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Abstract: The availability of spatial and spatiotemporal big data is increasing rapidly. Spatially
and temporally high resolved data are especially gathered via the Internet of Things. This data
can often be accessed as data streams that push new data tuples continuously and make the data
available in real time. Such real-time spatiotemporal data have great potential for new analysis
approaches based on modern data processing technologies. The ability to retrieve spatial big data
in real time, as well as process it in real time, demands new analysis methodologies that catch up
with the instantaneous and continuous character of today’s spatiotemporal data. In this work, we
present an evaluation of a high-frequent dynamic spatiotemporal autocorrelation approach. This
approach allows for geostatistical analysis of streaming spatiotemporal data in real time and can
provide insights into spatiotemporal processes while they are still ongoing. To evaluate this new
approach, it was applied to mobility data from New York City. The results show that a high-frequent
dynamic spatiotemporal autocorrelation approach provides comparable and meaningful results. In
this way, high-frequent geostatistical analyses in real time can become an addition to retrospective
analyses based on historical data.

Keywords: geostatistics; spatiotemporal autocorrelation; distributed stream processing; real-time
analysis

1. Introduction

The available geospatial data is increasing steadily. Distributed data collection tech-
nologies such as sensor networks, crowdsourcing and other data sources in the context of
the Intent of Things (IoT), gather continuous real-time data of our environment [1,2]. These
data are often provided as data streams and, therefore, can be processed in a streaming
environment as well. This opens up opportunities to process these geodata continuously
and instantaneously and gain immediate insights into processes in our environment in
the same way. Furthermore, these geodata streams nowadays provide high spatial and
temporal resolution and allow for sophisticated spatiotemporal analyses. These include
geostatistical methods to investigate spatial and spatiotemporal processes and assess de-
tected patterns statistically. Thereby a large amount of collected data is needed to achieve
reliable statements of these statistical approaches. For this reason, the growth of spatial big
data leads to a corresponding increase in application possibilities of spatial analysis algo-
rithms such as these geostatistical analysis methods [3]. Especially regarding real-time data
including various traffic and environmental parameters gathered from our environment.
An intensively applied and refined geostatistical method is the spatial and spatiotemporal
autocorrelation, respectively [4,5]. It can be used for the exploratory investigation of spatial
data, searching for patterns that differ from random processes and, thus, detecting possible
mechanisms behind observed phenomena.
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At the same time, we see promising developments in processing and analysis tools for
streaming data. Distributed stream processing, in particular, offers opportunities to process
and analyze big data in real time while applying complex calculations to the data. In our
previous study [6], we presented a methodology to adapt an extended spatiotemporal
Moran’s I index originally presented by Gao et al. [7], as a distributed streaming process. In
this way, this index as a measure for spatiotemporal autocorrelation, can be applied to time
series data retrieved from geodata streams. This allows for a calculation of spatiotemporal
autocorrelation and its assessment using parallel permutation tests in real time.

This approach of spatiotemporal autocorrelation directly applied to geodata streams
incorporates the potential to transfer real-time access to spatial big data via the IoT into
a real-time analysis with similarly high temporal resolution. Such an analysis approach
can intensively improve the way we derive geospatial knowledge from data on our envi-
ronment. These new processing and calculation possibilities demand a new way to set up
and use the spatiotemporal autocorrelation itself. Thus, instead of retrospective analyses
based on historical data alone, an additional investigation with high temporal resolution is
of interest. This leads to our concept of a high-frequent dynamic autocorrelation, which we
intensively evaluate in this study. The resulting high-frequent dynamic autocorrelation is
different from the original approach since we do not generate a single autocorrelation index
for the accumulated data, but we obtain a continuous progression of the autocorrelation
with high update frequency and very low latency. This allows for immediate observation
of potential trends in the autocorrelation and therefore the spatio-temporal behavior of the
monitored process itself. In parallel, test statistics based on permutation tests are produced
with the same temporal resolution to allow for a continuous statistical assessment of the
progressing autocorrelation.

This raises the question of which insights can be gained by a high-frequent dynamic
variant of the spatiotemporal autocorrelation compared to conventional approaches and,
furthermore, to what extent the analysis results are comparable to known methods for the
analysis based on historical data. This study examines these questions. Furthermore, it
investigates the influences of the chosen temporal criteria on the analysis results, which are
of particular interest in such a dynamic and temporally high resolved approach. To do so,
the new concept is applied to mobility data collected in New York City in 2018 [8]. Multiple
progressions of the spatiotemporal autocorrelation in the data are produced. The spatially
and temporally high resolved mobility data allows for updates in rates of a few minutes
while comprising time series data from multiple hours. The innovation of the presented
approach is the high-frequent dynamic use of spatiotemporal autocorrelation with an
extended Moran’s I index. In this context, this work includes the following novelties:

• High-frequent dynamic spatiotemporal autocorrelation approach;
• Geostatistical analysis in real time that adds to existing analyses based on histori-

cal data;
• Immediate assessment of temporal trends and fluctuations regarding the spatiotempo-

ral autocorrelation;
• Possibility to gain insights in spatiotemporal big data in real time and analyze spa-

tiotemporal processes while they are ongoing.

In this work, we present an evaluation study of a high-frequent dynamic spatiotempo-
ral autocorrelation. The background and related works regarding this concept are described
in Section 2. The evaluation methodology used in this study is described in Section 3. The
results of the evaluation are presented in Section 4 and discussed in Section 5, with our
conclusions provided at the end of the paper.

2. State of the Art and Related Work

In this section, we present the important background for this work. First, we sum-
marize relevant literature concerning the processing and analysis of spatial streaming
data. This is followed by a brief overview of the concepts and approaches for spatial and
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spatiotemporal autocorrelation. After that, an explanation of the extended spatiotemporal
Moran’s I developed by Gao et al. (2019) [7] is given. At last, we present our adaption
of this extended spatiotemporal Moran’s I as a streaming process which was used for the
study in this paper.

2.1. Related Work in Processing and Analysis of Spatial Streaming Data

Multiple suggestions for real-time geostatistical approaches in the context of the
IoT can be found in the scientific literature. Cheng et al. (2012) conducted a study of
spatiotemporal autocorrelation in road traffic networks in London [9]. A study of inner-city
air quality applying spatiotemporal regression on environmental data from distributed
sensor networks was presented by van Zoest et al. (2020) [10]. Both suggested that the
implementation of the geostatistical analyses used as applications in near real-time is a
promising further development. A method for producing air quality maps based on high
temporal resolution data streams from sensor networks using geostatistical methods was
developed by Schneider et al. (2017) [11].

The analysis of streaming spatial data has been tackled in many studies. Most of these
studies emphasize the gathering, filtering, and handling of geodata, which are collected
from continuous data sources. In this context, Lorkowski and Brinkhoff (2015) introduced a
system designed to filter, process, interpolate, observe, and store data streams from sensors
utilizing a particularly efficient kriging method [12]. It facilitates the timely recalculation
of kriging calculations by working only on specific regions where the variance in the new
data grid is significantly reduced. Hwang et al. (2013) presented a methodology for near
real-time aggregation of georeferenced social media data [13]. The aim was to provide a
continuous source for spatiotemporal analytical methods. Laska et al. (2018) conducted
a case study on spatiotemporal data streams in stream processing environments [14]. By
integrating IoT data streams into open-source tools, they implemented a state-of-the-art
map matching algorithm in a distributed manner. Zhong et al. (2016) worked on improv-
ing ordinary kriging interpolator performance in a streaming environment, significantly
reducing calculation time for spatiotemporal interpolation [15].

These studies enhance the field of processing and analysis of spatial streaming data
and emphasize the relevance of real-time applications of geostatistical methods. Never-
theless, an investigation of continuously calculated spatiotemporal autocorrelation and
the corresponding abilities to analyze spatiotemporal processes in a geostatistical manner
in real time, is still missing. The work in this paper examines the potential, behavior, and
limits of an extended Moran’s I index adapted as a streaming process. In this way, our
paper contributes to the field of spatial analysis in real time and presents a study on a
high-frequent autocorrelation approach applied to spatial big data.

2.2. Spatial and Spatiotemporal Autocorrelation

Originally spatial autocorrelation statistics have been developed to identify a theoret-
ical condition in which there is no spatial autocorrelation. However, in current practice,
these statistics are also used to measure the degree of spatial autocorrelation present in
georeferenced data [4]. As a result, the application of these methods is no longer limited to
hypothesis testing. Rather, they are applied to exploratory investigation. In this way, it is
possible to examine geospatial data for patterns that indicate phenomena and processes
that have previously gone undetected and are not the result of random processes.

Since the first investigations regarding spatial autocorrelation, various measures for its
mathematical description have been developed. In the context of this study, the following
indices were used: the classic Moran’s I introduced by Moran (1950), the local Moran’s
I presented by Anselin (1995) and an extended spatiotemporal Moran’s I developed by
Gao et al. (2019) [7,16,17]. Some other common measures of spatial autocorrelation are
Geary’s C [18], the cross-product statistic Γ [19], Getis and Ord’s G [20], Ripley’s K [21],
Ord and Getis’ O [22] and Matheron’s 1/γ [23].
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The extended Moran’s I index by Gao et al. (2019) was developed specifically to
analyze mobility data [7]. This index measures the deviations between time series data at
different localities and determines the spatial autocorrelation in these deviations. Some
other indicators for spatiotemporal autocorrelation use different approaches to integrate the
temporal behavior of the examined process. One approach presented by Liu et al. (2015),
is to measure spatial autocorrelation in vectors, rather than scalar values [24]. However,
this method is only suitable for static data and is unsuitable for extensive spatially and
temporally resolved mobility data [7]. Considering the temporal dimension in the weights
matrix is also a possibility, as conducted in the approaches of Dubé and Legros (2013) and
Lee and Li (2017) [25,26]. However, in these methods, the spatial observations and temporal
values are considered separately [7]. An extension of the Moran coefficient by the Pearson
correlation coefficient was presented by Porat et al. (2012) [27]. This procedure assumes a
normal distribution and linear dependence of the variables. However, these assumptions
cannot always be satisfied for mobility data [7].

2.3. Extended Spatiotemporal Moran’s I

Mobility data have not only spatial but also temporal characteristics. In principle,
these data can be seen as spatially distributed time series. Therefore, the deviations between
individual spatially distributed values are no longer compared, as is performed in the
classic Moran’s I, but the deviations between time series of values. The similarity of two
time series is described by Gao et al. (2019) in two parts [7]. This is achieved first using
the temporal similarity of the trend development of the time series and second by the
magnitude deviation. The temporal similarity of the trend development is estimated by a
temporal correlation coefficient of two time series. The magnitude deviation is evaluated
by the difference in the accumulated volumes of the two time series. Consequently, the
deviation is first measured by the difference of the cumulative volumes of two time series
and then adjusted for the temporal dissimilarity. To determine the temporal dissimilarity
of the trend development of the time series, an adaptive temporal dissimilarity measure
that covers both temporal correlation and data distance is used [28]. The extended global
(IT) and local (IT

i ) Moran’s I indices are, respectively, defined as follows:

IT =
N

∑N
i ∑N

j Wij

∑N
i ∑N

j WijZT
i ZT

j

∑N
i ZT2

i

and IT
i =

NZT
i ∑N

j WijZT
j

∑N
i ZT2

i

(1)

Equation (1) shows the global (IT) and local (IT
i ) extended Moran’s I indices, where W

is the spatial weight matrix, N the number of localities and ZT
i and ZT

j are the deviations
between the time series at locations i and j from the series of mean values. The superscript
T in ZT

i , ZT
j as well as IT and IT

i indicate, that these values are calculated over the length T
of the time series. This means the deviations ZT

i and ZT
j represent a measure of deviation

in temporal trend and cumulative volume between a times series of length T at the location
i or j and the time series consisting of the mean values of all locations in the study area.
The global and local indices IT and IT

i measure the spatiotemporal autocorrelation within
time series of length T, respectively. The global extended Moran’s I index IT indicates the
presence of spatiotemporal autocorrelation within the whole data set. The local indices IT

i
estimate the associated impact of individual local values.

2.4. Extended Spatiotemporal Moran’s I as a Streaming Process

In our previous study, we adapted the extended Moran’s I by Gao et al. (2019) as
a distributed streaming process [7]. For this purpose, special time semantics have been
introduced. These time semantics are of particular importance for the interpretation of the
result of this study. The temporal configuration of the streaming process is closely linked
to the temporal configuration of the spatiotemporal autocorrelation. Two parameters are
used: the time interval and the time span. These two parameters define the way the time
series data is mapped to time windows inside the streaming engine. The time interval
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defines the step size for the calculation and therefore the time slot over which the events
are accumulated and the update frequency of the result values at the same time. The time
span defines the time slot over which the autocorrelation is calculated and, therefore, the
data total that is considered. The relation of time interval and time span is illustrated in
Figure 1.

time span

time interval

Figure 1. Representation of time span and time interval in the data stream. Source: Lemmerz et al. [6].

The introduced time interval and time span are key elements of our adaption of the
approach by Gao et al. (2019) as a streaming process [7]. Gao et al. (2019) designed their
method to be applied to a large set of accumulated data in its entirety [7]. In their scenario,
the time series extends over the entire period over which the data was accumulated. In this
way, a spatiotemporal autocorrelation for the whole period is obtained. In our streaming
adaption, the period over which the autocorrelation is calculated shifts continuously and
corresponds to the defined time span. By doing so, the calculated autocorrelation can be
updated with a high frequency, incorporating new arriving data from the data stream. The
time interval is used to discretize the incoming data tuples into time windows of fixed
length. This defines the temporal lag between the elements within a time series. Since
the original method by Gao et al. (2019) [7] is applied to a finite data set with fixed time
boundaries, it is only suitable for retrospective analyses of historical data. Our adaption as
a streaming process in Lemmerz et al. (2023) on the other hand, allows for a continuous
application on endless and current data streams [6].

Another important definition from the previous study is the check values. These
check values Ψ1 and Ψ2 are used to assess the reliability of the continuous calculation
processes [6]. A detailed description of the check values is given in Section 3.3, where the
threshold values for Ψ1 and Ψ2 are defined.

3. Evaluation of the Dynamic Spatiotemporal Autocorrelation

Fundamental for an evaluation of the calculated results with respect to their geostatis-
tical meaning is that there is no generally valid ground truth to which these results could be
compared. For this reason, the evaluation focuses on the question of to what extent a con-
tinuous and high-frequent calculation of the extended Moran’s I index and the associated
dynamic consideration of the spatiotemporal autocorrelation is comparable with known
methods. The influence of the configuration of the calculation procedure is investigated as
well. Furthermore, it is considered which evaluation methods were used in the evaluation
of similar methods for the detection of spatiotemporal autocorrelation, and suitable aspects
were adapted for this evaluation. In the following, the evaluation methodology is explained.
First, the data set used for the evaluation is presented. Afterwards, the examined aspects of
the evaluation will be described in detail. Last, the necessary assumptions and selected
parameters used in the geostatistical analysis are described.

3.1. Data Set

The data used for the evaluation is the TLC Trip Record Data from the New York City
Taxi and Limousine Commission [8]. This data set contains data on taxi trips recorded in
New York City. The data include origin and destination localities, as well as start and end
times for each taxi trip. In addition, the distance traveled, billing data and the number of
passengers are also available. In this study, however, only the origins and destinations as
well as the start and end times of each trip are considered. An exemplary data record is
shown in Table 1.
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Table 1. Example of a data record

Field Value Description

tpep_pickup_datetime 2018-01-06 07:10:00.000 Date and time at origin
pep_dropoff_datetime 2018-01-06 07:17:17.000 Date and time at destination
PULocationID 234 ID of the pick-up location
DOLocationID 68 ID of the drop-off location
...

The beginning and the end of each trip are considered as one event with one location
and one time of occurrence. The spatial location of these events is modeled using predefined
taxi zones. Each start and end of a trip is assigned to one of these taxi zones. The New York
City Taxi and Limousine Commission has divided the city into a total of 263 zones. The
division of taxi zones is shown exemplarily in Figure 2 for the borough of Manhattan. The
definition of the neighborhood relations between the events is performed directly via the
respective taxi zone. For this purpose, appropriate criteria are applied to the taxi zones in
Section 3.3. For the temporal reference of the events, the start and end of the taxi trips are
timestamped by date and time of day.

Figure 2. Division of taxi zones in the borough of Manhattan in New York City.

3.2. Evaluation Methodology

The new high-frequent approach is compared with other approaches known in the
literature. These include the classic Moran’s I and the extended Moran’s I index presented
by Gao et al. (2019), as it has been used so far for the investigation of historical data [7]. In
addition, results from different configurations of the calculation process were also compared
with each other to examine the effects of the chosen parameters.

For the evaluation of the procedure with regard to the geostatistical meaning, suitable
aspects were selected, which were then examined and discussed. These aspects can be
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divided into two categories: (1) aspects of the evaluation that were adapted from studies
on geostatistical analyses of historical data, and (2) aspects that were specifically designed
for the evaluation of the approach presented in this study. In this way, comparisons with
known procedures can be made and the specific capabilities and characteristics of the new
approach can be considered as well.

The extended Moran’s I index presented by Gao et al. (2019) [7] was developed to
analyze mobility data. In their study, Gao et al. (2019) used data on taxi trips in Beijing to
evaluate their approach [7]. For this purpose, they conducted a comparison of the extended
with the classic Moran’s I index. Separate investigations for the origin and destination of
the trips were also made and compared with each other. These two comparisons have been
included as aspects of the evaluation in this work. The comparison with the classic Moran’s
I serves as a reference to an existing and extensively used and researched procedure. The
comparison between the indices for origins and destinations provides information about
mobility patterns, especially in the context of the intended dynamic view. The method
presented by Liu et al. (2015) for measuring spatial autocorrelation of vectors has also
been evaluated using mobility data [24]. In this case, taxi trips in the city of Shanghai have
been used. Again, the results for trip start and trip end were compared. In contrast to the
study of Gao et al. (2019) [7], the autocorrelation indicators were calculated over the course
of a day for one hour at a time, rather than for the entire study period. This comparison
of the values over time is also suitable for evaluating the continuous calculation of the
extended Moran’s I index in this work. In this way, the dynamic view of the spatiotemporal
autocorrelation can be examined. In addition to the obtained Moran’s I index, the results
of the permutation tests were also compared over time. These permutation tests were
represented by the arithmetic mean of all test results for the corresponding time period.
Such a comparison of the determined values with the permutation tests over time is also
used for the evaluation within the scope of this work.

In addition to these aspects of the evaluation, aspects addressing the continuous
calculation of the extended Moran’s I index were also determined. These focus on the
influence of the configuration of the analysis procedure on the results. This configuration
depends on the parameter’s time interval and time span as described in Section 2.4. For
this purpose, different configurations were compared for the time interval and the time
span, respectively. In addition to this, several progressions of the dynamic spatiotemporal
autocorrelation over a day were compared with each other to investigate to what extent
characteristic differences can be observed. In this way, further application areas for a
high-frequent dynamic extended Moran’s I index can be assessed.

Beyond these comparisons of the results for the global extended Moran’s I index,
the need for further result values is also considered. It is examined to what extent the
additional results in the form of a map of the local extended Moran’s I indices and the Moran
scatterplot, allow further statements and insights into the mobility processes. Especially
with regard to the high-frequent and dynamic perspective. The selected aspects of the
evaluation are summarized in Table 2.

Table 2. Section structure of the aspects of evaluation.

Aspect of Evaluation Result Discussion

Influence of the temporal configuration parameters Section 4.1 Section 5.1
Comparison of different time intervals Section 4.1.1
Comparison of different time spans Section 4.1.2
Comparison of the extended Morans’s I and test statistics Section 4.1.3

Comparison with classic Moran’s I Section 4.2 Section 5.2

Investigation of the spatiotemporal process in the data set Section 4.3 Section 5.3
Comparison of origin and destination localities Section 4.3.1
Comparison of daily progressions for different weekdays Section 4.3.2
Consideration of local autocorrelation Section 4.3.3



ISPRS Int. J. Geo-Inf. 2023, 12, 350 8 of 21

3.3. Assumptions and Parameters

Some assumptions need to be made and parameters must be specified in order to calculate
the extended Moran’s I index. These include the spatial neighborhood relationships in the data,
as well as the limits for the internal check values described in Lemmerz et al. (2023) [6]. The
parameters and assumptions defined below apply to all results presented in Section 4.

To define the spatial neighborhood relationships, the neighborhood criterion, the
order of neighborhood and the type of weighting must be specified. As the neighborhood
criterion, the queen criterion was chosen [6]. This was conducted because there was no
need to distinguish the neighborhood at an edge or at a corner of the taxi zones. The
mobility data collected in New York City gives reason to assume that a taxi trip can route
across an edge as well as across a corner. Due to the fact that New York City is divided
by two rivers and also includes several islands, some zones have direct transport links
without being adjacent to each other. These transport links in the form of bridges and ferry
connections were also taken as an expression of a neighborhood of two zones since they
allow mutual influence on the mobility process. Only first-order neighbors were included
in the spatial weights matrix. The weighting of the neighborhood relationships is carried
out on the basis of binary weighting. Consequently, the relations between neighboring
zones were weighted with 1, and the relations between non-neighboring zones with 0.
Due to the irregular division of the taxi zones as arbitrary polygons, the weighting factors
were combined in a row-standardized weights matrix. This is advantageous when the
study space is irregularly subdivided. Moreover, the definition of one of the check values
introduced in Lemmerz et al. (2023) is based on such a row-standardized weights matrix [6].

In addition, threshold values for the check values explained in Section 2.4 must also
be specified. The first check value (Ψ1) must be equal to 0 according to its mathematical
definition. Using a row-standardized weights matrix, the values of the global Moran’s I
index equals the sum of the local indices divided by the number of localities [6]. However,
non-integer numbers are usually stored approximately in computerized data processing.
For this reason, it can be expected that this check value will be non-zero but close. The data
type used in the implementation of this check value stores numbers in binary format and can
theoretically represent decimal numbers accurately up to 16 decimal places. However, this
is linked to a large number of technical constraints. For this reason, a limit of only 1 · 10−10

was set for this check value. The second check value (Ψ2) checks to what extent the global
extended Moran’s I index corresponds to the slope of the regression line in the Moran
scatterplot. The slope in this regression is a legitimate estimate for Moran’s I [29]. In the
following, the global extended Moran’s I index is given with two decimal places. This
gives a step size of 1 · 10−2 between two consecutive values. The limit was set to half of
this step size.

4. Presentation of Results

The aspects of the evaluation outlined in Section 3.2 were examined using the mobility
data of 6 January 2018, which was a Saturday with a total of 274,468 taxi trips. Moreover,
6 January 2018 is a day with a striking pattern in terms of spatiotemporal autocorrelation
and, thus, is well suited for comparison between different calculation methods and configu-
rations. The size of the time intervals investigated in the following is selected with respect
to the existing event density in the data set. In order to be able to guarantee a sufficient
data basis and to be able to investigate the characteristics of a dynamic observation at the
same time, time intervals in the range of several minutes were chosen. An investigation
of the shortest possible time intervals in the range of a few seconds was carried out in the
context of the evaluation in our previous study [6].

In the following, the results for the different aspects of the evaluation are described
and discussed. In favor of a coherent understanding of the different aspects, the aspects
were divided into three groups. The first group investigates the influences of the temporal
configuration parameters that were introduced to adapt the extended Moran’s I index as
a streaming process. This is followed by the comparison of the results for the extended
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Moran’s I index with the classic Moran’s I. It allows for an assessment of the comparability
of spatiotemporal autocorrelation with a well-known measure for spatial autocorrelation.
In the third group of aspects, an investigation of the mobility process in the data set takes
place to assess the abilities of the high-frequent dynamic autocorrelation approach. This
is performed by comparing the behavior of the progression of the autocorrelation over
time for the different aspects. The structure of the sections of the evaluation results and
their discussion, respectively, is summarized in Table 2. During the calculation process
of the presented results, the limits for the check values defined in Section 3.3 have been
met for all values. Furthermore, the corresponding data from the previous day was also
included in the calculations, so that the entire time period was considered for all the
progressions presented.

4.1. Influence of the Temporal Configuration Parameters
4.1.1. Comparison of Different Time Intervals

Three time intervals were compared for an assessment of the influence of the selected
time interval. For this purpose, progressions of the extended Moran’s I index have been
created for the intervals 5 min, 15 min, and 60 min, all with a time span of 360 min. These
three progressions are shown in Figure 3.
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Figure 3. Comparison of different time intervals in the calculation of the global extended Moran’s I
index for origin localities over the course of 6 January 2018.

It can be seen that the choice of time interval has a considerable influence on the results.
A division into wide intervals results in strong fluctuations, while a finer division shows a
smoother progression. In the sector of the strong fluctuations (6:00 to 9:00), the progression
for a time interval of 60 min stands partly in contradiction to the values of the progressions
with time intervals of 5 min and 15 min. These differences can be explained by the division
of the data stream into intervals. As described in Section 2.4, the events, here starting taxi
trips, are aggregated for one time interval each, and thus, an event frequency is formed
for each time interval. Thus, although the total number of events that occurred does not
differ, the relative growth of event frequencies over time does. These differences in the
progression of event frequencies are shown in Figure 4. This explains both, the variations
in magnitude and the differences in the measured autocorrelation. The measure used to
express the similarity of two time series is composed of two components: the similarity of
the trend development of the time series and the size difference of the cumulated volumes
of the time series. Due to the constant time span and the corresponding length of the time
series, the cumulative volume is of the same size in all progressions. Consequently, the
difference in the progressions arises from the differences in the trend development of the
event frequencies. These differ due to the respective time interval used for their subdivision.
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This leads to the conclusion that the tendentially higher values for the autocorrelation are
generally to be expected for a smaller time interval. Short-term differences in mobility
events have less influence, since the relative proportion of influenced intervals, in relation to
the length of the time series, is lower. It can be seen that shorter intervals are less influenced
by increasing and decreasing event frequencies than longer time intervals. In this way, the
deflection of the progression for the time interval of 60 min at 7:00 can also be explained.
This division provides a sudden and highly pronounced change in the set of aggregated
events between the sectors 5:00 to 6:00 and 6:00 to 7:00, which is not present in using a finer
division (see Figure 4). This produces a large disparity in the trend development, relative to
the last six time intervals of 60 min each, and ultimately results in increased autocorrelation.
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Figure 4. Growth of event frequencies relative to the respective previous time interval for the entire
observation area on 6 January 2018.

4.1.2. Comparison of Different Time Spans

Three time spans were compared to assess the impact of the chosen time span. For
this purpose, progressions with a time interval of 5 min and time spans of 60 min, 180 min
and 360 min have been created. These three progressions are shown in Figure 5.
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Figure 5. Comparison of different time spans in the calculation of the global extended Moran’s I
index for origin localities over the course of 6 January 2018.

It can be seen that the choice of the time span has a significant impact on the results
as well. Shorter time spans tend to result in weaker autocorrelation. On the other hand,
the results show greater short-term fluctuations for shorter time spans with a generally
similar progression over the day. A stronger response to changes in the mobility process
can certainly be expected with a shorter observation period since individual events account
for a larger share of the total data considered. Thus, a choice of shorter time spans has
the effect of identifying trends earlier in the progression of the autocorrelation, since the
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short-term past trend is the subject of the calculation. In contrast, longer time spans result
in a delayed and eased mapping of individual events. Furthermore, it can be seen that any
change in the direction of the progression is more stable with a longer time span. A trend
reversal of the progression for a longer time span is therefore more convincing with regard
to the further development to be expected and allows a more reliable estimation of the
further progression.

4.1.3. Comparison of the extended Morans’s I index and averaged test statistics

To compare the global extended Moran’s I index with the results of the permutation
tests, two progressions with time intervals of 5 min and 60 min have been created with a
time span of 360 min and 99 permutation tests performed in parallel. A pseudo-p value
of 0.01 was obtained for all time steps. The progressions are shown in Figure 6.

It can be seen that for both time intervals, the averaged distributions from the permu-
tation tests are considerably below the determined indices. Nevertheless, the results from
the permutation tests for different time intervals show different behaviors. The averaged
test statistics for the time interval of 60 min include significantly higher values and the
progression is similar to the progression of the determined autocorrelation for the observed
data. The averaged test statistics for the time interval of 5 min, on the other hand, are
much lower and hardly reveal such a similarity in the progression. Similarities between the
permutations and the actual events suggest a similarity in temporal behavior across the
study space. This is because an exclusively spatial permutation of the data was performed,
which otherwise should have eliminated any similarities. These similarities apparently
arise only in the case of a coarse division of the time intervals. Small divisions apparently
do not show these similarities in the trend development independent from the locality.
Furthermore, it can be seen that especially those features can be recognized in the trend
of the averaged test statistics, which distinguish the trend for the time interval of 60 min
from the trend with the time interval of 5 min. This can be an indication that processes
are involved that occur in the entire study area and only become noticeable in large time
intervals, such as a change in the total traffic volume in the study area. Thus, similar
behavior with respect to swelling and decaying event frequencies related to the selected
time interval as seen in Section 4.1.1, appears to be reflected in the permutations as well.
This behavior indicates that spatiotemporal relationships in mobility events appear to be
more prominent in longer time intervals due to the overall volume of traffic and thus the
time of day. Accordingly, when considering short time intervals, these relationships appear
to be less dependent on total traffic volume.
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Figure 6. Comparison of the global extended Moran’s I index with the arithmetic mean of the indices
from the permutation tests for origin localities over the course of 6 January 2018.
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4.2. Comparison with Classic Moran’s I

Two pairs of progressions were computed to compare the high-frequent extended
Moran’s I index for spatiotemporal autocorrelation with the classic Moran’s I [16] for
spatial autocorrelation. The four resulting progressions have been computed with the
origin localities of the taxi trips. For the extended Moran’s I index, progressions with a
time interval of 5 min were created considering data in a time span of 60 and 360 min,
respectively. For comparison, the classic Moran’s I is presented for each hour, including
data in each of the last 60 min and 360 min. These progressions are shown in Figure 7.
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Figure 7. Comparison of the global extended Moran’s I index with the global classic Moran’s I for
origin localities over the course of 6 January 2018.

The comparison shows that the high-frequent dynamic spatiotemporal approach pro-
vides quite comparable progressions compared to the classic Moran’s I. The development
of autocorrelation over the day shows a similar progression. The autocorrelation measured
by the extended Moran’s I index is usually weaker but still remains at a strong level. The
observation of a stronger autocorrelation for the extended Moran’s I index compared to the
classic Moran’s I, as in the study by Gao et al. (2019) [7], cannot be confirmed here. This
can be a result of a different temporal trend development occurring in the considered taxi
trip data from New York City and the data from Shanghai used by Gao et al. (2019) [7].

While the classic Moran’s I uses the accumulated volume for every locality to calculate
the autocorrelation, the extended Moran’s I index by Gao et al. (2019) [7] on the other
hand, uses the accumulated volume and adjusts it by the correlation of the temporal
trends in the respective localities. Considering only the calculation procedures of these two
indices, a weaker autocorrelation indicates a negative correlation in the temporal trend
developments of the localities. This is an insight into the mobility process, that would not
have been shown by an exclusive use of spatial autocorrelation measured by the classic
Moran’s I. Furthermore, it must be mentioned, that the differences may also be due to the
dynamic high-frequent approach in the context of this work. An influence of the temporal
configuration of the calculation procedure has already become visible in the considerations
in Section 4.1.

4.3. Investigation of the Spatiotemporal Process in the Data Set
4.3.1. Comparison of Origin and Destination Localities

Differences in the autocorrelation of origin and destination localities of the taxi trips
are apparent in this work, as well as in the study by Gao et al. (2019) [7]. Progressions
with a time interval of 5 min and a time span of 360 min are used to compare the two
autocorrelations. These are shown in Figure 8.
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It can be seen that the observed taxi trips are generally more dispersed between
4:00 and 10:00 compared to the rest of the day. The stronger positive autocorrelation in
taxi trip destinations, specifically between 5:00 and 9:00, suggests that during this period,
taxi trip destinations are more concentrated than their origins. This may be related to a
concentration at transportation hubs such as airports or a priority movement from a variety
of neighborhoods to the city center. However, it is not possible to draw such conclusions
with certainty without considering the local extended Moran’s I indices. A consideration of
the local extended Moran’s I indices can be found in Section 4.3.3.
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Figure 8. Comparison of global extended Moran’s index for origin and destination localities over the
course of 6 January 2018.

4.3.2. Comparison of Daily Progressions for Different Weekdays

For an investigation of the behavior of the spatiotemporal autocorrelation for different
weekdays, 29 progressions have been created for the global extended Moran’s I index. These
progressions were created with a time interval of 5 min and a time span of 360 min in the
month of January 2018 and consider the origin localities of the taxi trips. Figure 9 shows the
progressions grouped by days of the week. The first group contains the weekdays Tuesday,
Wednesday, Thursday, and Friday. The second group contains the weekdays Monday,
Saturday and Sunday. In addition, a progression of the spatiotemporal autocorrelation over
one week, from 6–12 January 2018, is shown in Figure 10.

A comparison of the progressions of the global extended Moran’s I index reveals that
recurrent characteristics are present on certain days of the week. It is noticeable that the
autocorrelation on Tuesdays often shows a depression in the period between 3:00 and 9:00,
which is usually absent for the other weekdays. It is also noticeable that the majority of
the progressions stay in a narrow corridor throughout the day. The weekdays Monday,
Saturday and Sunday also show striking similarities between the progressions. In particular,
the weekdays Saturday and Sunday are similar in their course. There is a depression in the
autocorrelation in the period between 3:00 and 9:00 the usual pattern.

The difference between these two days of the week is mainly in the trend after 18:00.
While the progressions on Saturdays remain at a constant high level, the values on Sundays
tend to decrease. This behavior continues accordingly on the following Mondays, which is
continued in clear sinks between 3:00 and 6:00. An examination of the different days of the
week indicates that fluctuations in the autocorrelation occur in the period from Saturday
to Tuesday, which cannot be observed from Wednesday to Friday. The progression over
the week of 6–12 January 2018 in Figure 10, impressively illustrates this different behavior
within the week.
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Figure 9. Comparison of the global extended Moran’s I index for origin localities on different days of
the week.
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Figure 10. Progression of the global extended Moran’s I index for origin localities from 6–12 Jan-
uary 2018.

4.3.3. Consideration of Local Autocorrelation

Two observations from the previously considered comparisons were examined in
more detail. For this purpose, local extended Moran’s I indices have been calculated
and illustrated as colored maps and Moran scatterplots. The illustration of the local
autocorrelation as a colored map allows for a better understanding of local influences on
the global mobility process. The Moran scatterplot is a tool for visualizing and identifying
the degree of spatial instability in a spatial association by means of Moran’s I [29].

The first observation is the strong deviation of the global extended Moras’s I indices
in the comparison between different time intervals in Section 4.1.1 at 09:00 on 6 January
2018. The corresponding figures are grouped in Figure 11. The second observation is the
difference between the global extended Moran’s I indices in the comparison of origin and
destination localities in Section 4.3.1 at 07:10 on 6 January 2018. At this time, the largest
difference between origin and destination locations occurs. This observation is shown in
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Figure 12. Shown are the map representations of the local extended Moran’s I indices in
the corresponding taxi zones. Each taxi zone is colored according to the spatiotemporal
autocorrelation determined for that zone. The Moran scatterplots are presented with
transparent data points to reveal the accumulations of these data points.

Comparing the Moran scatterplots for the different time intervals in Figure 11, it
can be seen that both configurations show predominantly weak low-low combinations.
This is particularly evident from the clusters in the third quadrants. Likewise, it can be
seen that in both cases there is a strong influence from a strongly pronounced high-low
combination in the fourth quadrant. The map plots reveal that this is one of the city’s
airports, more precisely the John F. Kennedy Airport. The most obvious difference between
the configurations can be seen in the first quadrant of the Moran scatterplot. The high-high
combinations are much more pronounced at the 5 min time interval, which also reflects the
stronger global extended Moran’s I index. From the map representation, it can be seen that
these stronger high-high combinations primarily affect taxi zones in the Manhattan borough,
the city center (see Figure 2). Consequently, it can be concluded from the local indices and
the scatterplot that the difference in the measured global spatiotemporal autocorrelation is
primarily due to a stronger expression of the high-high combinations, which are restricted
to a part of the urban area.

The comparison between origin and destination localities in Figure 12 shows that both
observations are mainly dominated by weak low-low combinations. It can be seen that
the autocorrelation of the origin localities shows a much stronger influence of negative
local indices. In particular, due to the strong high-low combination located in the fourth
quadrant of the Moran scatterplot, but also by the low-high combinations located in the
second quadrant, although weaker. The strongly expressed high-low combination can be
identified from the map representation as the John F. Kennedy Airport. The weaker low-
high combinations cluster around this zone accordingly. In contrast, a stronger expression
of some high-high combinations can be seen in the third quadrants of the scatterplot for the
consideration of the trip origins. The consideration of the local indices and the scatterplot
suggests that the John F. Kennedy Airport has a significant impact on the differences
between the global autocorrelation regarding the origin and destination localities. It can be
seen that there is a local concentration of started taxi trips in this zone, while the overall
global autocorrelation is weaker than for trip destinations. This can be explained by the
fact that the positive local autocorrelation in the borough of Manhattan (see Figure 2) does
not show such a clear difference between started and ended taxi trips.

(a) (b)

Figure 11. Cont.
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Figure 11. Comparison of different time intervals on map plots of local extended Moran’s I indices
and Moran scatterplots for 6 January 2018 at 9:00 for a time span of 360 min; in the Moran scatterplots
y is the observation in deviation from the mean and Wy is the weighted average of the neighboring
values. (a) time interval: 60 min, IT = 0.34; (b) time interval: 5 min, IT = 0.54; (c) time interval:
60 min, IT = 0.34; (d) time interval: 5 min, IT = 0.54.
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Figure 12. Cont.
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Figure 12. Comparison of origin and destination localities on map plots of local extended Moran’s
I indices and Moran scatterplots for 6 January 2018 at 7:10 for a time interval of 5 min and a time
span of 360 min; in the Moran scatterplots y is the observation in deviation from the mean and Wy is
the weighted average of the neighboring values. (a) origins, IT = 0.43; (b) destinations, IT = 0.72;
(c) origins, IT = 0.43; (d) destinations, IT = 0.72.

5. Discussion

The results of the evaluation reveal advantages and possible applications of the pre-
sented high-frequent dynamic autocorrelation, as well as limiting factors. The following
section discusses the three groups of evaluation aspects as they were introduced in Section 4
and Table 2, respectively. First, the influences of the temporal configuration parameters are
discussed. Following this, the comparison with the classic Moran’s I is discussed and the
relevance of a spatiotemporal approach in the context of a high-frequent dynamic autocor-
relation is highlighted. The investigation of the spatiotemporal process in the data set and
the derived value of a high-frequent dynamic approach for its analysis is discussed last.

5.1. Influence of the Temporal Configuration Parameters

The investigation of the temporal configuration parameters in Section 4.1 demon-
strates the importance of the temporal configuration of the procedure. The importance
of spatial configuration for a spatial autocorrelation analysis has been investigated exten-
sively. The spatial configuration usually includes parameters such as neighborhood criteria
and weighting methods. These configuration parameters are chosen just as carefully and
purposefully in analyses of spatiotemporal autocorrelation. Corresponding parameters for
the temporal configuration of a spatiotemporal analysis are not minor in their impact on
the analysis results. Accordingly, a clear decision for or against a certain choice for the used
time interval and time span cannot be made. The choice of these parameters depends on
the particular goal and object of an analysis. An investigation of different configurations,
as presented before, can be the basis of a reasonable configuration decision. It has been
shown that shorter time intervals are less influenced by swelling and shrinking volumes of
the considered events. Longer time intervals, on the other hand, are more robust against
outliers or disturbances in the incoming data stream since short interruptions influence
the respective interval less. For an analysis of currently occurring events, shorter intervals
are also advantageous because the calculated results are updated more quickly and thus
outdated results are replaced, respectively. The choice of the time span has to be balanced
between a faster and stronger reaction to short-term phenomena or higher stability and
reliability of the trend development. Shorter time spans allow for a quicker mapping of the
processes taking place and a stronger mapping of sudden changes in the spatiotemporal
autocorrelation. Longer time spans, on the other hand, are more stable and incorporate
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the evolution of past events over a longer period of time. Accordingly, the results are
more reliable with respect to the further expected development, especially when compared
with recorded traffic events from the past. Furthermore, it should be noted that none of
the investigated configurations caused a negative impact on compliance with the check
values defined in Section 3.3. In summary, however, it appears that a combination of a
short time interval and a long time span may be an appropriate choice for the analysis
of currently occurring events. The examination of different temporal configurations in
Section 4.1 showed, that such a combination provides fast updates of the results while
providing relatively stable behavior in the progression of the autocorrelation.

5.2. Comparison with Classic Moran’s I

The comparison between the classic and extended Moran’s I index, revealed consis-
tently weaker autocorrelation when the extended Moran’s I index was applied. This is
in contrast to the study of Gao et al. (2019), where stronger autocorrelations were mea-
sured [7]. This may be due to the implementation as a continuous procedure, as well
as due to differences in the data sets used, as mentioned in Section 4.2. An influence of
the chosen temporal configurations can also not be excluded. In principle, however, it
can be deduced that the continuous calculation of the extended Moran’s I index provides
comparable progressions to the classic Moran’s I index, while the extended Moran’s I index
allows for additional consideration of the temporal trend development in the data. This
is of particular interest for analyses of spatiotemporal data with high temporal resolution.
The investigated mobility process in the taxi trip data does highly depend on its temporal
component. Due to growing possibilities to provide such a high temporal resolution in
the monitoring of such mobility processes, their temporal trend development is a consid-
erable element next to the spatial distribution of traffic volumes alone. Beyond that, the
high-frequent dynamic approach presented in this work allows for an investigation of the
temporal trend development of the resulting spatiotemporal autocorrelation itself. The
results show that the spatial, as well as the spatiotemporal autocorrelation is changing
significantly within the scope of a day already, which further emphasizes the importance of
a high-frequent dynamic autocorrelation approach.

5.3. Investigation of the Spatiotemporal Process in the Data Set

The investigation of the spatiotemporal process in the data set showed promising
results regarding applications of the high-frequent dynamic autocorrelation on spatiotem-
poral big data. The performed comparison of different daily progressions in Section 4.3.2
shows that the continuous and dynamic spatiotemporal autocorrelation analysis can pro-
vide additional insights to a conventional analysis based on accumulated historical data.
The ability to identify characteristic progressions of autocorrelation for recurring time
periods such as different days of the week, opens up the possibility to compare current
events with these characteristic progressions immediately. In this way, untypical or special
phenomena can be detected quickly and reliably. Such an ability to detect anomalies at
an early stage can serve as a basis to develop forecasts for future trends and for proactive
intervention in processes such as urban traffic. The investigation in Section 4.3.3 shows
that, especially in a continuous and dynamic analysis of the spatiotemporal autocorrelation,
the local indices and also the Moran scatterplot are valuable tools to gain a deeper under-
standing of the measured autocorrelation. These local result values have provided further
understanding of the spatial behavior of the investigated process. Furthermore, it has been
shown that global spatiotemporal autocorrelation is strongly characterized by a few local
extreme values. These local influencing factors are especially important for the investigation
of mobility data as carried out here. In combination with the possibility to detect unusual
processes by comparing the progressions of the global spatiotemporal autocorrelation with
typical progressions from the past, these local values can be used to localize the origins of these
anomalies. Furthermore, it is possible to assess whether only small parts or large areas of the
considered area, in this case, the city of New York, are affected by such anomalies. In addition
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to the conclusions regarding the informative value of the procedure, a reasonable further
step for examining the data set can be derived from the local result values. The significant
concentration of strong local autocorrelation in the Manhattan borough argues for a separate
investigation of this area. Similar to the study of Gao et al. (2019), the next step for further
investigation of this data set may be to limit the study area to this central borough [7]. Overall,
it has been shown that the high-frequent dynamic spatiotemporal autocorrelation approach
we presented, can reveal events in the mobility process that remain hidden from an analysis
based on accumulated historical data. Due to the high-frequent dynamic approach, temporally
limited unusual events can be identified and their influence on the mobility process can be
investigated. The use of local autocorrelation in addition to that, allows for an identification
of the spatial origin of such anomalies as well. This highlights the relevance of the presented
approach as an addition to the classic Moran’s I and the original extended Moran’s I presented
by Gao et al. (2019) [7].

6. Conclusions

In this work, a high-frequent dynamic spatiotemporal autocorrelation was presented
and evaluated. The goal of this study was the evaluation of a geostatistical method that
provides analysis results for spatiotemporal big data in real time and an investigation of its
possibilities to analyze spatiotemporal phenomena while they are still ongoing.

The conducted evaluation highlighted the importance of a high-frequent dynamic
autocorrelation approach. It was shown, that an analysis of the temporal progression of the
autocorrelation itself is a valuable method to investigate spatiotemporal processes, such as
urban mobility. Furthermore, this approach allows for the detection of temporally limited
phenomena and a deeper understanding of their occurrence and cause. It was shown that
the investigation of local phenomena in the overall process is very relevant, especially in
combination with such a high-frequent dynamic investigation. The consideration of the
local result values for two exemplary phenomena initially detected in the global results
allowed us to draw conclusions regarding their cause. In combination with the highly
resolved temporal approach, underlying phenomena causing such unexpected behavior in
the mobility process can be narrowed down and detected faster and way more targeted
than by analyzing aggregated and historical data. Therefore, this work presents a new
perspective on the temporal element of spatiotemporal autocorrelation, that is analog to
the local view introduced by expanding the global perspective on the spatial element
of spatiotemporal autocorrelation. The ability of this high-frequent dynamic approach
to make analysis results continuously available and in real time accelerates the way we
utilize spatiotemporal big data and therefore understand spatiotemporal processes in
our environment.

The evaluation results also highlight the importance of the temporal configuration
of the analysis procedure. The well-known spatial configurations concerning the spatial
neighborhood and weighting need to be expanded by temporal criteria. In this work, the
use of a time interval in combination with a time span as temporal configuration parameters
was evaluated. Overall, the evaluation indicates, that a combination of a short time interval
with a long time span is a good choice for analyses of temporally high resolved data.

Based on the results presented in this work, further developments are suggested. The
temporal configuration parameters can be further investigated in future research to provide
a deeper understanding of their impact and allow for more sophisticated choices for their
respective values. Another suggestion for further investigations is the reduction in the
study area to the borough of Manhattan. The results showed a concentration of high values
for the local autocorrelation in this area while most of the other localities showed only mild
autocorrelation. This local disparity is important for the understanding of the mobility
process in New York City, but a closer look at the localities in Manhattan can probably
provide further valuable insights. Furthermore, an implementation of such high-frequent
dynamic analysis procedures can be used to build data services that provide geostatistical
analysis results in real time as geodata streams. With such processing services, not only can
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the spatiotemporal data itself be made readily available, but sophisticated analysis results
can be consumed in a similar way. Beyond that, spatiotemporal analysis results could be
integrated into digital models of the earth and the built environment in real time.
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