive 50 GB

Operation System Centos 7.5
Hadoop Version 3.1.3

Zookeeper Version 3.5.7
HBase Version 2.4.11

JDK Version 1.8.0_212
Elasticsearch Version 7.8.0

The experimental data used in this paper were generated by simulation based on the
current status of geologic hazards in Yunnan Province in the “14th Five-Year Plan for the Pre-
vention and Control of Geologic Hazards in Yunnan Province”. There are 23,267 geohazard
sites, including 17,450 landslides, 2237 avalanches, 3118 mudslides, 331 ground collapses,
21 ground subsidence sites, and 110 ground cracks (Reviewer 1 and question 4 (a) are
shown in Table 2.

Table 2. Description of the experimental dataset.

Disaster Time Timestamp X Coordinate Y Coordinate Disaster Type

1 January 2000 0:20 946657230 97295417 26758213 Landslide
15 February 2017 2:04 1487095493 98463226 24882692 Mudslide
25 February 2018 10:24 1519525491 103810338 22889044 Collapse

26 April 2019 10:13 1556244796 99869433 21967614 Land Subsidence
29 May 2022 13:43 1653803032 104122763 24934143 Earth Cracker

Each record of the data possesses five attributes, namely the Disaster Time, timestamp,
longitude, latitude, and disaster type. The Disaster Time spans from the year 2000 to 2023
with a precision of seconds. The Timestamp represents the corresponding Unix timestamp,
and during this period, it is assumed that multiple geological disasters can occur at any

ISPRS Int. J. Geo-Inf. 2024, 13, 93 12 of 17

given time. The longitude and latitude are simulated based on the geographical range of
Yunnan Province: the longitude ranges from 97◦31′ E to 106◦11′ E, and latitude ranges from
21◦8′ N to 29◦15′ N. These latitude and longitude data, after being converted to decimals,
have been multiplied by 1,000,000. Such a process is intended to translate floating-point
numbers into integers and attains meter-level precision in the simulated data. The disaster
type incorporates a landslide, collapse, debris flow, ground collapse, subsidence, and
ground fissure. Each disaster point is randomly assigned with one of the six disaster
types. The geohazard prone points and their surrounding geographic coordinates exhibit
a higher probability of geological disaster occurrence. The specific algorithm is shown in
Algorithm 4:

Algorithm 4: GenerateGeologicalDisasterData

Result: geodisaster_dataset
Input: Defined_hazards, total_num_of_disasters, timerange, coordinaterange, hazard_prone_locations
Initialize geodisaster dataset to empty list
for counter < total_num_of_disasters do

Randomly select a hazard from Defined_hazards
Generate random Disaster Time within timerange and convert to Unix Timestamp
Generate random Longitude and Latitude within coordinaterange
Convert Longitude and Latitude to decimal
Multiply by 1,000,000 to avoid floating point and ensure meter level accuracy
If current location is in hazard_prone_locations or its surrounding coordinates then

Increase the probability of this Disaster Type
end If
Add record (Disaster Type, Disaster Time, Timestamp, Longitude, Latitude) to geodisaster_dataset

Increment counter
end for
return geodisaster_dataset

When it comes to the determination of K in the CluStream clustering algorithm, in our
research, it has been decided that the number of clusters, K, should be set at 1% of the size
of the dataset. This decision stems from several considerations. First, by designating K as a
percentage of the dataset size, we can assure that the number of clusters scales appropriately
with the increase in the dataset size, thereby accommodating better to different scales of data.
Second, selecting 1% as the ratio provides a balance between the precision of clustering and
the efficiency of computation. Indeed, a larger K could yield a more granular clustering,
but at the expense of an exponential increase in computational complexity. Conversely,
a smaller K might diminish computational complexity, but could possibly oversimplify
important data characteristics. Consequently, we choose 1% as a setting that can both
guarantee a certain level of clustering precision and maintain computational efficiency.

4.2. Comparative Experiments and Analysis of Results
4.2.1. Performance of Real-Time Spatio-Temporal Query

Real-time spatio-temporal range queries play a crucial role in the prevention and
timely warning of geological disasters. This section utilizes Algorithm 4 to simulate real-
time geological data streams of 5000, 10,000, 15,000, 20,000, and 25,000 records to assess
the real-time query performance of the BCHR tree. The time range spans from 0:00:00 on 1
October 2023 to 23:59:59 on 1 October 2023. The spatial coordinates in terms of longitude
and latitude range respectively from 98◦53′ E to 104◦33′ E, and 22◦33′ N to 28◦48′ N. In
this experiment, “data size” signifies the proportion of spatio-temporal range queries in
the overall data. For instance, a “20% data size” implies that the spatio-temporal range
query condition encompasses 20% of the total temporal and spatial range. Conversely, the
“Number of tasks” denotes the quantity of data required for constructing the index.

Elasticsearch is an open-source, distributed real-time search and analysis engine, boast-
ing exceptional real-time search capabilities and scalability [33]. However, as illustrated
in Figure 7a, when dealing with 10,000 geological disaster monitoring simulation data
points, the BCHR tree outperforms Elasticsearch in real-time query performance under

ISPRS Int. J. Geo-Inf. 2024, 13, 93 13 of 17

different spatio-temporal range queries. This superior performance can be attributed to
the BCHR tree’s dual-processing framework. Under real-time query demands, the BCHR
tree constructs the index tree by acquiring the clusters within the current CluStream algo-
rithm’s time window. Concurrently, the CluStream algorithm imparts similarity amongst
the spatial objects in each leaf node of the BCHR tree. This feature lends a distinct advan-
tage, especially when dealing with non-uniformly distributed data typified by geological
disasters. In the process of real-time querying, the BCHR tree actually spends very little
time in the querying process, and it mainly spends time on the construction of the index
tree, which can be seen in Figure 7b. Figure 7c further demonstrates the BCHR tree index
construction performance under different sizes of data flow scenarios. When faced with
extremely scattered and uneven geohazard data, the BCHR tree clearly outperforms the
Hilbert-R tree. The main reason for this is that the Hilbert-R tree has more unfilled leaf
nodes when dealing with this scenario, which increases the time spent on building the tree.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 18

time geological data streams of 5000, 10,000, 15,000, 20,000, and 25,000 records to assess

the real-time query performance of the BCHR tree. The time range spans from 0:00:00 on

2023/10/1 to 23:59:59 on 2023/10/1. The spatial coordinates in terms of longitude and

latitude range respectively from 98°53′ E to 104°33′ E, and 22°33′ N to 28°48′ N. In this

experiment, “data size” signifies the proportion of spatio-temporal range queries in the

overall data. For instance, a “20% data size” implies that the spatio-temporal range query

condition encompasses 20% of the total temporal and spatial range. Conversely, the

“Number of tasks” denotes the quantity of data required for constructing the index.

Elasticsearch is an open-source, distributed real-time search and analysis engine,

boasting exceptional real-time search capabilities and scalability [33]. However, as

illustrated in Figure 7a, when dealing with 10,000 geological disaster monitoring

simulation data points, the BCHR tree outperforms Elasticsearch in real-time query

performance under different spatio-temporal range queries. This superior performance

can be attributed to the BCHR tree’s dual-processing framework. Under real-time query

demands, the BCHR tree constructs the index tree by acquiring the clusters within the

current CluStream algorithm’s time window. Concurrently, the CluStream algorithm

imparts similarity amongst the spatial objects in each leaf node of the BCHR tree. This

feature lends a distinct advantage, especially when dealing with non-uniformly

distributed data typified by geological disasters. In the process of real-time querying, the

BCHR tree actually spends very little time in the querying process, and it mainly spends

time on the construction of the index tree, which can be seen in Figure 7b. Figure 7c further

demonstrates the BCHR tree index construction performance under different sizes of data

flow scenarios. When faced with extremely scattered and uneven geohazard data, the

BCHR tree clearly outperforms the Hilbert-R tree. The main reason for this is that the

Hilbert-R tree has more unfilled leaf nodes when dealing with this scenario, which

increases the time spent on building the tree.

(a) (b) (c)

Figure 7. The performance of the BCHR tree in real-time spatio-temporal range queries: (a) Time

spent on spatio-temporal queries for BCHR tree and Elasticsearch built on 10,000 data points with

different data sizes. (b) Time spent on spatio-temporal queries for BCHR tree built on 10,000 data

points with different spatio-temporal scopes. (c) Time spent on building indexes for BCHR tree and

Hilbert-R tree with different data sizes.

The experiment’s findings affirm that the BCHR tree can stably handle different

volumes of geohazard data, keeping the response time at the millisecond level. This

Figure 7. The performance of the BCHR tree in real-time spatio-temporal range queries: (a) Time
spent on spatio-temporal queries for BCHR tree and Elasticsearch built on 10,000 data points with
different data sizes. (b) Time spent on spatio-temporal queries for BCHR tree built on 10,000 data
points with different spatio-temporal scopes. (c) Time spent on building indexes for BCHR tree and
Hilbert-R tree with different data sizes.

The experiment’s findings affirm that the BCHR tree can stably handle different
volumes of geohazard data, keeping the response time at the millisecond level. This
performance demonstrates that the BCHR tree is well equipped for effective real-time
spatial–temporal queries in geological flow data.

4.2.2. Performance of Spatial Range Queries

Geohazards vary significantly in their frequency, intensity, and type across temporal
and spatial dimensions, typifying an instance of inhomogeneous data. This study segment
primarily investigates the optimization efficacy of the BCHR tree compared to the Hilbert-R
tree and R-tree when dealing with static inhomogeneous data. The experimental data
represent simulated geohazard scenarios throughout Yunnan Province from the year 2000
to 2023. It consists of 1 million items, and the spatial query range is set to 20%, 40%, 60%,
80%, and 100% of the total data size, respectively.

Figure 8 demonstrates an evident optimization in the query performance of the BCHR
tree when compared to the Hilbert-R tree and the R-tree, while handling millions of
geohazard data items. It is discernible that as the spatial data query range progressively

ISPRS Int. J. Geo-Inf. 2024, 13, 93 14 of 17

increases, the performance of the proposed BCHR tree maintains a level of stability against
the query times of the Hilbert-R tree and R-tree.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 15 of 18

performance demonstrates that the BCHR tree is well equipped for effective real-time

spatial–temporal queries in geological flow data.

4.2.2. Performance of Spatial Range Queries

Geohazards vary significantly in their frequency, intensity, and type across temporal

and spatial dimensions, typifying an instance of inhomogeneous data. This study segment

primarily investigates the optimization efficacy of the BCHR tree compared to the Hilbert-

R tree and R-tree when dealing with static inhomogeneous data. The experimental data

represent simulated geohazard scenarios throughout Yunnan Province from the year 2000

to 2023. It consists of 1 million items, and the spatial query range is set to 20%, 40%, 60%,

80%, and 100% of the total data size, respectively.

Figure 8 demonstrates an evident optimization in the query performance of the

BCHR tree when compared to the Hilbert-R tree and the R-tree, while handling millions

of geohazard data items. It is discernible that as the spatial data query range progressively

increases, the performance of the proposed BCHR tree maintains a level of stability

against the query times of the Hilbert-R tree and R-tree.

Figure 8. The performance of the BCHR tree in Spatial Range Query.

4.2.3. Performance of Index Insertion

In the face of continuously generated geological data, the maintenance and updating

of the index is criminally essential. This section evaluates the insertion performance of the

BCHR tree, where we initially constructed the BCHR tree and the Hilbert-R tree. Both

trees were created based on 1 million simulated geological disaster data points generated

by Algorithm 4, with an initial data volume of 1 million. The temporal period ranges from

00:00:00 on 1 October 2023 to 23:59:59 on the same day. The spatial coordinates range

between East longitude 98°53′ to 104°33′ and North latitude 22°33′ to 28°48′. On this basis,

we evaluated the response times of the BCHR tree and Hilbert-R tree when inserting

100,000, 200,000, 300,000, 400,000, and 500,000 geological disaster data points,

respectively. We also accounted for the number of node split occurrences during the

insertion period. The insertion data were generated using the same method, and Figure 9

displays the insertion performance of the BCHR tree and Hilbert-R tree.

Figure 8. The performance of the BCHR tree in Spatial Range Query.

4.2.3. Performance of Index Insertion

In the face of continuously generated geological data, the maintenance and updating
of the index is criminally essential. This section evaluates the insertion performance of the
BCHR tree, where we initially constructed the BCHR tree and the Hilbert-R tree. Both trees
were created based on 1 million simulated geological disaster data points generated by
Algorithm 4, with an initial data volume of 1 million. The temporal period ranges from
00:00:00 on 1 October 2023 to 23:59:59 on the same day. The spatial coordinates range
between East longitude 98◦53′ to 104◦33′ and North latitude 22◦33′ to 28◦48′. On this
basis, we evaluated the response times of the BCHR tree and Hilbert-R tree when inserting
100,000, 200,000, 300,000, 400,000, and 500,000 geological disaster data points, respectively.
We also accounted for the number of node split occurrences during the insertion period. The
insertion data were generated using the same method, and Figure 9 displays the insertion
performance of the BCHR tree and Hilbert-R tree.

From the experimental results, we note that the BCHR tree demonstrates a distinct
improvement in insertion performance over the Hilbert-R tree. The primary reason lies
in the CluStream algorithm’s potential to effectuate efficient clustering of spatial objects.
Spatial objects situated in close proximity are grouped into the same cluster, with contiguous
leaf nodes being constructed. During the insertion process, it reduces the number of leaf
nodes necessitating comparison by the insertion algorithm. Furthermore, per the BCHR
tree’s construction algorithm, all spatial objects within the same cluster are rendered into
the same leaf node. If this node reaches capacity, the data are distributed to neighboring
leaf nodes. This results in a large number of leaf nodes remaining under capacity. Also,
spatial objects dispersed across space forming clusters inevitably lead to under-capacity
leaf nodes. This consequently minimizes the number of node splits instigated by inserting
objects, thereby enhancing the BCHR tree’s insertion performance.

ISPRS Int. J. Geo-Inf. 2024, 13, 93 15 of 17

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 18

(a) (b)

Figure 9. The performance of insertion operations in BCHR tree and Hilbert-R tree: (a) Time taken

for insertions. (b) Node split occurrences during insertion.

From the experimental results, we note that the BCHR tree demonstrates a distinct

improvement in insertion performance over the Hilbert-R tree. The primary reason lies in

the CluStream algorithm’s potential to effectuate efficient clustering of spatial objects.

Spatial objects situated in close proximity are grouped into the same cluster, with

contiguous leaf nodes being constructed. During the insertion process, it reduces the

number of leaf nodes necessitating comparison by the insertion algorithm. Furthermore,

per the BCHR tree’s construction algorithm, all spatial objects within the same cluster are

rendered into the same leaf node. If this node reaches capacity, the data are distributed to

neighboring leaf nodes. This results in a large number of leaf nodes remaining under

capacity. Also, spatial objects dispersed across space forming clusters inevitably lead to

under-capacity leaf nodes. This consequently minimizes the number of node splits

instigated by inserting objects, thereby enhancing the BCHR tree’s insertion performance.

5. Conclusions and Outlook

Confronted with the real-time generation of massive geological disaster data, there

is an imperative need for an efficient real-time stream data processing framework to

satisfy the rapid response demand of real-time monitoring and early warning of

geological disasters. As one of the most widely used spatial index structures, the R-tree

exhibits commendable performance in dealing with static data, yet it struggles with

handling streaming data and does not flexibly cater to temporal indexing needs.

Consequently, this study proposes a spatio-temporal index model based on a data stream

clustering algorithm, the BCHR-index, to meet the requirement for multidimensional

spatio-temporal queries of geological disaster data. The BCHR-index model harnesses the

properties of the stream clustering algorithm CluStream and employs a real-time/offline

two-tier processing framework paired with a B+ tree to construct the BCHR tree,

partitioning data into real-time and offline stages. Thanks to the small data volume of the

real-time data stream, the CluStream-method-generated micro-clusters can construct

indices in real-time, enabling nearly instantaneous responses to geological streaming data.

The offline phase builds a Hilbert-R tree using spatial data processed with the clustering

Figure 9. The performance of insertion operations in BCHR tree and Hilbert-R tree: (a) Time taken
for insertions. (b) Node split occurrences during insertion.

5. Conclusions and Outlook

Confronted with the real-time generation of massive geological disaster data, there is
an imperative need for an efficient real-time stream data processing framework to satisfy the
rapid response demand of real-time monitoring and early warning of geological disasters.
As one of the most widely used spatial index structures, the R-tree exhibits commendable
performance in dealing with static data, yet it struggles with handling streaming data and
does not flexibly cater to temporal indexing needs. Consequently, this study proposes a
spatio-temporal index model based on a data stream clustering algorithm, the BCHR-index,
to meet the requirement for multidimensional spatio-temporal queries of geological disaster
data. The BCHR-index model harnesses the properties of the stream clustering algorithm
CluStream and employs a real-time/offline two-tier processing framework paired with a B+
tree to construct the BCHR tree, partitioning data into real-time and offline stages. Thanks
to the small data volume of the real-time data stream, the CluStream-method-generated
micro-clusters can construct indices in real-time, enabling nearly instantaneous responses
to geological streaming data. The offline phase builds a Hilbert-R tree using spatial data
processed with the clustering algorithm, utilizing the cluster centers as leaf nodes. This
maintains the continuity and integrity of the spatial distribution of geological disasters,
enhancing the spatial query efficiency during the monitoring process. Even when dealing
with unevenly distributed geological disaster data, the model boasts millisecond-level
response times. Taking into account the sheer volume of geological disaster monitoring
data, the model leverages HBase for storing such data, ensuring a certain degree of fault
tolerance and scalability. However, improvements can still be made to the model. In future
works, (1) we plan to further enhance the real-time indexing. Despite the millisecond-
level responses of the index presented in this study, each real-time query requires the
reconstruction of the index, thus adding a temporal overhead to a certain extent. (2) We
will explore the best way to select the K value; the CluStream algorithm uses the K-mean
method to generate clusters, and when using the CluStream algorithm to process the leaf
nodes of the BCHR tree, this paper selects the K value of 1% of the number of datasets, but
different types of geohazards and occurrence areas; the most suitable K value is different, so
the K value selection needs to be more flexible and variable. (3) Finally, future investigations

ISPRS Int. J. Geo-Inf. 2024, 13, 93 16 of 17

will look to enhance the robustness of our system, ensuring rapid and accurate responses
in emergencies to protect people’s lives and properties.

Author Contributions: Conceptualization, Jiahao Li; Software, Weiwei Song, Jianglong Chen, Qunlan
Wei, and Jinxia Wang; Validation, Jiahao Li and Weiwei Song; Writing—original draft, Jiahao Li;
Writing—review and editing, Jiahao Li and Weiwei Song. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Yunnan Province Key Research and Development Program
(No. 202202AD080010).

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author.

Acknowledgments: The authors would like to express their sincere appreciation to all those who
have offered valuable recommendations and comments that significantly improved the quality of
this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yunnan Provincial Government. Yunnan Province Geological Hazard Prevention and Control ‘14th Five-Year Plan’ (2021–2025).

30 August 2022. Available online: http://dnr.yn.gov.cn/html/2022/dizaifangzhi_0830/33678.html (accessed on 1 October 2023).
2. Zhang, Y.; Zhang, A.; Gao, M. Research on Three-Dimensional Electronic Navigation Chart Hybrid Spatial Index Structure Based

on Quadtree and R-Tree. ISPRS Int. J. Geo-Inf. 2022, 11, 319. [CrossRef]
3. Liu, X.; Deng, Y.; Ni, Y. FastTree: A hardware KD-tree construction acceleration engine for real-time ray tracing. In Proceedings

of the 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015;
pp. 1595–1598. [CrossRef]

4. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 18–21 June 1984; pp. 47–57. [CrossRef]

5. Park, K. Location-based grid-index for spatial query processing. Expert Syst. Appl. 2014, 41, 1294–1300. [CrossRef]
6. Dusia, A.; Sethi, A.S. Recent advances in fault localization in computer networks. IEEE Commun. Surv. Tutor. 2016, 18, 3030–3051.

[CrossRef]
7. łgorzata Steinder, M.; Sethi, A.S. A survey of fault localization techniques in computer networks. Sci. Comput. Program. 2004, 53,

165–194. [CrossRef]
8. Zeydan, E.; Yabas, U.; Sözüer, S. Streaming alarm data analytics for mobile service providers. In Proceedings of the NOMS

2016-2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 1021–1022.
[CrossRef]

9. Sharifzadeh, M.; Shahabi, C. VoR-tree: R-trees with Voronoi diagrams for efficient processing of spatial nearest neighbor queries.
Proc. VLDB Endow. 2010, 3, 1231–1242. [CrossRef]

10. Yang, Y.; Bai, P.; Ge, N. LAZY R-tree: The R-tree with lazy splitting algorithm. J. Inf. Sci. 2020, 46, 243–257. [CrossRef]
11. Macyna, W.; Majcher, K. Cost-based storage of the R-tree aggregated values over flash memory. In Proceedings of the 2018

International Conference on Industrial Enterprise and System Engineering (ICoIESE 2018), Johor, Malaysia, 16–17 July 2018;
Atlantis Press: Amsterdam, The Netherlands, 2019; pp. 97–102. [CrossRef]

12. Wang, X.; Meng, W.; Zhang, M. A novel information retrieval method based on R-tree index for smart hospital information
system. Int. J. Adv. Comput. Res. 2019, 9, 133–145. [CrossRef]

13. Hong, Y.; Tang, Q.; Gao, X. Efficient R-tree based indexing scheme for server-centric cloud storage system. IEEE Trans. Knowl.
Data Eng. 2016, 28, 1503–1517. [CrossRef]

14. Yuan, S.; Pi, D.; Zhao, X. Differential privacy trajectory data protection scheme based on R-tree. Expert Syst. Appl. 2021,
182, 115215. [CrossRef]

15. Goyal, P.; Challa, J.S.; Kumar, D. Grid-R-tree: A data structure for efficient neighborhood and nearest neighbor queries in data
mining. Int. J. Data Sci. Anal. 2020, 10, 25–47. [CrossRef]

16. He, Q.; Chen, Y.; Dong, Q. Mining moving object gathering pattern based on resilient distributed datasets and R-tree index.
Neurocomputing 2020, 393, 194–202. [CrossRef]

17. Huang, D.; Sun, L.; Zhao, D. Research on Ocean Big Data Indexing Technology Based on ADMD Fusion Strategy. J. Univ. Sci.
Technol. 2015, 10, 813–821. [CrossRef]

18. Zhang, M.; Lu, F.; Shen, P. Evolution and Development of the R-Tree Family. J. Comput. 2005, 28, 289–300.
19. Kamel, I.; Faloutsos, C. Hilbert R-tree: An Improved R-tree using Fractals. In Proceedings of the 20th International Conference on

Very Large Data Bases, Santiago de Chile, Chile, 12–15 September 1994; pp. 500–509.
20. Liu, R.; An, X.; Gao, X. A Kind of Spatial Index Structure Based on R-Tree. Comput. Eng. 2009, 35, 3.

http://dnr.yn.gov.cn/html/2022/dizaifangzhi_0830/33678.html
https://doi.org/10.3390/ijgi11050319
https://doi.org/10.7873/DATE.2015.0176
https://doi.org/10.1145/971697.602266
https://doi.org/10.1016/j.eswa.2013.08.027
https://doi.org/10.1109/COMST.2016.2570599
https://doi.org/10.1016/j.scico.2004.01.010
https://doi.org/10.1109/NOMS.2016.7502953
https://doi.org/10.14778/1920841.1920994
https://doi.org/10.1177/0165551519828616
https://doi.org/10.2991/icoiese-18.2019.18
https://doi.org/10.19101/IJACR.2019.940030
https://doi.org/10.1109/TKDE.2016.2526006
https://doi.org/10.1016/j.eswa.2021.115215
https://doi.org/10.1007/s41060-020-00208-2
https://doi.org/10.1016/j.neucom.2018.09.107
https://doi.org/10.3969/j.issn.0253-2778.2015.10.003

ISPRS Int. J. Geo-Inf. 2024, 13, 93 17 of 17

21. Wang, J. A Kind of R-Tree Optimization Algorithm Combining Spatial Clustering Algorithm. Comput. Eng. Appl. 2014, 50,
112–115.

22. Jiang, Z. Research on The Hilbert-R Tree Construction Method Based on the Improved GMM Clustering Algorithm; Harbin Engineering
University: Harbin, China, 2019.

23. Zhang, Y.-H.; Wen, C.; Zhang, M.; Xie, K.; He, J.-B. Fast 3D Visualization of Massive Geological Data Based on Clustering Index
Fusion. IEEE Access 2022, 10, 28821–28831. [CrossRef]

24. Cheng, H.; Xie, K.; Wen, C.; He, J.-B. Fast Visualization of 3D Massive Data Based on Improved Hilbert R-Tree and Stacked LSTM
Models. IEEE Access 2021, 9, 16266–16278. [CrossRef]

25. Aggarwal, C.C.; Philip, S.Y.; Han, J. A framework for clustering evolving data streams. In Proceedings of the 2003 VLDB
Conference, Berlin, Germany, 9–12 September 2003; Morgan Kaufmann: Burlington, MA, USA, 2003; pp. 81–92.3. [CrossRef]

26. Zubaroğlu, A.; Atalay, V. Online embedding and clustering of evolving data streams. Stat. Anal. Data Min. ASA Data Sci. J. 2023,
16, 29–44. [CrossRef]

27. Uddin, R.; Ravishankar, C.V.; Tsotras, V.J. Indexing moving object trajectories with hilbert curves. In Proceedings of the 26th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 6–9 November
2018; pp. 416–419. [CrossRef]

28. Chavent, M.; Lechevallier, Y.; Briant, O. DIVCLUS-T: A monothetic divisive hierarchical clustering method. Comput. Stat. Data
Anal. 2007, 52, 687–701. [CrossRef]

29. Guha, S.; Rastogi, R.; Shim, K. Cure: An efficient clustering algorithm for large databases. Inf. Syst. 2001, 26, 35–58. [CrossRef]
30. Kanungo, T.; Mount, D.M.; Netanyahu, N.S. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans.

Pattern Anal. Mach. Intell. 2002, 24, 881–892. [CrossRef]
31. Batool, K.; Abbas, G. A Comprehensive Review on Evolving Data Stream Clustering. In Proceedings of the 2021 International

Conference on Communication Technologies (ComTech), Rawalpindi, Pakistan, 21–22 September 2021; pp. 138–143. [CrossRef]
32. Jacox, E.H.; Samet, H. Iterative spatial join. ACM Trans. Database Syst. 2003, 28, 230–256. [CrossRef]
33. Zamfir, V.-A.; Carabas, M.; Carabas, C.; Tapus, N. Systems Monitoring and Big Data Analysis Using the Elasticsearch System. In

Proceedings of the 2019 22nd International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania,
28–30 May 2019; pp. 188–193. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3157823
https://doi.org/10.1109/ACCESS.2021.3051911
https://doi.org/10.1016/B978-012722442-8/50016-1
https://doi.org/10.1002/sam.11590
https://doi.org/10.1145/3274895.3274912
https://doi.org/10.1016/j.csda.2007.03.013
https://doi.org/10.1016/S0306-4379(01)00008-4
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/ComTech52583.2021.9616754
https://doi.org/10.1145/937598.937600
https://doi.org/10.1109/CSCS.2019.00039

	Introduction
	Model Overview
	Indexing Implementation Details
	B+ Tree
	Hilbert-R Tree
	CluStream Algorithm
	Hilbert-R Tree Optimized Based on the CluStream Algorithm
	Algorithm for Generating the BCHR Tree
	Spatio-Temporal Range Query Algorithm for BCHR Tree

	Experiments
	Experimental Design
	Comparative Experiments and Analysis of Results
	Performance of Real-Time Spatio-Temporal Query
	Performance of Spatial Range Queries
	Performance of Index Insertion

	Conclusions and Outlook
	References

