
Citation: Kumaraguru, P.V.;

Kamalakkannan, V.; H L, G.;

Flammini, F.; Sulaiman Alfurhood, B.;

Natarajan, R. Hessian Distributed

Ant Optimized Perron–Frobenius

Eigen Centrality for Social Networks.

ISPRS Int. J. Geo-Inf. 2023, 12, 316.

https://doi.org/10.3390/

ijgi12080316

Academic Editors: Wolfgang Kainz,

Hangbin Wu and Tessio Novack

Received: 8 May 2023

Revised: 13 July 2023

Accepted: 26 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Hessian Distributed Ant Optimized Perron–Frobenius Eigen
Centrality for Social Networks
P.V. Kumaraguru 1, Vidyavathi Kamalakkannan 2, Gururaj H L 3, Francesco Flammini 4,* ,
Badria Sulaiman Alfurhood 5 and Rajesh Natarajan 6

1 Department of MCA, Guru Nanak College (Autonomous), Velachery Main Road, Velachery, Chennai 600042,
Tamilnadu, India; coe@gurunanakcollege.edu.in

2 Department of Electronics and Communication Engineering, Selvam College of Technology, Namkkal 637003,
Tamilnadu, India; vidyavathiece.2010@gmail.com

3 Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of
Higher Education, Manipal 570064, Karnataka, India; gururaj.hl@manipal.edu

4 IDSIA USI-SUPSI, University of Applied Sciences and Arts of Southern Switzerland, 6928 Manno, Switzerland
5 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, Riyadh 11671, Saudi Arabia; bsalfurhood@pnu.edu.sa
6 Information Technology Department, University of Technology and Applied Sciences-Shinas, Al-Aqr,

Shinas 324, Oman; rajesh.natarajan@shct.edu.om
* Correspondence: francesco.flammini@supsi.ch

Abstract: Terabytes of data are now being handled by an increasing number of apps, and rapid
user decision-making is hampered by data analysis. At the same time, there is a rise in interest in
big data analysis for social networks at the moment. Thus, adopting distributed multi-agent-based
technology in an optimum way is one of the solutions to effective big data analysis for social networks.
Studying the development of a social network helps users gain an understanding of interactions
and relationships and guides them in making decisions. In this study, a method called Hessian
Distributed Ant Optimized and Perron–Frobenius Eigen Centrality (HDAO-PFEC) is developed to
analyze large amounts of data (i.e., Big Data) in a computationally accurate and efficient manner.
Designing an adaptable Multi-Agent System architecture for large data analysis is the primary goal
of HDAO-PFEC. Initially, using a Hessian Mutual Distributed Ant Optimization MapReduce model,
comparable user interest tweets are produced in a computationally efficient manner. Eigen Vector
Centrality is a measure of a node’s importance in a network (i.e., a social network), which allows
association with other significant nodes (i.e., users), allowing for a greater effect on social networks.
With this goal in mind, a MapReduce methodology in the Hadoop platform using Big Data, which
enables quick and ordered calculations, is used in a distributed computing method to estimate
the Eigen Vector Centrality value for each social network member. Lastly, extensive investigative
experimental learning demonstrates the HDAO-PFEC method’s use and accuracy as well as its time
and overhead on the well-known sentiment 140 dataset.

Keywords: big data; Mutual Distributed; multi-AGENT; Hessian Optimization of Ant Frobenius;
Perron; Eigen Vector Centrality

1. Introduction

There has been interest in tackling optimization problems in a distributed model
due to the popularity of multi-agent systems. By doing this, agents may only access
information in a limited way and interact with neighbors, making it suitable for large
data applications involving intensive computing and intricate network architecture, such
as standard assessment and other similar tasks. In order to obtain encouraging results,
different works have been explored in terms of error rate, optimality backdrops, overhead,
and various optimization approaches. These investigations were motivated by optimization
methods and contemporary works on distributed optimization.

ISPRS Int. J. Geo-Inf. 2023, 12, 316. https://doi.org/10.3390/ijgi12080316 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12080316
https://doi.org/10.3390/ijgi12080316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-2833-7196
https://orcid.org/0000-0002-7626-5262
https://orcid.org/0000-0003-1255-9621
https://doi.org/10.3390/ijgi12080316
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12080316?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2023, 12, 316 2 of 15

Laplace three-level stochastic variational inference, often known as truth-finding based
on views gathered from several agents constituting a social network, was introduced in [1].
In this study, the agents’ dependabilities were connected with a group of people who had
similar attitudes about the same incident. Also, it was claimed that the agents had access to
several communities for a variety of activities, despite the fact that these communities were
not known in advance.

Laplace variational inference techniques were used in the truth table to draw conclu-
sions about the agents’ social networks, which in turn assessed the reliabilities of the agents.
For vast social networks, a stochastic variation inference model was created, adding accu-
racy with little error. The created approach only examines the confusion matrix and event
states for the same community or switch communities. The Hessian Mutual Distributed
Ant Optimization model is created in this work to solve this problem and helps achieve the
goal with the use of Mutual Weights and the Hessian Matrix.

Multi-agent-based distributed architecture, a methodology to assess the best multi-
agent architecture for collaborative processing for efficient machine processing, was in-
troduced in [2]. Equipment breakdowns were effectively anticipated using multi-agent
systems thanks to the possibility of collaborative learning.

Also, numerous multi-agent system designs were used to examine the cost and reliabil-
ity variables, resulting in minimal error through the use of improved maintenance practices.
Yet, the precision lacked emphasis. Perron–Frobenius Eigen Vector Centrality, which is
created in this study to solve this problem, rapidly obtains the dimensionality-reduced
tweets, processing enormous amounts of data (i.e., Big Data), utilizing a multi-agent based
model, and improving accuracy rate.

The method in this paper uses a cutting-edge agent-based distributed system, such as
Hessian Distributed Ant Optimized and Perron–Frobenius Eigen Centrality, for acquiring
similar users’ interests via tweets in social networks, as opposed to related works in [1,2],
which use a standard truth table and collaborative learning method.

The main contributions of this paper are summarized as follows.

(1) To handle the stochastic variational inference problem, a Hessian Distributed Ant
Optimized model is suggested, requiring just local Twitter assessments using com-
bine vectors rather than explicit inference, making it ideal for applications requiring
fast processing.

(2) The suggested technique employs a time-changing Hessian matrix, defining the
algorithm suitable to use for digraphs, in contrast to most distributed optimization
methods where the confusion matrix has been employed (e.g., [1,2]).

(3) Finally, by applying Perron–Frobenius Eigen Vector Centrality, dimensionality-reduced
tweets are arrived at by means of the centrality factor, which uses less memory re-
sources for data storage and processing in real-time application.

The remainder of the essay is structured as follows. The reviews that were performed
are further described in Section 2. The suggested Hessian Distributed Ant Optimized and
Perron–Frobenius Eigen Centrality technique is presented in Section 3. The effectiveness of
the algorithms is illustrated in Section 4 through tables and graphics, and the findings are
presented in Section 5.

2. Related Works

In order to solve a multi-agent optimization issue with specified constraints, a dis-
tributed optimization technique utilizing a randomized gradient-free model was given
in [3]. In [4], a system based on the anytime property was presented to enhance distributed
local search algorithms for distributed constraint optimization problems. The framework
made use of a breadth-first search tree, which distributed the detection of an updated state
as it occurred and added up the cost of the system state.

In decagons, where agents are required to achieve concurrence on some key variables
through local information exchange, the consensus control problems of multi-agent sys-
tems have captured deep interest. Input, consensus state, and dual optimization, three

ISPRS Int. J. Geo-Inf. 2023, 12, 316 3 of 15

optimization issues that helped the multi-agent system reach the best consensus, were
given in [5]. From a multi-agent perspective, an overview of several diffusion methods
used in social networks was put out in [6].

Convex value minimization over the fixed value points set is a unique optimization
model that was developed in [7]. In addition, a discrete-time technique for finding the
worldwide solution to the specified optimization problem was also described. In order to
find a unique optimal solution, a distributed optimization technique utilizing first-order
and second-order dynamic agents was suggested in [8]. A strategy for learning multi-agent
strategies for competing against collective competitors was put forward in [9]. Moreover, it
was claimed that deterministic policy gradients in recurrent neural networks allowed for
agent collaboration during communication.

The idea and notation of distributed optimization have recently drawn a lot of interest
from several walks of life. Owing to this, consensus-based flocking, distributed optimiza-
tion, and other topics have become increasingly popular in the research sector. In [10],
a distributed optimization model with a flocking component of a nonlinear continuous
function and a differentiable convex objective function was examined. In order to achieve
sophisticated cost optimization, Ref. [11] suggested a fusion of deep reinforcement learning
with link-state protocol providing preliminary supervised learning.

Several disciplines of study have consistently used multi-agent systems. A decompo-
sition technique for multi-project scheduling that is based on two stages and has a suitable
CPU running time for large-size instances was devised in [12]. To identify deliberate
activities on highways, a multi-agent system for smart roads was created in [13] utilizing
Model Driven Engineering (MDE). For decentralized multi-agent learning addressing high
dimensions, a traditional rewarding system in gaming notion utilizing a Deep Q-learning
framework was presented in [14].

A collaborative learning-based industrial multi-agent system for large fleets was re-
ported in [2]. The system’s prediction and optimization mechanisms considerably reduced
the cost of maintaining an asset over its full life. A multi-agent simulation framework
for complicated urban transportation was proposed in [15] with the aim of lowering the
overall journey duration and smart car adoption level. Another design for the distribution
system in the electric power model was created in [16] utilizing an artificial neural network
in order to obtain operational restrictions and decrease the incidence of faults.

Target search is one of the common research issues in the multi-agent field. Target
discovery may need to be conducted in some real-time situations together with some
sub-task analysis in order to meet a deadline. These temporal limits were highlighted
in [17] as the agents recognizing targets within a predetermined window of time. Yet, the
decision-making system was unable to handle this more complicated issue directly.

Distributed optimization is used in a distributed protocol for a network connection
that was introduced in [18]. To reduce the expense associated with node-based designs,
an adaptive method with linear dynamics based on multi-agent systems was developed
in [19].

In this study, an agent-based distributed approach dubbed Hessian Distributed Ant
Optimized and Perron–Frobenius Eigen Centrality (HDAO-PFEC) is developed for accu-
rately and efficiently assessing sentiments in social networks with little operating time and
data storage cost.

3. Perron–Frobenius Eigen Centrality and Hessian Distributed Ant
Optimization (HDAO-PFEC)

This part uses the Sentiment140 dataset, which contains 1.6 million tweets, to analyze
those tweets in order to determine user interest in a distributed and MapReduce-optimized
way (i.e., Twitter agent). Hessian Distributed Ant Optimization and Perron–Frobenius
Eigen Centrality are the names of the technique (HDAO-PFEC). The goal of investigat-
ing adaptive multi-agent systems with intelligence and context learning capabilities is

ISPRS Int. J. Geo-Inf. 2023, 12, 316 4 of 15

what HDAO-PFEC is meant to do. Figure 1 below shows the HDAO-PFEC method’s
block diagram.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 4 of 16

Frobenius Eigen Centrality are the names of the technique (HDAO-PFEC). The goal of

investigating adaptive multi-agent systems with intelligence and context learning capa-

bilities is what HDAO-PFEC is meant to do. Figure 1 below shows the HDAO-PFEC

method’s block diagram.

Figure 1. Block diagram of Hessian Distributed Ant Optimized and Perron–Frobenius Eigen Cen-

trality (HDAO-PFEC).

The goal of this study is to develop a distributed, optimized multi-agent system for

information retrieval that is computationally accurate and efficient, as seen in the follow-

ing image using the Sentiment140 dataset (1.6 million tweets) as the input dataset. A

MapReduce framework is created to achieve the goal by first analyzing three significant

aspects, as shown in the above image.

Using the Hessian Mutual Distributed Ant Optimization model, comparable user in-

terest tweets are acquired during the Map phase. Using these findings, the second phase

generates the combined vector, and the last step, the reduction phase, uses the Perron–

Frobenius Eigen Vector Centrality model to produce accurate and dimensionality-reduced

tweets. Here is a detailed explanation of the suggested approach, along with information

on graph theory and the identified issue.

3.1. Graph Theory

Let graph ‘𝐺 = (𝑉, 𝐸, 𝐴𝑀)’ represents a digraph, where ‘𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛}’ represents

the vertex set, ‘𝐸 = {(𝑣𝑖 , 𝑣𝑗)| 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉}’ represents the edge set, comprising of interaction

links, ‘𝐴𝑀’ corresponding to the associated adjacency matrix, ′𝑃𝑟𝑜𝑏’ is denotes the prob-

ability, ‘H’ is Hessian matrix and ‘ 𝑊𝑖𝑗’ is a corresponding weight. To be specific an edge

‘𝑣𝑖 , 𝑣𝑗’ denotes that agent ‘𝑗’ can access the information of agent ‘𝑖’ but not conversely. In

addition, let ‘𝐴𝑀𝑖𝑗’ be the matrix ‘𝐴𝑀’ for corresponding ‘𝑖𝑡ℎ’ row and ‘𝑗𝑡ℎ’ column. Then,

the adjacency matrix ‘𝐴𝑀𝑖𝑗’ is written as given below.

Figure 1. Block diagram of Hessian Distributed Ant Optimized and Perron–Frobenius Eigen Central-
ity (HDAO-PFEC).

The goal of this study is to develop a distributed, optimized multi-agent system
for information retrieval that is computationally accurate and efficient, as seen in the
following image using the Sentiment140 dataset (1.6 million tweets) as the input dataset. A
MapReduce framework is created to achieve the goal by first analyzing three significant
aspects, as shown in the above image.

Using the Hessian Mutual Distributed Ant Optimization model, comparable user
interest tweets are acquired during the Map phase. Using these findings, the second phase
generates the combined vector, and the last step, the reduction phase, uses the Perron–
Frobenius Eigen Vector Centrality model to produce accurate and dimensionality-reduced
tweets. Here is a detailed explanation of the suggested approach, along with information
on graph theory and the identified issue.

3.1. Graph Theory

Let graph ‘G = (V, E, AM)’ represents a digraph, where ‘V = {v1, v2, . . . vn}’ rep-
resents the vertex set, ‘E =

{(
vi, vj

)∣∣ vi, vj ∈ V
}

’ represents the edge set, comprising of
interaction links, ‘AM’ corresponding to the associated adjacency matrix, ‘Prob’ is denotes
the probability, ‘H’ is Hessian matrix and ‘Wij’ is a corresponding weight. To be specific an
edge ‘vi, vj’ denotes that agent ‘j’ can access the information of agent ‘i’ but not conversely.
In addition, let ‘AMij’ be the matrix ‘AM’ for corresponding ‘ith’ row and ‘jth’ column.
Then, the adjacency matrix ‘AMij’ is written as given below.

AMij =

{
1, i f edge (i, j)is in E

0, otherwise
(1)

ISPRS Int. J. Geo-Inf. 2023, 12, 316 5 of 15

where i and j—refers the Agents, E—refers the Edge set.
The digraph ‘G’ is referred to as firmly associated if for any pair ‘i’ and ‘j’ in the graph,

there is a path by following which vertex ‘j’ can be reached by vertex ‘i’. For any vertices
set, ‘i, j ∈ G’, the distance ‘Disij’, is referred to as the range of the shortest path from ‘j’ to
‘i’. To develop a multi-agent distributed system for social networks, the work proposed
to provide each network centrality unit (i.e., eigen vector centrality) with a multi-agent
(i.e., Twitter agent) responsible for the optimal operation of that unit. In digraph theory
and analysis of social networks, network centrality refers to the most predominant vertices
within a graph. In our work, this refers to the identification of the most influential tweets
in a social network.

By utilizing vertex set ‘V’ and edge set ‘E’ to represent the agents and communica-
tion mediums, the above-bestowed graph symbols are utilized to detail the multi-agent
distributed system for social networks. Since some mediums may not be utilized to send
tweets at time ‘t’, a different annotation ‘G[T] = (V, E(T), AM(T))’ to express the commu-
nication between users during tweet at time ‘T’ taking into consideration only the utilized
mediums. Edge ‘(i, j)’ is in ‘E(T)’, if agent ‘j’ sends tweet to ‘i’, at time ‘T’, otherwise,
‘(i, j) /∈ E(T)’.

3.2. Problem Formulation

Let us consider a multi-agent system that comprises of ‘n’ agents tagged with index
‘1, 2, . . . , n’ and each agent advances based on the dynamics.

ai(T) = ti(T) (2)

where ai(T)—Agents state over time ‘t’, ti(T)—Each agent possessing certain amount of
tweets evolved over time ‘t’.

The objective is to design ‘ti(T)’ by utilizing the Hessian Mutual Distributed Ant
Optimization and eigen vector centrality score such that all twitter agents work in a
cooperative manner to reach the optimal state with respect to time-invariant largest Eigen
optimization problem as given below.

MIN ∑n
i=1 MAX[fi(ai, T)] (3)

3.3. Hessian Mutual Distributed Ant Optimization Model

Identifying the equivalent users’ tweets that connect two agents (i.e., Twitter agent) is
the first step in the modeling of the proposed multi-agent-based distributed system.

This is performed in the proposed work in the Map Phase by applying Hessian Mutual
Distributed Ant Optimization HM-DAO model. Figure 2 shows a sample HM-DAO
configuration for a partitioned social network map.

As illustrated in the above HM-DAO configuration, social network map contains,
‘u = 12’ users, ‘K = 4’ computers, ‘A = 6’ twitter agents, with users’ tweets represented
in the form of a circle and agents denoted in the form of squares. A distributed model
for a multi-agent system is designed using ant colony optimization with a category of
time-changing cost function by considering the Hessian Matrix. This is due to the reason
that the users’ tweet acquired as input by the multi-agent system changes or evolves over
time and hence the ideal point of multi-agent would be changing over time.

ISPRS Int. J. Geo-Inf. 2023, 12, 316 6 of 15ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 16

Figure 2. Sample HM-DAO configuration.

As illustrated in the above HM-DAO configuration, social network map contains,

‘𝑢 = 12’ users, ‘𝐾 = 4’ computers, ‘𝐴 = 6’ twitter agents, with users’ tweets represented

in the form of a circle and agents denoted in the form of squares. A distributed model for

a multi-agent system is designed using ant colony optimization with a category of time-

changing cost function by considering the Hessian Matrix. This is due to the reason that

the users’ tweet acquired as input by the multi-agent system changes or evolves over time

and hence the ideal point of multi-agent would be changing over time.

Let us consider a function ‘𝑓: 𝑅𝑛 → 𝑅’ considering as input users’ tweets (i.e., simply

tweets) procured by each agent as a vector ‘𝑎 ∈ 𝑅𝑛’ and outputting a function ‘𝑓(𝑎) ∈ 𝑅’.

With the assumption that all second partial derivatives of ‘𝑓’ exist for a time-varying func-

tion (i.e., with users’ tweets evolving over time), the hessian matrix of overall tweets pro-

cured for each agent is mathematically expressed as given below,

𝐻 =

[

𝜕2𝑓

𝜕𝑎1
2

𝜕2𝑓

𝜕𝑎1𝜕𝑎2
. . .

𝜕2𝑓

𝜕𝑎1𝜕𝑎𝑛

𝜕2𝑓

𝜕𝑎2𝜕𝑎1

𝜕2𝑓

𝜕𝑎2
2 …

𝜕2𝑓

𝜕𝑎2𝜕𝑎𝑛
… … … …

𝜕2𝑓

𝜕𝑎𝑛𝜕𝑎1

𝜕2𝑓

𝜕𝑎𝑛𝜕𝑎2
…

𝜕2𝑓

𝜕𝑎𝑛
2]

= 𝐻𝑖𝑗 =
𝜕2𝑓

𝜕𝑎𝑖𝜕𝑎𝑗
 (4)

where

𝐻𝑖𝑗—Hessian matrix

𝜕2𝑓—Second order partial derivatives of function ‘𝑓’

𝜕𝑎𝑖𝜕𝑎𝑗—Partial derivative of agent state of user 𝑖 and 𝑗

In this manner, from Equation (4), the time-changing users’ tweets, are procured by

the multi-agent system in the form of hessian matrix ‘𝐻𝑖𝑗 ’. With the obtained hessian ma-

trix of overall tweets procured for each agent, the distributed ants’ environment (i.e., the

nodes of the graph representing the users’ tweets in the social network in our case) is

designed as a set of interconnected Twitter agents.

In the proposed work, the Twitter agents (or agents) have their own action of control

and determine in an independent manner to perform an action, interfaces with other

agents' serial passing of messages between agents assigned using the agent identifier

‘𝐴𝐼𝐷’. The agent-acquired users' tweets moving from user ‘𝑖’ to user ‘𝑗’ with probability

‘𝑃𝑟𝑜𝑏𝑖𝑗’ for each hessian matrix ‘𝐻𝑖𝑗’ is measured as given below.

Figure 2. Sample HM-DAO configuration.

Let us consider a function ‘ f : Rn → R ’ considering as input users’ tweets (i.e., simply
tweets) procured by each agent as a vector ‘a ∈ Rn’ and outputting a function ‘ f (a) ∈ R’.
With the assumption that all second partial derivatives of ‘ f ’ exist for a time-varying
function (i.e., with users’ tweets evolving over time), the hessian matrix of overall tweets
procured for each agent is mathematically expressed as given below,

H =

∂2 f
∂a2

1

∂2 f
∂a1∂a2

. . . ∂2 f
∂a1∂an

∂2 f
∂a2∂a1

∂2 f
∂a2

2
. . . ∂2 f

∂a2∂an

.
∂2 f

∂an∂a1

∂2 f
∂an∂a2

. . . ∂2 f
∂a2

n

 = Hij =
∂2 f

∂ai∂aj
(4)

where Hij—Hessian matrix, ∂2 f —Second order partial derivatives of function ‘ f ’, ∂ai∂aj—
Partial derivative of agent state of user i and j.

In this manner, from Equation (4), the time-changing users’ tweets, are procured by
the multi-agent system in the form of hessian matrix ‘Hij’. With the obtained hessian matrix
of overall tweets procured for each agent, the distributed ants’ environment (i.e., the nodes
of the graph representing the users’ tweets in the social network in our case) is designed as
a set of interconnected Twitter agents.

In the proposed work, the Twitter agents (or agents) have their own action of control
and determine in an independent manner to perform an action, interfaces with other agents’
serial passing of messages between agents assigned using the agent identifier ‘AID’. The
agent-acquired users’ tweets moving from user ‘i’ to user ‘j’ with probability ‘Probij’ for
each hessian matrix ‘Hij’ is measured as given below.

Probij
[
Hij
]
=

(
τij
)α(

ηij
)β

∑
j

(
τij
)α(

ηij
)β

(5)

where Hij—Hessian matrix, i & j—Input users, τij —Amount of pheromone (agent acquired
tweets) moving from user ‘i’ to user ‘j’, ηij—Weight inverse, α &β—Criterion to manage
the impact of ‘τij’ and ‘ηij’.

ISPRS Int. J. Geo-Inf. 2023, 12, 316 7 of 15

However, to process a huge volume of data (i.e., Big Data), better solutions are required
to be manifested with more pheromones (agent-acquired tweets). Hence, at any time agent
‘a’ with agent identifier ‘AID’ acquires a tweet ‘Ta’ of cost ‘Ca’ finer than the best-acquired
tweet chunks, the agent will increase the pheromone strength on each edge of the tweet with
a value ‘∆τA

ij ’, that is equivalent to the characteristic of the solution. This is mathematically
expressed as given below.

∆τa
ij =

{ 1
Ca

, i f users tweet(i, j) ∈ Ta

0, Otherwise
(6)

where ∆τa
ij—Amount of pheromone moving from user ‘i’ to user ‘j’ at any time agent ‘a’,

1
Ca

—Cost inverse at any time agent ‘a’, Ta—Tweet at any time agent ‘a’.
When an agent completes a tour (or acquires all the users’ tweets collected at a

particular time interval), it will uncover backwards its moves plotting the users on the
way with pheromone (agent-acquired tweets). The update also considers pheromone
evaporation. In our experiments, we used the mutual weights of each tweet. This is
mathematically evaluated as given below.

Wij =
tij/N

∑ fij/N
(7)

From the above Equation (7), the weights of each tweet ‘
tij
N ’ are obtained based on the

number of times that tweet is found to the number of twitter API in which the tweets under
consideration are found ‘

fij
N ’, respectively. With the aid of ‘∆τa

ij’ and its corresponding
weight ‘Wij’, similar user interests tweet ‘ST’ are arrived at. The Algorithm 1 representation
of the Hessian Mutual Distributed Optimization is given below.

Algorithm 1. Hessian Mutual Distributed Optimization.

Input: Tweets ‘Tweet = t1, t2, . . . tn
′, Users ‘U =

u1, u2, . . . un
′, agent identifier ‘AID′, Agent ‘A = a1, a2, . . . an’

Output: Computationally efficient similar user interests tweet ‘ST′

Step 1: Begin
Step 2: For each Users ‘U’ with Tweets ‘T’
Step 3: Obtain Hessian time-changing tweet function using (4)
Step 4: Evaluate probability factor for each obtained hessian matrix using (5)
Step 5: Obtain better solutions using (6)
Step 6: Evaluate mutual weight of each tweets using (7)
Step 7: Return (similar user interests tweet ‘ST’)
Step 8: End for
Step 9: End

As given in the above Hessian Mutual Distributed Optimization algorithm, for each
user’s tweets obtained by the multi-agent (i.e., the Twitter agent), the objective here remains
in obtaining the similar user interests tweets in a computationally efficient manner. This is
performed in our work by applying the Hessian time-changing tweet function as the tweets
evolved changes over time. Next, better solutions for each Twitter agent are arrived at by
means of hessian distributed optimization model weight mutual weight. In this manner,
similar user interest via a Twitter agent is obtained in a computationally efficient manner.

3.4. Perron–Frobenius Eigen Vector Centrality Model

With similar user interest tweets obtained via Twitter agent, dimensionality-reduced
tweets are generated. These are generated by means of the Perron–Frobenius Eigen Vector
Centrality (PF-EVC) model. The Perron–Frobenius Eigen Vector Centrality is an assessment
of the impact of a user’s tweet on a social network. It allocates correlative scores to all users’
tweets in the social network on the basis of the hypothesis that relationships to high-scoring

ISPRS Int. J. Geo-Inf. 2023, 12, 316 8 of 15

users’ tweets bestow more to the score of the users’ tweets than equivalent relationships
to low-scoring users’ tweets. To obtain relevant tweets and at the same time to reduce the
dimensionality of data (i.e., users’ tweets), in this work, the Perron–Frobenius Eigen Vector
Centrality model is used. The flow diagram of the PF-EVC model is given below Figure 3.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 8 of 16

As given in the above Hessian Mutual Distributed Optimization algorithm, for each

user's tweets obtained by the multi-agent (i.e., the Twitter agent), the objective here re-

mains in obtaining the similar user interests tweets in a computationally efficient manner.

This is performed in our work by applying the Hessian time-changing tweet function as

the tweets evolved changes over time. Next, better solutions for each Twitter agent are

arrived at by means of hessian distributed optimization model weight mutual weight. In

this manner, similar user interest via a Twitter agent is obtained in a computationally ef-

ficient manner.

3.4. Perron–Frobenius Eigen Vector Centrality Model

With similar user interest tweets obtained via Twitter agent, dimensionality-reduced

tweets are generated. These are generated by means of the Perron–Frobenius Eigen Vector

Centrality (PF-EVC) model. The Perron–Frobenius Eigen Vector Centrality is an assess-

ment of the impact of a user's tweet on a social network. It allocates correlative scores to

all users’ tweets in the social network on the basis of the hypothesis that relationships to

high-scoring users’ tweets bestow more to the score of the users’ tweets than equivalent

relationships to low-scoring users’ tweets. To obtain relevant tweets and at the same time

to reduce the dimensionality of data (i.e., users’ tweets), in this work, the Perron–Fro-

benius Eigen Vector Centrality model is used. The flow diagram of the PF-EVC model is

given below Figure 3.

Figure 3. Flow diagram of PF-EVC model.

The elaborate description of the PF-EVC is given below. To measure the Forbenius

Eigen Vector Centrality of a users’ tweet (or simply tweet), the significance of all other

tweets that tweet ‘𝑖’ is associated has to be evaluated. On the basis of this correlative sig-

nificance, the Frobenius Eigen Vector Centrality of a tweet is calculated as given below.

Let us assume the vector index ‘𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑛]’ and weight index ‘𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑛]’,

the eigen vector significance is measured as given below.

𝐸𝑉𝑆(𝑡𝑖) = 𝑤(𝑠𝑡𝑗) + 𝑣(𝑠𝑡𝑗) (8)

where

𝐸𝑉𝑆—Eigen Vector Significance

𝑡𝑖—User tweet

𝑤—Weight

Figure 3. Flow diagram of PF-EVC model.

The elaborate description of the PF-EVC is given below. To measure the Forbenius
Eigen Vector Centrality of a users’ tweet (or simply tweet), the significance of all other tweets
that tweet ‘i’ is associated has to be evaluated. On the basis of this correlative significance,
the Frobenius Eigen Vector Centrality of a tweet is calculated as given below. Let us assume
the vector index ‘V = [v1, v2, . . . , vn]’ and weight index ‘W = [w1, w2, . . . , wn]’, the eigen
vector significance is measured as given below.

EVS(ti) = w
(
stj
)
+ v
(
stj
)

(8)

where EVS—Eigen Vector Significance, ti—User tweet, w—Weight, v—Vertices, stj—Neighbor
users similar interest tweet.

From the above Equation (8), the ‘EVS’ of each user’s similar interest tweet ‘sti’ is
arrived at based on each of the neighbor users’ similar interest tweet (i.e., ‘j’ to ‘i’) with
corresponding to the weight and ‘vertices. Then, the eigen vector centrality score (i.e.,
dimensionality-reduced tweets) is measured as given below.

xi =
1
λ∑ xj =

1
λ∑ amijxj (9)

where xi—Eigen vector centrality score, λ—Constant value called the Perron–Frobenius
value, am—Adjacency matrix.

From the above Equation (9), ‘λ’ with vertex ‘i’ is linked to vertex ‘j’ for the corre-
sponding adjacency matrix ‘am’, respectively. The Algorithm 2 representation of Perron–
Frobenius Eigen Vector Centrality is given below.

ISPRS Int. J. Geo-Inf. 2023, 12, 316 9 of 15

Algorithm 2. Perron–Frobenius Eigen Vector Centrality.

Input: Tweets ‘T = t1, t2, . . . tn
′, Users ‘U = u1, u2, . . . un

′, Vertex set ‘V =
v1, v2, . . . , vn

′, Edge set ‘E = e1, e2, . . . , en
′, users similar interest tweets ‘ST = st1, st2, . . . , st′n

Output: Dimensionality reduced tweets
Step 1: Begin
Step 2: For each Users ‘U’ with similar interest tweets ‘ST’
Step 3: Measure correlative significance using (8)
Step 4: Measure eigen vector centrality score using (9)
Step 5: Return dimensionality reduced tweets (xi)
Step 6: End for
Step 7: End

As given in the above Perron–Frobenius Eigen Vector Centrality algorithm, for each
user with similar interests tweets provided as input, the objective here remains in obtaining
the dimensionality reduced tweets for selecting their choices of interests for social networks
have been designed. With this objective, two factors are concerned. They are measuring
the correlative significance based on the Eigen Vector Centrality and eigen vector central-
ity score using Perron–Frobenius value. With these two factors, only the greatest eigen
value results are acquired, therefore contributing to dimensionality reduced tweets and
eliminating the lesser influence eigen values.

3.5. Experimental Setup

In our experiments, both the Hessian Mutual Distributed Optimization algorithm and
the Perron–Frobenius Eigen Vector Centrality algorithm are implemented in JAVA program
language using the Cloud infrastructure and MapReduce parallel programming model.
The version of 2.7.3 is adopted for Hadoop cluster. In the clusters, one node acts as the
master and the others act as slaves. Both the single machine and the nodes in the clusters
have the same hardware configuration, namely Core2 Duo CPU @ 2.20 GHz, 2 CPUs and
2 GB of RAM. Operating system and SUN JAVA JDK1.8.0_131 trained on Sentiment140
dataset obtained from https://www.kaggle.com/kazanova/sentiment140 (accessed on
1 February 2023). The dataset comprises of the following features as given in Figure 4
and Table 1.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 16

Figure 4. Sentiment140 dataset features.

Table 1. Sentiment140 dataset features and description.

S. No Feature Name Description

1 Target The polarity of the tweet

2 Ids The id of the tweet

3 Date The date of the tweet

4 Flag Flag value

5 User User that tweeted

6 Text The text of the tweet

Simulations are conducted with three parameters, computational time, computa-

tional overhead and accuracy. Fair comparison is made with the proposed Hessian Dis-

tributed Ant Optimized and Perron–Frobenius Eigen Centrality (HDAO-PFEC) and exist-

ing two methods, laplace three-level stochastic variational inference [1] and multi-agent

based distributed architecture [2] for agent-based distributed system in social networks.

4. Discussion

To measure the performance of the proposed method comparative analysis with la-

place three-level stochastic variational inference [1] and multi-agent based distributed ar-

chitecture [2] are performed based on the metrics, running time, data storage overhead

and accuracy score with respect to different number of tweets.

4.1. Performance Analysis of Running Time

The first parameter of importance for any multi-agent distributed system is the run-

ning time. Running time refers to the time consumed in performing certain task. In our

work, running time refers to the time consumed in obtaining the computationally efficient

similar user interests tweet. This is mathematically formulated as given below.

𝑅𝑇 = ∑ 𝑇𝑤𝑒𝑒𝑡𝑖 ∗ 𝑇𝑖𝑚𝑒 [Δ𝜏𝑖𝑗
𝑎 (𝑊𝑖𝑗)]

𝑛
𝑖=1 (10)

where,

Figure 4. Sentiment140 dataset features.

https://www.kaggle.com/kazanova/sentiment140

ISPRS Int. J. Geo-Inf. 2023, 12, 316 10 of 15

Table 1. Sentiment140 dataset features and description.

S. No Feature Name Description

1 Target The polarity of the tweet

2 Ids The id of the tweet

3 Date The date of the tweet

4 Flag Flag value

5 User User that tweeted

6 Text The text of the tweet

Simulations are conducted with three parameters, computational time, computational
overhead and accuracy. Fair comparison is made with the proposed Hessian Distributed
Ant Optimized and Perron–Frobenius Eigen Centrality (HDAO-PFEC) and existing two
methods, laplace three-level stochastic variational inference [1] and multi-agent based
distributed architecture [2] for agent-based distributed system in social networks.

4. Discussion

To measure the performance of the proposed method comparative analysis with
laplace three-level stochastic variational inference [1] and multi-agent based distributed
architecture [2] are performed based on the metrics, running time, data storage overhead
and accuracy score with respect to different number of tweets.

4.1. Performance Analysis of Running Time

The first parameter of importance for any multi-agent distributed system is the running
time. Running time refers to the time consumed in performing certain task. In our work,
running time refers to the time consumed in obtaining the computationally efficient similar
user interests tweet. This is mathematically formulated as given below.

RT = ∑n
i=1 Tweeti ∗ Time

[
∆τa

ij
(
Wij
)]

(10)

where, RT—Running Time, ∆τa
ij—Agent acquired tweets moving from user ‘i’ to user ‘j’,

Wij—Corresponding weight.
From the above Equation (10), ‘RT’ is evaluated based on the number of tweets

considered for conducting simulations and the time incurred in obtaining similar user
interests tweets ‘Time

[
∆τa

ij
(
Wij
)]

’. It is measured in terms of milliseconds (ms). The
running time performance of three different methods, HDAO-PFEC, laplace three-level
stochastic variational inference [1] and multi-agent based distributed architecture [2] are
shown in Table 2.

Table 2. Running time using proposed HDAO-PFEC, and existing laplace three-level stochastic
variational inference and multi-agent based distributed architecture.

Number of Tweets

Running Time (ms)

HDAO-PFEC
Laplace Three-Level

Stochastic Variational
Inference

Multi-Agent BASED
Distributed Architecture

10,000 2500 2630 2655

15,000 2635 2685 2735

20,000 2655 2755 2815

25,000 2690 2815 2925

30,000 2735 2835 3015

35,000 2755 2925 3235

40,000 2780 3055 3340

45,000 2855 3155 3455

50,000 2950 3215 3615

55,000 3035 3355 3730

ISPRS Int. J. Geo-Inf. 2023, 12, 316 11 of 15

Figure 5 given above shows the running time performance of three different methods
used for analyzing the agent based distributed system method in social network. While
obtaining tweets of similar user interests, a significant amount of time is being consumed.
As represented in above figure, the running time of proposed HDAO-PFEC method is
reduced as compared to existing methods. With 10,000 number of tweets considered for
experimentation the running time is measured for 10 different simulation runs. With the
increase in number of tweets made for sentiment analysis, the running time also gradually
increases. However, with simulations conducted for 1000 tweets, the overall running time
for modeling multi-agent based distributed system using HDAO-PFEC was observed to
be 1055 ms, 1130 ms with the aid of laplace three-level stochastic variational inference [1]
and 1155 ms using and multi-agent based distributed architecture [2]. From the simulation
results it is inferred that the running time was comparatively lesser using HDAO-PFEC
when compared to laplace three-level stochastic variational inference [1] and multi-agent-
based distributed architecture [2]. This is because of the application of the Hessian Mutual
Distributed Ant Optimization model in the Map phase. By applying this model, second
partial derivatives for a time-varying function are generated using the Hessian matrix.
With this, the running time of the HDAO-PFEC method is found to be minimized by 6%
compared to laplace three-level stochastic variational inference [1] and 11% compared to
multi-agent-based distributed architecture [2], respectively.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 12 of 16

Figure 5. Graphical representation of running time.

4.2. Performance Analysis of Data Storage Overhead

The next parameter used in the analysis of multi-agent distributed system involving

social networks is the data storage overhead. Data storage overhead is the memory con-

sumed in performing a task or in other words, a certain amount of storage overhead is

said to occur while obtaining similar user interests tweet. This is mathematically formu-

lated as given below.

𝐷𝑆𝑂 = ∑ 𝑇𝑤𝑒𝑒𝑡𝑖 ∗ 𝑀𝐸𝑀 [Δ𝜏𝑖𝑗
𝑎 (𝑊𝑖𝑗)]

𝑛
𝑖=1 (11)

where

𝐷𝑆𝑂—Data Storage Overhead

Δ𝜏𝑖𝑗
𝑎 —Agent acquired tweets moving from user ‘𝑖’ to user ‘𝑗’

𝑊𝑖𝑗—Corresponding weight

From the above Equation (11), ‘𝐷𝑆𝑂’ is evaluated on the basis of the tweets involved

and the storage overhead generated while acquiring similar user interests tweets

‘𝑀𝐸𝑀 [Δ𝜏𝑖𝑗
𝑎 (𝑊𝑖𝑗)]’. It is measured in terms of kilobytes (KB). The data storage overhead

performance of three different methods, HDAO-PFEC and existing methods i.e., laplace

three-level stochastic variational inference and multi-agent based distributed architecture

are shown in Table 3.

Table 3. Data storage overhead using proposed HDAO-PFEC, and existing laplace three-level sto-

chastic variational inference and multi-agent based distributed architecture.

Number of Tweets

Data Storage Overhead (KB)

HDAO-PFEC

Laplace Three-Level

Stochastic Varia-

tional Inference

Multi-Agent Based

Distributed Architec-

ture

10,000 30,000 35,000 40,000

15,000 32,000 36,000 42,000

20,000 33,000 38,000 45,000

25,000 35,000 40,000 46,500

30,000 38,000 42,000 47,000

35,000 42,000 44,000 48,000

Figure 5. Graphical representation of running time.

4.2. Performance Analysis of Data Storage Overhead

The next parameter used in the analysis of multi-agent distributed system involving
social networks is the data storage overhead. Data storage overhead is the memory con-
sumed in performing a task or in other words, a certain amount of storage overhead is said
to occur while obtaining similar user interests tweet. This is mathematically formulated as
given below.

DSO = ∑n
i=1 Tweeti ∗MEM

[
∆τa

ij
(
Wij
)]

(11)

where DSO—Data Storage Overhead, ∆τa
ij—Agent acquired tweets moving from user ‘i’ to

user ‘j’, Wij—Corresponding weight.
From the above Equation (11), ‘DSO’ is evaluated on the basis of the tweets in-

volved and the storage overhead generated while acquiring similar user interests tweets
‘MEM

[
∆τa

ij
(
Wij
)]

’. It is measured in terms of kilobytes (KB). The data storage overhead
performance of three different methods, HDAO-PFEC and existing methods i.e., laplace

ISPRS Int. J. Geo-Inf. 2023, 12, 316 12 of 15

three-level stochastic variational inference and multi-agent based distributed architecture
are shown in Table 3.

Table 3. Data storage overhead using proposed HDAO-PFEC, and existing laplace three-level
stochastic variational inference and multi-agent based distributed architecture.

Number of Tweets

Data Storage Overhead (KB)

HDAO-PFEC
Laplace Three-Level

Stochastic Variational
Inference

Multi-Agent Based
Distributed
Architecture

10,000 30,000 35,000 40,000

15,000 32,000 36,000 42,000

20,000 33,000 38,000 45,000

25,000 35,000 40,000 46,500

30,000 38,000 42,000 47,000

35,000 42,000 44,000 48,000

40,000 45,000 46,000 50,000

45,000 46,000 48,000 50,500

50,000 48,000 50,000 52,000

55,000 50,000 52,000 54,000

Figure 6 above illustrates the data storage overhead generated with respect to 10,000 tweets
collected at different time intervals. While generation of similar user interests tweets, the
intermediate tweets generated are stored in the combined vector. From the acquired tweets
in the combined vector, an overhead is said to take place. Hence, increasing the number of
tweets results in an increase in the data storage overhead. Therefore, data storage overhead
is directly proportional to the number of tweets posted on social networks. However, with
simulations conducted with 1000 tweets, the data storage overhead using HDAO-PFEC was
observed to be 2000 KB, 3000 KB when applied with laplace three-level stochastic variational
inference [1] and 4000 KB using multi-agent based distributed architecture [2]. Comparative
better performance of data storage overhead observed in HDAO-PFEC is observed due to
the application of the Hessian Mutual Distributed Optimization algorithm. By applying
this algorithm, the mutual weight of each tweet is taken into consideration similar user
interests tweet are arrived at due to the storage of intermediate results in combined vector
and final results in the reduce phase. This in turn reduces the data storage overhead using
HDAO-PFEC by 8% compared to laplace three-level stochastic variational inference [1] and
16% compared to multi-agent-based distributed architecture [2], respectively.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 13 of 16

40,000 45,000 46,000 50,000

45,000 46,000 48,000 50,500

50,000 48,000 50,000 52,000

55,000 50,000 52,000 54,000

Figure 6 above illustrates the data storage overhead generated with respect to 10,000

tweets collected at different time intervals. While generation of similar user interests

tweets, the intermediate tweets generated are stored in the combined vector. From the

acquired tweets in the combined vector, an overhead is said to take place. Hence, increas-

ing the number of tweets results in an increase in the data storage overhead. Therefore,

data storage overhead is directly proportional to the number of tweets posted on social

networks. However, with simulations conducted with 1000 tweets, the data storage over-

head using HDAO-PFEC was observed to be 2000 KB, 3000 KB when applied with laplace

three-level stochastic variational inference [1] and 4000 KB using multi-agent based dis-

tributed architecture [2]. Comparative better performance of data storage overhead ob-

served in HDAO-PFEC is observed due to the application of the Hessian Mutual Distrib-

uted Optimization algorithm. By applying this algorithm, the mutual weight of each tweet

is taken into consideration similar user interests tweet are arrived at due to the storage of

intermediate results in combined vector and final results in the reduce phase. This in turn

reduces the data storage overhead using HDAO-PFEC by 8% compared to laplace three-

level stochastic variational inference [1] and 16% compared to multi-agent-based distrib-

uted architecture [2], respectively.

Figure 6. Graphical representation of data storage overhead.

4.3. Performance Analysis of Accuracy Score

Finally, the accuracy score of estimating agents’ analysis of users’ choices of interest

is evaluated. This is mathematically expressed as given below.

𝐴 = ∑
𝑇𝑤𝑒𝑒𝑡𝑠𝐶_𝐴

𝑇𝑖
∗ 100𝑛

𝑖=1 (12)

From the above Equation (12), the accuracy score ‘𝐴’ is evaluated based on the tweets

correctly grouped by Twitter agent ‘𝑇𝑤𝑒𝑒𝑡𝑠𝐶_𝐴’ to the total tweets ‘𝑇𝑖’ sampled. It is meas-

ured in terms of percentage (%). The accuracy score performance of three different

Figure 6. Graphical representation of data storage overhead.

ISPRS Int. J. Geo-Inf. 2023, 12, 316 13 of 15

4.3. Performance Analysis of Accuracy Score

Finally, the accuracy score of estimating agents’ analysis of users’ choices of interest is
evaluated. This is mathematically expressed as given below.

A = ∑n
i=1

TweetsC_A
Ti

∗ 100 (12)

From the above Equation (12), the accuracy score ‘A’ is evaluated based on the tweets
correctly grouped by Twitter agent ‘TweetsC_A’ to the total tweets ‘Ti’ sampled. It is
measured in terms of percentage (%). The accuracy score performance of three different
methods HDAO-PFEC, laplace three-level stochastic variational inference [1], and multi-
agent-based distributed architecture [2] are shown in Table 4.

Table 4. Accuracy score using proposed HDAO-PFEC and existing laplace three-level stochastic
variational inference and multi-agent based distributed architecture.

Number of Tweets

Accuracy Score (%s)

HDAO-PFEC
Laplace Three-Level

Stochastic
Variational Inference

Multi-Agent Based
Distributed
Architecture

10,000 80.00 78.50 75.00

15,000 78.85 76.25 74.15

20,000 77.00 75.65 73.55

25,000 76.25 74.55 72.15

30,000 75.00 74.15 70.15

35,000 74.35 73.00 69.80

40,000 73.86 71.35 69.25

450,00 73.25 70.45 68.60

50,000 72.80 69.75 68.10

55,000 70.00 68.00 66.75

Figure 7 shown above illustrates the graphical pattern of accuracy score. Here, the
accuracy score refers to the estimation of Twitter agents’ analysis of users’ choices of tweets
to detect sentiment. As shown in the figure, to start with 6000 tweets, the accuracy scores
decline gradually and observed a small hype at 7000 tweets and again decreased. The
increase and decrease in accuracy score are said to occur due to different reasons like,
positive emoticons, negative emoticons variation are said to observe. Consider 1000 tweets
involving both positive, negative and neutral annotations in simulation conduction, 98% of
accuracy score was found by applying HDAO-PFEC, 96.5% and 95% using laplace three-
level stochastic variational inference [1] and multi-agent based distributed architecture [2].
From the results it is inferred that the accuracy score is comparatively better when applied
with HDAO-PFEC than laplace three-level stochastic variational inference [1] and multi-
agent based distributed architecture [2]. This is due to the application of Perron–Frobenius
Eigen Vector Centrality algorithm. By applying this algorithm, dimensionality reduced
tweets are obtained that in turn are utilized for determining correlative significance based
on the eigen vector centrality. This eigen vector centrality most influential tweets in the
social network are identified that in turn aids in improving the accuracy score of HDAO-
PFEC by 3% compared to laplace three-level stochastic variational inference [1] and 6%
compared to multi-agent based distributed architecture [2], respectively.

ISPRS Int. J. Geo-Inf. 2023, 12, 316 14 of 15ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 15 of 16

Figure 7. Graphical representation of accuracy score.

5. Conclusions

A novel multi-agent system for social network tweets involving Big Data is proposed

in this work. An efficient method called Hessian Distributed Ant Optimized and Perron–

Frobenius Eigen Centrality (HDAO-PFEC) user group based on their tweets for social net-

works is developed with less running time and overhead in a more accurate pattern. Ini-

tially, the numbers of users and tweets made by the users in the social network for senti-

ment analysis are taken as input. The Mutual Distributed Ant Optimization model is used

as the graphical model in the Map phase in a distributed pattern to present links in social

networks. With this, similar user interest tweets are obtained and stored in the combined

vector. From there, these tweets are then passed on to the Reducer phase using Perron–

Frobenius Eigen Vector Centrality to obtain dimensionality reduced tweets. With the ap-

plication of these two phases in a distributed manner, accurate scores are arrived at by

means of eigen vector centrality score. Extensive experiments are also conducted on Sen-

timent140 dataset, and the experimental results show that the proposed method achieves

higher accuracy score by 13% and 20% as compared existing laplace three-level stochastic

variational inference [1] and multi-agent based distributed architecture [2], respectively.

Also, running time of proposed method is minimized by 21% and 29% as compared exist-

ing laplace three-level stochastic variational inference [1] and multi-agent based distrib-

uted architecture [2], respectively. Similarly, data storage overhead is reduced by 27% and

42% when compared existing methods. In limitation of this proposed work, failed to ana-

lyze the error rate and improve the precision.

Author Contributions: Formal analysis, P. V. Kumaraguru, Vidyavathi Kamalakkannan, Gururaj H

L and Badria Sulaiman Alfurhood; Funding acquisition, Francesco Flammini; Investigation, Fran-

cesco Flammini; Methodology, P. V. Kumaraguru, Vidyavathi Kamalakkannan, Francesco Flammini

and Rajesh Natarajan; Validation, Gururaj H L and Badria Sulaiman Alfurhood; Visualization, Ra-

jesh Natarajan; Writing—original draft, Vidyavathi Kamalakkannan and Rajesh Natarajan; Writ-

ing—review & editing, P. V. Kumaraguru, Vidyavathi Kamalakkannan, Gururaj H L, Francesco

Flammini, Badria Sulaiman Alfurhood and Rajesh Natarajan. All authors have read and agreed to

the published version of the manuscript.

Funding: This research is supported by Princess Nourah bint Abdulrahman University Researchers

Supporting Project number (PNURSP2023R359), Princess Nourah bint Abdulrahman University,

Riyadh, Saudi Arabia.

Figure 7. Graphical representation of accuracy score.

5. Conclusions

A novel multi-agent system for social network tweets involving Big Data is proposed
in this work. An efficient method called Hessian Distributed Ant Optimized and Perron–
Frobenius Eigen Centrality (HDAO-PFEC) user group based on their tweets for social
networks is developed with less running time and overhead in a more accurate pattern.
Initially, the numbers of users and tweets made by the users in the social network for
sentiment analysis are taken as input. The Mutual Distributed Ant Optimization model
is used as the graphical model in the Map phase in a distributed pattern to present links
in social networks. With this, similar user interest tweets are obtained and stored in the
combined vector. From there, these tweets are then passed on to the Reducer phase using
Perron–Frobenius Eigen Vector Centrality to obtain dimensionality reduced tweets. With
the application of these two phases in a distributed manner, accurate scores are arrived
at by means of eigen vector centrality score. Extensive experiments are also conducted
on Sentiment140 dataset, and the experimental results show that the proposed method
achieves higher accuracy score by 13% and 20% as compared existing laplace three-level
stochastic variational inference [1] and multi-agent based distributed architecture [2],
respectively. Also, running time of proposed method is minimized by 21% and 29% as
compared existing laplace three-level stochastic variational inference [1] and multi-agent
based distributed architecture [2], respectively. Similarly, data storage overhead is reduced
by 27% and 42% when compared existing methods. In limitation of this proposed work,
failed to analyze the error rate and improve the precision.

Author Contributions: Formal analysis, P.V. Kumaraguru, Vidyavathi Kamalakkannan, Gururaj H L
and Badria Sulaiman Alfurhood; Funding acquisition, Francesco Flammini; Investigation, Francesco
Flammini; Methodology, P.V. Kumaraguru, Vidyavathi Kamalakkannan, Francesco Flammini and
Rajesh Natarajan; Validation, Gururaj H L and Badria Sulaiman Alfurhood; Visualization, Rajesh
Natarajan; Writing—original draft, Vidyavathi Kamalakkannan and Rajesh Natarajan; Writing—
review & editing, P.V. Kumaraguru, Vidyavathi Kamalakkannan, Gururaj H L, Francesco Flammini,
Badria Sulaiman Alfurhood and Rajesh Natarajan. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R359), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

ISPRS Int. J. Geo-Inf. 2023, 12, 316 15 of 15

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R359), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, J.; Wang, J.; Tay, W.P. Using Social Network Information in Community-Based Bayesian Truth Dis-covery. IEEE Trans. Signal

Inf. Process. Over Netw. 2019, 5, 525–537. [CrossRef]
2. Palau, A.S.; Dhada, M.H.; Parlikad, A.K. Multi-agent system architectures for collaborative prognostics. J. Intell. Manuf. 2019, 30,

2999–3013. [CrossRef]
3. Pang, Y.; Hu, G. Randomized Gradient-Free Distributed Optimization Methods for a Multi-Agent System with Unknown Cost

Function. IEEE Trans. Autom. Control 2020, 65, 333–340. [CrossRef]
4. Zivan, R.; Okamoto, S.; Peled, H. Explorative anytime local search for distributed constraint optimization. Artif. Intell. 2014, 212,

1–26. [CrossRef]
5. Wang, Q.; Duan, Z.; Wang, J. Distributed Optimal Consensus Control Algorithm for Continuous-Time Multi-Agent Systems.

IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 102–106. [CrossRef]
6. Jiang, Y.; Jiang, J.C. Diffusion in Social Networks: A Multiagent Perspective. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 198–213.

[CrossRef]
7. Alaviani, S.S.; Elia, N. Distributed Multi-Agent Convex Optimization Over Random Digraphs. IEEE Trans. Autom. Control 2020,

65, 86–998. [CrossRef]
8. Sun, C.; Ye, M.; Hu, G. Distributed Optimization for Two Types of Heterogeneous Multiagent Systems. IEEE Trans. Neural Netw.

Learn. Syst. 2021, 32, 1314–1324. [CrossRef] [PubMed]
9. Park, Y.J.; Cho, Y.S.; Kim, S.B. Multi-agent reinforcement learning with approximate model learning for competitive games. PLoS

ONE 2019, 14, e0222215. [CrossRef] [PubMed]
10. Zhang, Q.; Gong, Z.; Yang, Z.; Chen, Z. Distributed Convex Optimization for Flocking of Nonlinear Multi-agent Systems. Int. J.

Control Autom. Syst. 2019, 17, 1177–1183. [CrossRef]
11. Mukhutdinov, D.; Filchenkov, A.; Shalyto, A.; Vyatkin, V. Multi-agent deep learning for simultaneous optimization for time and

energy in distributed routing system. Futur. Gener. Comput. Syst. 2019, 94, 587–600. [CrossRef]
12. Li, F.; Xu, Z. A multi-agent system for distributed multi-project scheduling with two-stage decomposition. PLoS ONE 2018,

13, e0205445. [CrossRef] [PubMed]
13. Bose, S.; Chandra, S.; Alfurhood, B.S.; Gururaj, H.L.; Flammini, F.; Natarajan, R.; Jaya, S.-K. Decision Fault Tree Learning and

Differential Lyapunov Optimal Control for Path Tracking. Entropy 2023, 25, 443. [CrossRef] [PubMed]
14. Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru, J.; Aru, J.; Vicente, R. Multiagent cooperation and competition

with deep reinforcement learning. PLoS ONE 2017, 12, e0172395. [CrossRef] [PubMed]
15. Kamiński, B.; Kraiński, Ł.; Mashatan, A.; Prałat, P.; Szufel, P. Multiagent Routing Simulation with Partial Smart Vehicles

Penetration. J. Adv. Transp. 2020, 2020, 3152020. [CrossRef]
16. Shirazi, E.; Jadid, S. A multiagent design for self-healing in electric power distribution systems. Electr. Power Syst. Res. 2019, 171,

230–239. [CrossRef]
17. Yan, F.; Di, K.; Jiang, J.; Jiang, Y.; Fan, H. Efficient decision-making for multiagent target searching and occupancy in an unknown

environment. Robot. Auton. Syst. 2019, 114, 41–56. [CrossRef]
18. Chandan, R.R.; Balobaid, A.; Cherukupalli, N.L.S.; Gururaj, H.L.; Flammini, F.; Natarajan, R. Secure Modern Wireless Communi-

cation Network Based on Blockchain Technology. Electronics 2023, 12, 1095. [CrossRef]
19. Liu, S.; Jiang, H.; Zhang, L.; Mei, X. Distributed Adaptive Optimization for Generalized Linear Multiagent Systems. Discret. Dyn.

Nat. Soc. 2019, 2019, 9181093. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSIPN.2019.2914610
https://doi.org/10.1007/s10845-019-01478-9
https://doi.org/10.1109/TAC.2019.2914025
https://doi.org/10.1016/j.artint.2014.03.002
https://doi.org/10.1109/TCSII.2019.2900758
https://doi.org/10.1109/TSMC.2014.2339198
https://doi.org/10.1109/TAC.2019.2937499
https://doi.org/10.1109/TNNLS.2020.2984584
https://www.ncbi.nlm.nih.gov/pubmed/32310791
https://doi.org/10.1371/journal.pone.0222215
https://www.ncbi.nlm.nih.gov/pubmed/31509568
https://doi.org/10.1007/s12555-018-0191-x
https://doi.org/10.1016/j.future.2018.12.037
https://doi.org/10.1371/journal.pone.0205445
https://www.ncbi.nlm.nih.gov/pubmed/30300417
https://doi.org/10.3390/e25030443
https://www.ncbi.nlm.nih.gov/pubmed/36981332
https://doi.org/10.1371/journal.pone.0172395
https://www.ncbi.nlm.nih.gov/pubmed/28380078
https://doi.org/10.1155/2020/3152020
https://doi.org/10.1016/j.epsr.2019.02.025
https://doi.org/10.1016/j.robot.2019.01.017
https://doi.org/10.3390/electronics12051095
https://doi.org/10.1155/2019/9181093

	Introduction
	Related Works
	Perron–Frobenius Eigen Centrality and Hessian Distributed Ant Optimization (HDAO-PFEC)
	Graph Theory
	Problem Formulation
	Hessian Mutual Distributed Ant Optimization Model
	Perron–Frobenius Eigen Vector Centrality Model
	Experimental Setup

	Discussion
	Performance Analysis of Running Time
	Performance Analysis of Data Storage Overhead
	Performance Analysis of Accuracy Score

	Conclusions
	References

