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Abstract: Artificial intelligence (AI) has demonstrated its ability to complete complex tasks in various
fields. In urban studies, AI technology has been utilized in some limited domains, such as control of
traffic and air quality. This study uses AI to better understand diverse urban studies data through a
novel approach that uses a convolutional neural network (CNN). In this study, a building outline in
the form of a two-dimensional image is used with its corresponding metadata to test the applicability
of CNN in reading urban data. MobileNet, a high-efficiency CNN model, is trained to predict the
location of restaurants in each building in Seoul, Korea. Consequently, using only 2D image data, the
model satisfactorily predicts the locations of restaurants (AUC = 0.732); the model with 2D images
and their metadata has higher performance but has an overfitting problem. In addition, the model
using only 2D image data accurately predicts the regional distribution of restaurants and shows
some typical urban forms with restaurants. The proposed model has several technical limitations but
shows the potential to provide a further understanding of urban settings.

Keywords: convolutional neural network; CNN; restaurant location; retail location; urban retail store;
deep learning; classification model

1. Introduction
1.1. Research Background

The use of artificial intelligence (AI) is increasing in various fields as it has been proven
to have high performance and wide applicability. In the urban planning and management
field, AI is used in areas like traffic management [1] and air quality control [2]. Attempts
are also being made to extend the application of AI in urban engineering to different areas,
such as land-use planning and architectural design [3,4].

For AI to perform complex tasks in urban planning, the built environment must be
understood using computers. In traditional urban research, the characteristics of a city
or region are described in some indexes by aggregating data in a certain area. However,
using aggregated data does not provide a large enough sample size to train a complicated
AI model because an aggregated index only represents an area or district. In addition,
aggregate data depend on the configuration of the aggregate area [5]. Therefore, for AI to
be used in urban studies, new forms of data with improved spatial resolution should be
used to analyze urban settings.

Currently, information about urban settings is mostly described two-dimensionally
in a geographic information system (GIS). Therefore, detecting spatial patterns in two-
dimensional (2D) data is key for analyzing the spatial pattern of individual urban agents.
Convolutional neural networks (CNNs), the most widely used architectures for image
recognition, use millions of parameters to summarize images into several numerical values.
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This process allows for the description of an innumerable diversity of urban areas; AI is also
able to perform more complex tasks. Moreover, in areas lacking digitized spatial data (such
as developing countries or new town sites), it is possible to predict urban characteristics
using minimal investigations, such as satellite images [6,7].

In this study, the understanding of urban spaces using 2D images was tested by
applying the images in the prediction of restaurant locations. Those predictions can
be improved by using building outline data and CNN-based machine learning model
because restaurant businesses depend on their surroundings [8–10]. Existing studies
cannot accurately predict the locations of individual restaurants [11]. Subsequently, this
study visualizes and analyzes the predicted distribution of restaurants according to the
hierarchy of urban areas to gain insight into the relationship between urban form and
restaurant location.

The following sections review the literature on restaurant location, urban morphology,
and the application of AI in the urban planning field. The Research Methodology section
includes the research question, data, model, and an explanation of the case study area. In
the Results section, the model’s performance is shown, and the distribution of restaurant
locations is analyzed. Finally, the meaning of the model and the results are explained in the
Discussion section.

1.2. Related Studies
1.2.1. Location Theory of Commercial Facilities

Starting with von Thünen [12], early location theories have tried to explain the princi-
ples of division in district-scale urban areas, such as the central business district (CBD) or
industrial districts. Regarding commercial facilities, Christaller’s [13] central place theory
(CPT) argues that commercial activity in a city occurs in a locally concentrated center with
different hierarchies. CPT is combined with other principles, such as spatial interaction
theory [14], minimum differentiation [15], and gravity models [16–19], and these form the
basic theories of regional demand and the formation of central places. However, these
location models have limitations in that they only explain the locations of central places
at the macroscopic level. Some studies have criticized these models for having strong
normative assumptions that may be less practical [20,21].

Later empirical approaches regarding the commercial centers of cities revealed the
qualitative effects of socioeconomic environments and transportation availability on restau-
rant locations. The socioeconomic attributes of nearby regions represent the demand-side
characteristics of commercial areas; the size of commercial centers (number of stores) is
dependent [22,23] on these characteristics. The transportation environment (including mass
accessibility, parking availability, and pedestrian volume) is an important factor that affects
the accessibility of retail stores to customers [24–27].

For individual businesses, a competitive environment is regarded as an important
factor. Competitors make individual business owners vulnerable; however, the cluster-
ing effect (which varies by business category) often attracts more customers to nearby
commercial areas [24,27,28].

In terms of decision-making procedures for retail stores, hierarchical processes with
multiple criteria are suggested; analytic hierarchy process [29,30], analytic network pro-
cess [31], rough set theory [9], and spatial queries using point of interest (POI) data [32] are
studied in the literature.

In short, retail stores are normally located in commercial centers, and the distribu-
tion of retail stores is highly affected by the location of commercial centers. However,
decision-making regarding where individual restaurants should be located still relies on a
combination of rough, traditional principles.

1.2.2. Urban Form and Restaurant Location

In classical urban design theories, urban form characteristics are often associated with
urban functions including commercial use. Refs. [33,34] analyzed a city by abstracting its
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basic form and provided a theoretical basis for the argument that human recognition and
city function are influenced by urban forms. Jacobs [35], Gehl [36], and Lynch [37] argued
that there is a pedestrian-friendly style of urban forms, and that urban forms in this style
can enhance urban vitality by encouraging street activities. This theoretical trend provides
an environmental and psychological framework for the impact of building- and block-scale
urban forms on residents’ lives.

Later empirical studies provided various measurements of the urban form. These
measurements provide a basis for summarizing the urban form at a collective level into
simple, numerical values for use in statistical analyses. Researchers at the regional scale
have applied variables to analyze urban forms on a macroscopic scale, including city size,
building density, centrality [38], polycentricity [39,40], location quotient [41], and Gini
coefficients. Other researchers with neighborhood-scale perspectives have analyzed urban
forms with building- and block-scale variables, such as building footprint size, building
coverage ratio [42,43], width–length ratio of buildings and blocks [44], compactness [45],
entropy index [46], and spatial integration calculated by space syntax [47].

Using these indicators, researchers have attempted to find empirical evidence for
the relationship between urban form and restaurant location. Jacobs [35] argues that fine-
grained urban tissue has a positive impact on urban vitality, and several studies either
support [8,48,49] or partially refute this [50]. Connectivity in urban street networks is also
measured in the form of gravity connectivity [51], graph connectivity [10], and spatial
integration calculated by space syntax [52] to claim that places with high connectivity are
preferred for retail locations because connectivity reduces the cost of travel, and more
pedestrian traffic is likely.

Some studies claim that urban form characteristics have been considered less impor-
tant recently because, with the propagation of smartphones, social network services [25]
and online map services [53] have become powerful sources of restaurant information.
Since customers gather information about retail stores from the Internet, in recent years,
restaurant locations that are less physically accessible have become more viable than they
were before they were able to share information online [54].

In summary, diverse urban form characteristics (such as building density, building
footprint size or compactness) are being developed, and it is shown that they affect retail
store locations. However, there are fewer studies about assessing urban forms for individual
restaurant locations because urban form indexes are often calculated within a given area.

1.2.3. Applying Convolutional Neural Networks to Urban Planning

Advancements in computer technology have continuously expanded the scope of
research in urban studies. Early urban research was conducted from a macroscopic and
static perspective because there were no data or tools to empirically prove the mathematical
relationship between elements in the city. However, with the advent of computers, city
modeling has become possible, and statistical analysis has become a common research
method. In addition, it became possible to understand the city from a dynamic perspective,
and the units of analysis were divided into sectors and smaller areas [55,56]. Since the
1970s, attempts have been made to understand cities through the behavior of individual
agents, such as cellular automata and agent-based models [57]. In addition, simulations in
certain fields, such as transportation and microclimate, have been continuously developed
and used in practice [58–60].

Since the 2010s, countless amounts of data have been generated and stored through
the big data revolution. In urban engineering, the location and attribute information
of individuals, buildings, and other POIs in a city have been digitized, and AI training
and verification have become easier using artificial neural networks, which precede the
existence of the smart cities industry. AI has been adopted in numerous urban studies [3]
and geography [61], supporting decision-making in urban planning and the design progress
or interpreting large-scale data in simple forms [62,63].
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Image processing is one of the most widely used methods in urban research. CNN,
a widely used algorithm for reading an image, can summarize an image (represented
by millions of numbers) into several numerical values. One CNN application uses those
summarized values to analyze the scenery of an urban point [64,65]. Some studies use
classification [66] or unsupervised clustering [67] for specific purposes in urban engineering.
Other studies use satellite images to classify the urban land use and land cover [68,69],
while still others use image recognition to read 2D urban form images to predict attributes
of urban spaces [70,71].

For urban commercial facilities, supervised learning algorithms for classification or
regression have been applied to commercial demand estimation [72,73] and commercial
location recommendations [74,75]. Ouyang et al. [76] applied a CNN using images in the
form of a 2D map to estimate the rental prices of retail buildings. Chen et al. [77] used urban
form indicators to determine the relationship between urban morphology and vitality.

In summary, many studies have utilized AI in urban studies in order to improve
the performance of regression or classification with aggregated data. CNN is used for
evaluating street landscape or photogrammetry, but there are fewer reports that use CNN
to read geospatial data.

1.2.4. Research Gap

In the existing literature, there are many studies that try to quantify urban forms and
analyze them with numerical models. However, those studies measure urban forms as
aggregate statistics. Using a CNN, the spatial pattern of elements in an n-dimensional
space can be detected and analyzed in a quantitative manner. Moreover, multiple urban
layers, such as the built environment, green spaces, demographic distribution, and trans-
portation environment, can be read together. Also, there are studies to evaluate the growth
and decline of commercial centers, but there is less consideration in deciding individual
locations of restaurants in a qualitative manner.

The main contributions of this study are summarized as follows:

• The applicability of CNN is tested in this study to understand urban form in quantita-
tive manner.

• Relations between urban form and restaurant location are analyzed via the perspective
of a neural network.

• This study shows the applicability of CNN in any form of geospatial data that various
urban data can be used in a 2D form in further studies.

2. Materials and Methods
2.1. Research Questions and Analysis Methods

The purpose of this study is to develop a tool that can read urban forms to evaluate the
location of a restaurant. The developed tool is tested to determine whether it predicts and
analyzes the location accurately, and the results are described. The main research question
is as follows: Is a CNN-based tool for reading urban forms able to analyze restaurant
locations? To answer this question, three more detailed research questions are defined:
(Q1) Is the novel method able to predict where a restaurant is located? (Q2) Is there any
advantage to using a CNN when evaluating restaurant locations compared to existing
models? (Q3) Does the classification method provide further understanding of restaurant
locations?

This study’s experiment involves reading the urban form using neural networks to
obtain information about urban locations. However, more detailed criteria are required to
answer these questions. Do the new tools function well? If so, would they perform better
than existing tools? Is there any other use for this new tool? To address these problems,
three sub-questions are defined.

Q1 evaluates the practicality of the new tool. If the tool can accurately determine
whether a restaurant is located on a certain parcel, it has enormous practicality and can
immediately be usable in the practical field. Even if the answer to Q1 is negative, it does not
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mean that the newly developed tool is not useful. If there is evidence that CNN-based image
recognition can improve existing methods, it remains applicable to urban engineering. Q2
verifies the technical significance of introducing an image-recognition algorithm. If the
image recognition model can improve the performance by comparing the image recognition
model with the existing model, it is possible to judge the effect of the urban form on
commercial locations. Q3 evaluates the interpretability of the model’s learning results. One
well-known shortcoming of neural networks is their low explainability, which means it
is difficult for users to determine the cause of a given result. However, there are ways
to explain the results of the neural networks. AI combined with these methods is called
explainable artificial intelligence (XAI). Researchers seek to use XAI to explain social
phenomena.

2.2. Research Data

The independent variables are classified according to the existing literature. The four
categories are: building outline images, urban form attributes [48,51], regional charac-
teristics [9,23], and socioeconomic characteristics [9,30,31]. Each sample is taken from a
building in a residential area. Apartment complexes are excluded from the analysis. The
samples with missing values are excluded from the analysis. A total of 261,849 samples
(289,378 excluded) are used in the analysis. Although there is a large amount of excluded
data, the missing data would not significantly affect the result because the characteristics of
missing data samples are not heterogeneous from the other data. The final sample size is
also sufficiently large. Full descriptions of the input variables are provided in Table 1.

Table 1. Descriptions of input variables.

Variable
Category Variable Data Source Mean Standard

Deviation Minimum Maximum

Building outline
image Building outline NSDI * integrated building

data - - - -

Urban form
attributes

Building height NSDI integrated building data 11.7 5.2 0.6 199.6

Parcel size NSDI land characteristics data 650.0 2222.0 1.4 259,730.0

Slope **** NSDI land characteristics data - - - -

Regional
characteristics

Zoning code **** NSDI land characteristics data - - - -

Distance to business
districts

Calculated in
QGIS 3.24

CBD 8972 3547 622 20,464

GBD 10,604 4629 179 22,986

YBD 10,408 4946 422 26,250

Socioeconomic
characteristics

Distance to nearest
subway station

Euclidean distance calculated
in QGIS 3.24 572 359 2 3366

Building age NSDI integrated building data 23.7 10.7 0 80.0

Land price MOLIT ** officially assessed
land price 4.89 2.97 0.05 45.59

Dependent
Variable

Whether a restaurant is
located or not ****

MOIS *** municipality
business approval data - - - -

Note. * NSDI: Korean National Spatial Data Infrastructure Portal; ** MOLIT: Korean Ministry of Land, Infrastruc-
ture and Transport; *** MOIS: Korean Ministry of the Interior and Safety; **** Nominal Variables.

The building outline image is described in the form of a 2D map, with pixels of voids
described in black (0) and pixels where the building stands described in white (1). To
improve learning efficiency, two 64 × 64 images of different scales are prepared. One covers
128 m × 128 m, and the other covers 512 m × 512 m. The image representation method is
illustrated in Figure 1.
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Figure 1. Representation of research data and methodology.

Urban form attributes are included to implement the urban form data in the reinforced
model. Three variables are used, including building height (in meter), parcel size (in
m2), and slope. Slopes are classified into five categories (lowland, flatland, mild-sloped,
steep-sloped, and highland) [78] by the Korean Ministry of Land, Infrastructure, and
Transportation (MOLIT).

The regional characteristics include zoning codes and distances to business districts.
In this study, only residential zones in Seoul City are considered, but the allowed usage and
density differs among the detailed zoning codes. The distance to business districts is used
to measure the center–periphery characteristics of the surrounding region of a building.
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Because Seoul City has three major central business districts, the distances to the three
districts are all used.

The socioeconomic characteristics include transit accessibility, building age, and land
prices. Transit accessibility is represented by the distance to nearby subway stations, which
is very important in Seoul’s public transportation system. The building age is calculated
based on the building’s date of administrative approval. The land price is represented by
an officially assessed value to ensure data availability and resolution.

The dependent variable in this study is whether a building has a restaurant in its
location. It is prepared using governmental approval data from the restaurant business.
In Korea, there is a “general restaurant” category, which includes ordinary restaurants
and bars, and a “resting restaurant” category, which includes convenience stores, cafés, or
fast-food restaurants. In this study, restaurants in both categories are integrated without
separation. Samples with restaurants are described with the label “1” (“Class 1”), and
others with “0” (“Class 0”).

2.3. Classifier Models Design

In this study, four different classifier models are compared. Model 1 is a CNN-only
model. If the building outline implies some meaning regarding the urban environment,
training image data with a CNN creates a fine classifier model. In addition, the classification
results of this model show the pure effect of the urban form on restaurant locations. How-
ever, building outline images contain very limited information, and additional attributes
should be provided to perform a more accurate classification. Model 2 is the CNN-MLP
(multi-layer perceptron) model. Classifying restaurant locations using only urban form
images is difficult, even for AI. Variables other than the building outline image (hereinafter
referred to as “metadata”) are used to train an MLP model and improve the performance
of the classifier. The MLP and CNN models are combined to obtain the best output. Model
3 is the MLP-only model. It is built to test the advantages of the CNN in the CNN-MLP
model. If CNN-MLP is better than the MLP model, the CNN component of the new tool
can be used to improve the existing classifier model. Model 4 is a logistic regression model.
Because the three previous models are all based on machine learning, a logistic regression
model is built to test the effect of adopting a neural network for the location selection
problem.

Models 1 and 2 are designed to test Q1, which concerns the performance of the CNN-
based classifiers. Models 3 and 4 are designed to test Q2, which compares the CNN-based
model with existing models. Q3 is tested by qualitatively analyzing the classification
results of the CNN-based models and comparing them with the real-world distribution
of restaurants. The descriptions and the purpose of the four classifier models are listed in
Table 2.

Table 2. Four classifier models used in the study.

Model Name Model Input Purpose of the Model

CNN-only model
(Model 1) Building form image To evaluate the performance of CNN in

predicting restaurant location

CNN-MLP model
(Model 2)

Building form image
+ Attribute data

To improve the performance of CNN-based
classifier

MLP-only model
(Model 3) Attribute data To compare with the CNN-MLP model to

assess the effect of combining CNN

Logistic model
(Model 4) Attribute data To compare the machine learning models

with logistic regression model

In this study, urban data in the form of digital images are analyzed. The image data are
analyzed using a CNN. A CNN is a widely used method for reading and analyzing image
data (including photos and videos). Since a typical image includes millions of numerical



ISPRS Int. J. Geo-Inf. 2023, 12, 373 8 of 21

values, a CNN reads images via numerical filters (named “kernels”) and gradually reduces
the image size to efficiently process and extract the features of the data [79,80]. Using CNN
model, highly complex characteristics of a city can be efficiently summarized via millions
of parameters in a CNN model. MobileNet, which reduces operation amounts by applying
“depthwise convolution” and “pointwise convolution”, is selected to efficiently train the
model [81]. The structure of MobileNet is illustrated in Figure 2. Originally, MobileNet
supported images with a minimum of 128 × 128 pixels (MobileNet-128); however, the
model was modified to handle 64 × 64 images [82].
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The models’ detailed structures are listed in Table 3. In the CNN-only model, the
classification layers are connected immediately after the MobileNet-64. Metadata variables
are processed in MLP with layers of 200 cells and are directly connected to a classifier in
the MLP model or concatenated with the flattened layer of MobileNet in the CNN-MLP
model. In the classifier, a SoftMax function is applied to calculate the probability function.

Table 3. Neural network structure of the study.

CNN (MobileNet-64) MLP

Type Stride Input Size Type No. of Cells Input Size

Conv. + DW Conv. 1 64 × 64 × 2 Hidden layer 200 1 × 1 × 15

Conv. + DW Conv. 2 64 × 64 × 32 Hidden layer 200 1 × 1 × 200

Conv. + DW Conv. 1 32 × 32 × 64 Output (2) 1 × 1 × 200

Conv. + DW Conv. 2 32 × 32 × 128 Classifier

Conv. + DW Conv. 1 16 × 16 × 128 Type No. of cells Input size

Conv. + DW Conv. 2 16 × 16 × 256

FC 2

1 × 1 × 1024 (1)

(Model 1)
1 × 1 × 1224 (1) + (2)

(Model 2)
1 × 1 × 200 (2)

(Model 3)

Conv. + DW Conv. 1 8 × 8 × 256

4 × (Conv. + DW) 1 8 × 8 × 512

Conv. + DW Conv. 2 8 × 8 × 512

Conv. + DW Conv. 1 4 × 4 × 512

Conv. + DW Conv. 1 4 × 4 × 1024 Softmax 2 1 × 1 × 2

Conv. 1 4 × 4 × 1024 Output 2 *

AvgPool 4 4 × 4 × 1024

Output (1) 1 × 1 × 1024

Note. * Each cell of the output represents the probability of the predicted class of 0 and 1. (1) The output of CNN
layers is used in the classifier layers of Model 1 and Model 2. (2) The output of MLP layers is used in the classifier
layers of Model 2 and Model 3.
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The classification data used in this study are highly imbalanced (only 6.4% of the
samples are in the minority class), which means that the model could be biased to the
majority class. To solve this problem, class weights are applied while learning the data.
Class weights are calculated by the reciprocal of the class sample ratio, which is 14.65 for
Class 1 when the weight of Class 0 is one. However, learning with class weights of 1:1 fails
because the model repeatedly classifies all samples as Class 0.

The batch size is set to 256, which is the largest stable batch size with given GPU
memory. Under the batch size of 256, optimal learning rate is set to 0.0002 to achieve the
fastest convergence with stable learning. The number of epochs is set to 100 to achieve best
accuracy with least validation loss. Detailed model configurations are described in Table 4.

Table 4. Model Configurations.

Model Parameter Configuration

Model architecture CNN (MobileNet-64)

Size of input image (2, 64, 64)

Kernel size 3

Padding 1

Number of convolutional layers 14

Number of cells in flattened layer 1024

Number of metadata combined 9

Layers in metadata layers (9, 200, 200)

Weight Initializer Function Kaiming

Batch size 256

Learning Rate 2 × 10−4

Loss function Cross Entropy Loss

Optimizer Adam

Number of epochs 100

Class weights used 1:14.65

Data division ratio 8:2 (Train, test)

Data augmentation method Image: Mirror, Rotation (90◦), Gaussian noise
Metadata: Dropout (0.50)

Number of sets in augmented data 4

Software specification

OS: Windows 10 Home 21H2 Build 19044.2604

IDE: Visual Studio Code 1.76.1

Python: 3.7.2/PyTorch: 1.13.1

CUDA Toolkit: 11.3

Logistic regression model: statsmodel 0.9.0

Hardware specification

CPU: AMD Ryzen™ 5 5600X 3.7 GHz

GPU: Nvidia GeForce RTX 3060 12 GB

RAM: Samsung DDR4 16 GB × 2 (32 GB)

HDD: Samsung 850 PRO 256 GB

2.4. Case Study Area: Residential Area in Seoul City

This study aimed to analyze the distribution of restaurants in residential areas. To
achieve this goal, the study area should satisfy several criteria to avoid distorting the
analytical results. First, the study area should have a sufficiently large sample size. Deep
learning requires a large amount of training data to capture general trends and to avoid
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overfitting. Second, the entire study area should be urbanized and be similar in terms
of urban planning conditions. Regions with different formation principles can obscure
research findings, although the external validity of the analysis can be sacrificed to some
extent.

Based on these criteria, Seoul, South Korea was selected as the case study area. This
Asian megacity has a population of 9.5 million with over 100,000 restaurants distributed
throughout the city. Demographic factors, such as age distribution and ethnicity, are mostly
homogeneous by district, unurbanized areas are rare, and the characteristics of the built
environment are relatively uniform. In addition, commercial facilities are distributed
throughout the city.

However, only areas planned as residential areas by the Korean zoning codes were
studied. In nonresidential areas (including commercial, industrial, and green areas), the
location characteristics of restaurants are quite different; thus, limiting the study area was
appropriate. In Korea, zoning codes in residential areas are divided into exclusive, general,
and semi-residential zones; there are some exclusive residential areas, however, where
certain types of commercial facilities can be flexibly located.

The temporal range of the study is a cross-section analysis of 16 September 2022. The
latest data available at that time point were used in the analysis. The details of the case
study area are shown in Table 5.

Table 5. Basic information of the case study area.

Features Details Remarks

Administrative district Seoul Special City

Total area 605.6 km2 November 2022 (Seoul City)

Total population 9,428,372 December 2022 (KOSIS)

Zoning code Residential area in
Seoul City

Exclusive residential zone I, II
General residential zone I, II, III

Semi-residential zone

Residential area 326.6 km2 November 2022 (Seoul City)

Residential area ratio 53.93% November 2022 (Seoul City)

Temporal range 16 September 2022 Newest data from 16 September 2022
was used for the analysis

Seoul is a polycentric city that is considered to have three business centers: old fortress
(CBD), Gangnam (GBD), and Yeouido (YBD). While these three business centers include
most workplaces, several subcenters are distributed throughout the city, such as the Mapo
or Gasan Digital Complex (Figure 3) [83]. In terms of commercial centers, Seoul’s largest
commercial centers are the Myeongdong, Gangnam, and Sinchon–Hongdae areas.

However, in recent decades, Seoul has experienced commercial gentrification in its res-
idential areas [84,85]. Newly formed restaurant streets are emerging, such as Seongsu-dong,
Mangwon-dong, and Mullae-dong, and commercial centers are distributed throughout the
city (Figure 3). These new commercial areas are becoming distinct substitutes for older
commercial centers. This phenomenon has made native residents and old business owners
vulnerable to replacement by classy restaurants and coffee shops [86]. Consequently, local
policymakers seek solutions to support the sustainability of local shops. In addition, the
outbreak of COVID-19 has made the business environment more dynamic, making Seoul a
useful case study of the dynamic environment of the restaurant business in an Asian city.
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3. Results
3.1. Performance Evaluation

The performance metrics of the classification models used in this study are listed in
Table 6. The values considered were accuracy [68], precision, recall, F-1 score, area under
the ROC curve (AUC) [87,88], training time, and prediction speed. Because the sample
classes were imbalanced, the overall accuracy was significantly affected by the predicted
ratio of Class 1 (classified as one or more restaurants located in the sample building). For
example, a classifier that predicts all samples as Class 0 can reach an accuracy of 93.6%
(because 93.6% of the buildings do not have restaurants), but the models are designed not
to act in this way. The precision and recall values have a tradeoff relationship, and both
metrics are affected by the classification threshold in the opposite manner. The F-1 score
was calculated by first using the intact classification result (threshold = 0.5), and then by
using the maximum F-1 value with varying threshold values. AUC is known to be a robust
metric and is not affected by the threshold [89,90].

Table 6. Performance metrics of classification models.

Metrics Model 1
(CNN-Only)

Model 2
(CNN-MLP)

Model 3
(MLP-Only)

Model 4
(Logistic)

Predicted ratio of
class 1 (Actual: 6.4%) 12.56% 16.82% 23.91% 28.29%

Accuracy 0.853 0.845 0.818 0.747

Precision 0.169 0.230 0.202 0.167

Recall 0.333 0.606 0.757 0.732

F-1 0.224 0.334 0.319 0.272

F-1max * 0.228
(th = 0.253)

0.337
(th = 0.706)

0.342
(th = 0.950)

0.300
(th = 0.610)

AUC 0.732 0.839 0.844 0.802

Training time
(epoch: 100) 5:57:26 6:01:46 0:18:07 4.66 s

Prediction speed (it/s) 3801 3807 58,540 196,314
Note. * F-1max is the maximum F-1 value according to varying threshold value of the classification.
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3.1.1. Performance Evaluation of CNN-Applied Models

The overall accuracy of Model 1 was 0.85, which is extremely high. However, the
precision, recall, and F-1 scores were 0.169, 0.333, and 0.224, respectively, which means that
it is far more difficult to accurately guess a building with a restaurant (Class 1) than one
without. Although the predicted ratio of Class 1 was double the actual ratio, the precision
and recall were very low. In terms of AUC, the model’s score was 0.732.

According to the metrics, Model 1 was less appropriate for accurately determining
individual restaurant locations. Approximately 1/6 of the samples classified as Class 1 were
correct. However, considering the highly imbalanced class and limited data of the building
outline image, the classification result was good. The AUC score shows that the model
predicts the labels to some degree, and that urban morphology reflects the characteristics
of the city.

In Model 2, the accuracy, precision, recall, and F-1 were 0.845, 0.230, 0.606, and 0.334,
respectively. The predicted ratio of Class 1 was higher than that of Model 1; however,
their accuracies were similar. The precision, recall, and F-1 scores improved, although
the absolute values were still not high. With the threshold of the maximum F-1 score,
approximately one third (0.337) of the predicted restaurant locations were correct. The
AUC score was 0.839. Using a CNN integrated with metadata, the machine learning model
performed well when classifying the location.

3.1.2. Performance Comparison with Models without CNN

To achieve objective evaluation of the results, the models without a CNN should be
compared. The accuracy, precision, recall, and F-1 values of Model 3 were 0.818, 0.202,
0.757, and 0.319, respectively. Some metrics of Model 2 were better than those of Model
3 while others were not. Because the predicted ratios of Class 1 were different, it was not
appropriate to compare them directly. However, the maximum F-1 score (0.342) and AUC
score (0.844) of Model 3 were not lower than those of the CNN-integrated model.

Compared to Model 4, Models 2 and 3 had clear advantages. Model 4 had an accuracy
of 0.747, precision of 0.167, recall of 0.732, and F-1 score of 0.272. The maximum F-1 score
was 0.300, and the AUC score was 0.802. In terms of the maximum F-1 and AUC scores,
Model 2 exhibited a clear improvement. Because the performances of Models 2 and 3 were
similar, this result shows the superiority of the neural network model compared to the
statistical regression model.

Comparing Models 2 and 3, even though more data and a longer duration were used
for training data, the classification performance did not improve with the adoption of the
CNN. One possible reason for this result is overfitting. Because the training data contain
numerous numerical values, it can memorize all the training data with the parameter [91].
In an imbalanced class problem, there is a greater need to address overfitting [92]. In
this study, several techniques to reduce overfitting were applied; however, owing to the
characteristics of the image representation method used in the study, applicable techniques
were limited [93,94].

Another possible reason that the model may not have improved is that it may have
reached maximum accuracy with the given data because the restaurant location is not
absolutely decided by structural factors, but is instead decided by coincidence. Bid rent
theory implies that various types of retail stores compete to occupy a location [11,95].

3.2. Analysis of Predicted Restaurant Distribution
3.2.1. Comparison to Real-World Distribution

The classification results are illustrated on a map (Figure 4) to compare the predicted
distribution of restaurants with the real-world distribution. Detailed classification results
of three typical commercial centers are illustrated in Figure 5. To conduct a fair comparison,
the classification thresholds were adjusted to fix the ratio of the predicted samples to
restaurants at 6.44%.
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Model 1 predicts the broadest area as a potential restaurant location. In terms of
regional distribution, Model 1 depicts the distribution of restaurants in a manner similar
to the actual distribution. In terms of density, the model predicted a relatively even
distribution of density by hierarchy, regardless of the context of the urban region.

Based on the hierarchy of commercial centers, Model 1 classified fewer buildings as
restaurants in the central commercial areas (i.e., Cheongdam-dong) while predicting restau-
rants on the backside roads (the road behind the arterial roads). In the rising commercial
areas, the model predicted the new commercial area in the regional center (i.e., Seokchon
Lake), but did not perform well with the buildings far away from arterial roads, whose
usage was changed from housing to restaurant (widely referred to as “commercially gentri-
fied”). As the original usage of the areas was residential and the change in urban tissue
was slower than the alteration of usage, the buildings in those areas tended to be classified
as residential areas [96,97]. Meanwhile, the model identified neighborhood commercial
centers in the periphery (i.e., Gangseo-gu), whereas Models 2 and 3 did not predict them
well. However, the model did not capture the local context without data; for example, areas
where a subway station is located were regarded as equal to other areas.

Model 2 predicted the distribution of restaurants that were highly focused on city
centers. In terms of regional distribution, Model 2 predicted restaurant distribution only
in limited regions. In terms of density, the model predicted the density of restaurants
as denser in the dense areas. In the main commercial centers, the model classified more
buildings as restaurants. In rising commercial areas, the model classified restaurants in
newly rising commercial areas better than Model 3. In neighborhood centers, Model 2
predicted a very small number of restaurants.

Model 3 predicted the distribution of restaurants, similar to the CNN-MLP model.
This model classified buildings in a limited area as restaurants and depicted areas with
a high density of restaurants as dense. However, Model 3 could not accurately predict
the restaurants in newly rising commercial centers and restaurants in the neighborhood
centers.

In short, the results show that the model offers better accuracy of local distribution
of restaurants with only limited data on building forms. Although the CNN-only model
showed a lower classification performance, the visualized distribution of restaurants in the
city was very similar to the actual distribution. Because commercial centers have many
restaurants and a low risk of error, MLP-based models, which include data about the
urban context, classify restaurants mostly in the central commercial areas. However, urban
contexts that cannot be obtained via the urban form, such as the hierarchy of commercial
areas or subway stations, should be complemented to achieve higher performance.

Meanwhile, the result of Model 2 is more similar to that of Model 3 than that of
Model 1, which means that the decision power of the classification model leans more
toward the MLP layers. This is because of the higher classification accuracy of the MLP
model compared with that of the CNN model. To improve the classification performance,
methods that take advantage of both models, such as boosting, should be designed.

3.2.2. Insight into Urban Morphology

In this study, the CNN-only model used building outlines as input data. Therefore,
the classification results of the model imply a pure effect of urban form on the locations of
commercial facilities. In this section, the predicted distribution of restaurants is interpreted
using three types of urban areas: hierarchical blocks in the urban periphery, grid blocks in
urban centers, and the periphery of large complexes.

In the hierarchical blocks in the urban periphery, streets with high connectivity that
served nearby residents traveling to main roads or transit nodes were classified as having
more restaurant locations. For example, Figure 6a shows the predicted restaurant locations
for Yeokchon-dong and Eunpyeong-gu. The arterial road (blue lines) runs on the east and
south sides of the block, and the roads connected to the arterial roads (red lines) connect
individual houses to them. These roads have the most buildings with restaurants, and,
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according to the classification results, this type of road generally has a width of 6–15 m.
This finding supports the results of previous studies that neighborhoods with hierarchical
shapes have a high centrality of route choice and that neighborhood retail stores are mainly
located on main service roads [51,98].
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Figure 6. Examples of predicted restaurant locations by CNN-only model. Red lines indicate
neighborhood roads while blue lines indicate arterial roads. (a) Yeokchon-dong (Eunpyeong-gu).
(b) Nonhyeon-dong (Gangnam-gu). (c) Dohwa-dong (Mapo-gu).

In the square-shaped superblocks in the downtown area, many buildings with restau-
rants are located in front of the service roads inside the blocks. Looking at Figure 6b,
restaurants are located in the periphery of the block, but still inside the block. The west and
south side strips of the block were designated as commercial areas and were excluded from
the analysis, but only a few restaurants are located in that area. Buildings in front of arterial
roads in downtown areas are more likely to be used for specialty stores and flagship stores
for luxury brands. These buildings are not only used for instant consumption, but also as
billboards for marketing a brand [99]. In contrast, restaurants in downtown areas tend to
agglomerate to attract more customers, and buildings on internal roads with lower rents
are more likely to be located there [100].

Another context that a CNN can read is the existence of a large facility or apartment
complex. Many consumers come from large facilities or apartment complexes, and most of
these facilities do not have sufficient services inside their territory. Restaurants are easily
located in front of these facilities or along the access road to the main transit node of the
area. Figure 6c shows a large area with multiple apartment complexes. In the map, the
predicted restaurant locations are in front of apartment complexes and in the middle of the
road to a nearby subway station.

However, there are several limitations in using building outlines as input data. As
the input data only describe buildings and voids, some contexts not related to the urban
form cannot be recognized by the model. A subway station is a good example of this.
Because subway stations are generally located underground, the building outline data
cannot reflect the existence of subway stations. Parks are difficult to distinguish from
squares, and streams can be misunderstood as wide roads (for example, Figure 6a has both
a subway station and a stream).

The extent of the input data of the CNN model was a 512 × 512 m square image.
Regional contexts beyond this extent could not be considered in the model. Specifically,
the urban forms of central commercial centers and sub-centers have fewer distinguishing
features without a regional context. In recent decades, the geography of Seoul’s commercial
streets has changed rapidly [85]. Because urban form is known to change more slowly than
its usage, there is a mismatch between the location and its urban form.

4. Discussion

The field of urban studies has been examining the relationship between urban form
and commercial facilities for many years. In particular, researchers have attempted to
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test the hypothesis that urban form affects commercial functions by converting urban
forms into numerical parameters, such as block size [8,48–50] or street connectivity [51,101].
In addition, sophisticated algorithms that mathematically model the urban structure or
operating principles of a city, such as space syntax and cellular automata, have been studied
for over 20 years.

Conversely, the research methods mentioned above are mainly methods of numerating
some part of the various attributes of a city. These numerated values are used as part of a
statistical model along with other variables [23,42,45], but they only provide limited results
because of their inflexible assumptions. To solve this problem, we developed a method to
evaluate the location of commercial facilities by interpreting the shape of a city as image
data using artificial neural networks.

The CNN-based model developed in this study has several implications. First, the new
tool can read 2D images to understand urban settings. In the analysis, only the building
outline image was used to train Model 1, and a fine level of classification accuracy was
achieved. An AUC of 0.732 and 0.839 is comparable regarding the class imbalance when
compared to those in land use classification tasks [87,88]. This means that the CNN can
automatically extract the key features of urban form that are suitable for a restaurant.

Second, the new tool showed that urban form is significantly related to restaurant
locations. Although the building form is not directly related to restaurant business, the
form does indicate specific characteristics of the location. Third, the classification result can
provide implications about urban form. The results of the study were visualized, thereby
identifying the features that were common for restaurant locations. Because the input data
do not include additional information beyond building form, the pure relationship between
building form and restaurant location was found.

The research findings can be used in the following ways. First, using CNN, more
complex urban data can be read by a computer. In the case of Model 1, no analytical
framework or additional information was provided to the model, but the model interpreted
the image for a specific purpose. If urban data other than urban form are provided in a 2D
map image, further interpretation can be completed by artificial intelligence. Second, the
novel method can be used by researchers to find relationships between attributes of urban
spaces. In this study, the relation between building form and restaurant location can be
interpreted by reverse-analyzing the prediction result. This process can be further used to
develop XAI in the urban studies field [102].

Meanwhile, this study has some limitations as it presents a new method of analyzing
cities. First, an overfitting problem seems to occur while training Models 2 and 3. Several
techniques including image data augmentation (rotation, inversion, and Gaussian noise)
and MLP dropout were used to reduce overfitting, but the improvements were small.
Second, more than half of the original data were deleted and became missing data samples.
These were mostly removed because they did not include building height as the buildings
were relatively old and had fewer stories. Removing these buildings creates a risk of
deleted missing data distorting the sample group. Still, the sample size is sufficiently large,
and the effect to the model’s ability to accurately predict restaurant location may be small.

Third, the train set and test set of data might not completely be independent of
each other. Since the train–test split was randomly performed for all samples, maps of
adjacent regions may have been regularly included in the train and test sets. This problem
extended the range of the input image and secured the number of training data. However,
further investigation is needed to determine whether there is dependency between adjacent
samples. Finally, the renewal period may have created some noise in the data, or there may
have been an ambiguous declaration of the business category. To address this issue, the
data should be cross-validated with other data sources, such as POI data from online map
services.

In future research, model performance can be improved by improving data quality
(addressing the missing data problem), using additional data (e.g., business sales data) or
providing more regional context. Also, the overfitting problem could be solved by adding



ISPRS Int. J. Geo-Inf. 2023, 12, 373 17 of 21

ensemble techniques [103,104], using cross-validation [105], or fine-tuning the parameters
of the CNN model.

The research findings could be applied in several ways. First, the results of the
classification model can be used for additional interpretations. Existing urban form indexes
can be used to compare those interpretations with the urban form pattern found by CNN.
Second, cities from different regions can be analyzed together rather than only using Seoul
as a study area. Through this, the external validity of the CNN model can be tested, and
cultural characteristics of each city can be analyzed.

5. Conclusions

This study proposed an approach for using 2D images to read urban forms using a
neural network. The findings of the study are as follows: (1) urban form can be read by
CNN in the form of 2D images and thereby predict features of urban data; (2) using CNN,
restaurant location can be predicted to some extent with a limited data of the building
outline; and (3) the prediction result can be interpreted to find implications in urban
morphology.

This study shows the potential applications of CNN in urban informatics. The com-
plexity of urban area and spatial relationships between elements in urban settings have
been studied in urban modelling for many years. There are hundreds of indicators to
summarize the characteristics of urban settings. However, using CNN, urban settings
can be understood in the intact physical form of a map. The research findings can lead to
further development of methods to better understand urban spaces and to be applied in
complex tasks of urban engineering.
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