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Abstract: Parking lots have wide variety of shapes because of surrounding environment and the
objects inside the parking lot, such as trees, manholes, etc. In the case of paving the parking lot, as
much area as possible should be covered by the construction vehicle to reduce the need for manual
workforce. Thus, the coverage path planning (CPP) problem is formulated. The CPP of the parking
lots is a complex problem with constraints regarding various issues, such as dimensions of the
construction vehicle and data processing time and resources. A strategy based on convolutional
neural networks (CNNs) for the fast estimation of the CPP’s average track length, standard deviation
of track lengths, and number of tracks was suggested in this article. Two datasets of different
complexity were generated to analyze the suggested approach. The first case represented a simple
case with a working polygon constructed out of several rectangles with applied shear and rotation
transformations. The second case represented a complex geometry generated out of rectangles
and ellipses, narrow construction area, and obstacles. The results were compared with the linear
regression models, with the area of the working polygon as an input. For both generated datasets, the
strategy to use an approximator to estimate outcomes led to more accurate results compared to the
respective linear regression models. The suggested approach enables us to have rough estimates of a
large number of geometries in a short period of time and organize the working process, for example,
planning construction time and price, choosing the best decomposition of the working polygon, etc.

Keywords: coverage path planning (CPP); optimization; convolutional neural networks (CNNs)

1. Introduction

The track generation for parking lot paving is one of the application areas of the
coverage path planning (CPP) problem. The goal of the CPP problem is to determine
the trajectories a vehicle or a robot must follow in order to cover all points of the area of
interest without overlaying paths or colliding with obstacles [1]. CPP has a wide range of
applications in the field of robotics, such as planning paths for cleaner [2] or disinfecting
robots [3], agriculture [4–6], rescue operations [7], airport pavement disease detection [8],
etc. CPP-based software enables farmers to plan the field management operations and
quantitatively evaluate different operational plans [9]. The CPP problem can be analyzed
at several granularity levels. The basic level is CPP for a single robot for a convex area of
interest without obstacles [4]. A more complex level of CPP takes into account multiple
obstacles [10–13]. The highest complexity level of CPP is the problem of multiple agents
covering the area of interest [5,14].

Based on the application area, various requirements are considered in the CPP problem.
For example, in the field of agriculture, the path planning algorithm should result in
an “optimal” path that takes into account economic and environmental factors, such
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as fuel consumption [4], configuration of machinery [15], curvature constraints [16], 3D
geometrical representation [17,18], multiple filling points [19], and working time [14]. The
CPP problem is based on solving the traveling salesman problem [20] and it is proved that
this approach results in solving the NP-hard problem; therefore, it is not possible to obtain
an optimal solution in a reasonable time.

The machinery type is also an important issue in CPP. The cleaner robots can usually
change their track direction orthogonally [2]. In the field of agriculture, turns are con-
strained by the minimum turning radius of the vehicle [20]. The algorithm to generate
corner turns for a vehicle with tillage operations in a paddy field with minimum turning
radius taken into account was suggested in [21]. The Dubin’s curve was applied to connect
ordered field tracks, and minimum bounding was used to simplify the complex geometry
of the area of interest [12].

There is a variety of approaches applied to solve the CPP problem. It can be formulated
as the traveling salesman problem (TSP) and solved using ant colony optimization after
decomposing the area of interest into blocks without obstacles [10]. The reinforcement
learning approach was employed to find a coverage path as a TSP in grid environments
by training a recurrent neural network [22]. A genetic algorithm was applied to generate
the coverage path of a vacuum cleaner robot in a room [2]. A combination of a genetic
algorithm and dynamic programming was presented to find the close-to-optimal path of
a robot in an unknown environment with obstacles [23]. A real-valued genetic algorithm
was employed to optimize a sequence of track blocks and their enter and exit points and
therefore obtain the field coverage path of an agricultural vehicle [24]. A pseudo-spanning
tree-based algorithm with virtual nodes and edges using approximate cellular decomposi-
tion was proposed to solve the CPP problem [25]. A comprehensive survey of the literature
on the CPP is provided in [1]. The majority of the CPP algorithms use decomposition of
the area of interest. Based on the decomposition techniques, the approaches were grouped
into cellular decomposition, landmark-based, grid-based, and graph-based methods [1].
The algorithms for coverage path planning in robotics were categorized into classical and
heuristic approaches in [26]. The examples of classical approaches are dynamic program-
ming, spanning tree coverage, and chaotic coverage. The greedy search, graph search, and
bio-inspired algorithms were classified as heuristic-based methods [26].

In this article, an algorithm to generate paving paths for a parking lot area under
construction is suggested. The problem can be defined as the CPP problem for a single
vehicle in a non-convex polygon with internal obstacles. The research is organized as
follows. Section 2 presents the methods and materials, namely, the general workflow,
problem description, and CPP algorithm, including the obstacle elimination approach,
generation of the representative dataset, construction of the convolutional neural network
(CNN) model, and its application in the decomposition algorithm. Section 3 is dedicated to
numerical experiments, that is, training of the approximation model and its validation and
analysis of results under different conditions. The discussion is presented in Section 4. The
conclusions are given in Section 5.

2. Materials and Methods
2.1. General Workflow

The conventional CPP approach is straightforward. Based on the initial data, such as
geometry, vehicle dimensions, and other restrictions, an algorithm to generate the coverage
path is designed and the final output is the generated trajectories for the given problem.
The scheme for the conventional CPP approach is provided in Figure 1.

Conventional approach

Algorithm for coverage 

path planning

Problem [geometries, 

vehicle dimensions]

Generated 

trajectories (GT)

Figure 1. Scheme for conventional coverage path finding workflow.
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Such an approach works well for simple problems. However, in practice, the problem
under analysis is more complicated as regards the complex geometry and number of
vehicles that are employed in the process. Thus, a lot of parameters must be considered
in the objective function, including the features that play the most important role in the
decomposition process. Despite the direct approach of splitting the geometry into smaller
areas and examining them separately, the placement of depots, change in technology or
equipment due to many obstacles, workers’ convenience, and risk management should be
taken into account. In most cases, an evaluation of these factors cannot be performed due
to a lack of data and uncertainties. For example, several machines operating in the same
area simultaneously can cause underestimated slow down, although the hard constraints
of the problem are maintained. In such cases, the final decision for the coverage path is
made by the experts in the field, whereas the CPP algorithm is used as a recommendation
and evaluation tool which helps to faster evaluate different coverage strategies. However,
comparison of different coverage path strategies is time- and computationally expensive
because of the optimization in the CPP procedure, which may take several minutes for one
strategy, and therefore comparing all possible strategies leads to practically unacceptable
computational time, especially if an expert must make the decision in the working place fast.
Thus, the regression model can be applied to predict the results and make a fast comparison
of different strategies. Although any regression model can be used in general, the CNN
regression model has been employed in this research to consider geometric features of
the problem. This leads to the extended CPP process workflow (Figure 2). The process
presented in Figure 1 is complemented with the additional steps of building a convolutional
neural network (CNN)-based model to predict the numerical evaluation of the CPP with
input presented as an image. To train the model, the representative dataset is generated
artificially in advance.

STEP 1. Creating representative dataset

STEP 3. Training approximation model

STEP 2. Preparing dataset for approximation model

Conventional approach

Algorithm for CPP in polygon

CNN based CPP algorithm for result approximation

Problem [geometries, 

vehicle dimensions]

Generated 

trajectories (GT)

Image-based 

problem 

representation

Problem 

trajectories

Representative dataset of problems

Approximation 

of problem 

results  

Figure 2. The extended CPP process workflow.

Using the model, an expert can perform fast evaluation of the specific problem and
consider various strategies of the process organization under minimized time and compu-
tational resources. Approximate results of the algorithm may be used even in the automatic
decomposition algorithm with a well-defined objective function, when decomposition is
performed based on the results predicted for the decomposed part. Of course, the decom-
position may be applied using results obtained using the CPP algorithm itself; however,
such an approach is significantly slower due to the computational time compared to image
inference using the CNN model.
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2.2. Problem Description

The CPP problem is focused on finding a set of tracks that cover the area of interest. The
surface of the three-dimensional (3D) terrain is considered in agriculture. However, parking
lots are usually installed in flat areas, so the two-dimensional (2D) area is considered. The
region where paving needs to be applied is called a working area. The region in which the
construction vehicle can move is called the construction area. The working area is inside the
construction area. In some cases, it is possible that the boundaries of the construction area
and working area coincide. For example, if the working area is surrounded by a wall, the
construction vehicle cannot move outside it. A construction vehicle moves in tracks. The
track is not necessarily a straight line, but it consists of straight lines (segments). Finding
an optimal order of tracks is a different type of optimization problem not considered in this
research. Obstacles are the areas inside the region of interest which must not be covered,
and it is considered that the construction vehicle cannot even move in the obstacle area.
The definitions are illustrated in Figure 3.

Figure 3. Geometrical representation of the problem.

Obviously, the track line depends on the parameters of the construction vehicle. It
results in the constrained length of the possible distance between the boundaries of the
construction area and the end points of the track, the bounded angle that two adjacent
segments of the track can intersect, and other track features. The track line is discretized into
segments with a minimal possible segment length defined in order to prevent an infinite
number of segments. After generating, each track is validated to meet the parameters
defined in Table 1.

Table 1. The parameters of the construction vehicle and track validation.

Parameter Value Parameter Value

Minimum track discretization step 0.1 m Vehicle width 3.2 m
Implemented width 2.9 m Distance between vehicle axles 3.08 m
Working width (milling rotor width) 2.5 m Front wheel width 0.65 m
Required track overlap 0.2 m Front turning radius 5.96 m
Working rotor diameter 1.0 m Outer front turning radius 7.495 m
Distance from the rear axle to the vehicle
back 1.1 m Inner front turning radius 4.425 m

Vehicle length 8.45 m Turning radius with lifted milling rotor 5.102 m

The aim of the CPP problem is to find a set of tracks which cover the area of interest.
In the CPP for the parking lot paving, the covered area should be maximized because the
uncovered area must be covered, requiring manual labor, and therefore, the construction
process results in higher cost. Moreover, there are more requirements that need to be con-
sidered. Firstly, the excessive overlap between tracks should be minimized. Excessive track
overlap leads to increased material usage and elongated coverage process. Secondly, during
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the coverage process, the construction vehicle incurs non-working driving maneuvers and
working mode changeovers (e.g., lowering or raising a milling rotor) at the beginning
and end of each track. Such intermittent setups are time-consuming tasks. Thus, the CPP
solution with fewer tracks is considered as more efficient compared to the one with a larger
number of tracks. Thirdly, there is a set of vehicle geometry and kinematics constraints
which must be considered while generating the track, for example, the minimum vehicle ro-
tation radius, which constrains the angle between two segments, or the minimum segment
length, which constrains the discretization step.

2.3. Algorithm for CPP in Polygon

The suggested CPP algorithm is based on the idea that the tracks should be aligned
with one of the boundaries of the working polygon. The algorithm input consists of the
geometry of the working and construction polygons, vehicle parameters, and algorithm pa-
rameters. Vehicle parameters, such as turning radius, width, and length, limit the curvature
of the track and define the track discretization level. The number of approximation nodes
in boundary noise reduction, the minimum allowed length of the track, the discretization
step, and other parameters related to algorithm performance are defined as algorithm
parameters. However, by taking into account that only the CPP algorithm itself is the
object of this research and that algorithm parameters can be adjusted to meet the problem
aim, the CPP algorithm steps are provided without the analysis of different parameter
configurations. The flow diagram of the algorithm for the CPP in polygon is provided in
Figure 4.

(1) WPQ empty

N
O

2. Generate possible segments (PSs) parallel to WP exterior 

wall    

Start

End

1. Constructiona area polygon (CAP)  

2. Working polygons to cover (WPsC)

3. Obstacles polygons (OPs)

4. Vehicle parameters (VP)

5. Algorithm parameters (AA)

Generated Trajectories (GT)

Selected working polygon (WP) from 

WPQ (largest)

3. Get preferred segment direction

(2) PSs empty

NO

YES

(3) SS Valid

4. Make SS shorter if SS intersects with offsets to 

CAP. Extend SS if extending by small step 

increases Segment coverage of WP

Selecting longest segment (SS)

NO

YES

(4) Segment with offset 

intesects with obstacle(-es)

6. Add SS to GT

NO

1. Fixing WPsC  to avoid intersection with CAP And adding 

valid WPsC to working polygon que (WPQ)

YES

7. Apply obstacle elimination logic and 

add final segments (FSS) to GT.  

YES

5. Remove covered areas from WP and 

add left uncovered WP part(-s) to WPQ

WP- Selected working polygon

PSs – Possible segments

SS – Selected segment

FS – Segments after obstacle elimination

GT - Generated trajectories

AP – Algorithm params

CAP - Construction area polygon

WPsC - Working polygons to 

cover

OPs – Obstacle polygons

VP - Vehicle parameters

WPQ - Working polygon que

WPC - Working polygon to cover

Figure 4. The flow diagram of the CPP algorithm.
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The algorithm consists of seven steps. In the first step, the queue of working polygons
is prepared for the later calculations. If the geometry of the problem is generated regarding
the points measured in the field, measurement errors emerge due to limited precision of
the measurement devices. Thus, the geometry of the working polygons must be fixed
to fit into the construction area. Boundary noise reduction is also performed in this step.
At the second step, the tracks parallel to the exterior boundary are generated for the
largest working polygon. Then (steps 3–4) the search for the valid track is performed by
selecting the direction of the reference track and expanding or shortening it to fit it to the
working polygon with consideration of the construction area. By default, the longest track
is selected as the reference track. In case the track is not valid (for example, does not fit
the minSegmentLen constraint), another candidate track is analyzed. If the track is valid,
the region covered by the track is subtracted from the working polygon, and the resulting
polygons are added to the working polygon queue as new working polygons (step 5). If the
track has no intersection with obstacles, it is added to the list of the generated tracks (step 6).
The intersection with an obstacle causes additional obstacle elimination logic, detailed in
Section Processing of Obstacles (step 7). Finally, the steps are reiterated until all working
polygons are analyzed. The output of the algorithm is a set of generated tracks which
satisfy the requirements, namely, all segments in the track are longer that the predefined
minimum segment length, the angle between two consecutive segments corresponds to the
turning radius of the vehicle, and all segments are inside the working area.

Processing of Obstacles

Firstly, the tracks are generated without considering obstacles. Then the formatted
tracks are modified to overtake the obstacles. The tracks to overtake the obstacle were
generated using the Dubin’s curve [27] with known outer segments and the parameters of
the vehicle. The generation of Dubin’s curve uses an analytical approach and the possible
overtake path is calculated directly using formulas. However, obstacle elimination even
in one generated track may lead to a multi-objective evaluation function. Because of the
vehicle dimensions (coverage is performed at the end of vehicle), the detected obstacle
results in the overtaking maneuver that starts before the obstacle and leads to uncovered
area in front of the obstacle. The uncovered area around an obstacle could be covered by
creating additional opposite-direction track, but such generated track is usually too short
and thus it is not preferred due to an increase in required non-working maneuvering time.
Alternatively, there is an option to split the initial segment and try to avoid applying the
overtaking maneuver altogether. In this article, we propose a parameterized approach,
which allows us to adopt a logic based on three main analysis cases. The approach has the
following managed parameters:

1. db—distance in front of the obstacle to start the overtake obstacle;
2. dm—maximum distance to overtake an obstacle;
3. am—maximum start/end position angle.

Based on the obstacle location in the pre-formatted track, the algorithm works as follows:
Case 1. If the obstacle is too close to the beginning of the segment, that is, the buffer of

the vehicle enters the obstacle at the beginning of the segment:

• From the starting point of the segment, an attempt is made to go around the obstacle
with an initial angle from 0 to am.

• The beginning of the segment is pushed further if the vehicle fails to go around
the obstacle.

Case 2. If the obstacle is too close to the end of the segment, that is, the buffer of the
vehicle enters the obstacle at the end of the segment:

• Check if the vehicle can enter the end of the track at an angle in range 0, . . . , am.
• End of the segment is shortened to the obstacle if the vehicle fails to go around

the obstacle.

Case 3. If the segment intersects with an obstacle in the middle of the segment:
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• If it is possible to overtake the obstacle in dm, generate a path for the overtake in the
minimal distance possible.

• If it is not possible to overtake the obstacle in distance dm, the segment is divided into
two parts.

In the event of multiple obstacles, a straightforward extension of the above procedure
is applied when finding intersection(s). The track is analyzed from the beginning to the
end in a discrete step with each obstacle or a group of close obstacles fixed as one. The path
to overtake the obstacle is generated using the following procedure:

1. Find the minimum-length curve which overtakes the obstacle by increasing the
step from 0 to dm. The overtake path is examined with the maximum detour from
both sides.

2. Find the minimum detour of selected valid length segment (this allows us to minimize
uncovered area, for example, if the obstacle is in the form of an ellipse).

Finally, finding curve to overtake the obstacle leads to a controlled computational
time procedure, because all procedure steps (finite set of angle values in discrete step
and curve length that changes in range from 0 to dm in Cases 1, 2) depend on the dis-
cretization step, which could be selected with respect to available computational time and
precision requirements.

2.4. CNN-Based Approximator of CPP Algorithm Results

Two datasets of different complexity have been generated to demonstrate the potential
applications of approximators. Case 1 represents CPP problems with simple geometry and
Case 2 represents problems of nearly real-life complexity in the parking lot coverage process:

1. Case 1. Simplified problem with the following features:

• Working area geometry consists of merged rectangles without internal obstacles.
• Construction area boundary is far enough from working area boundary, not

affecting the path coverage process due to vehicle geometry and offsets.

2. Case 2. Complex problem with the following features:

• Working area geometry consists of merged rectangles and circles.
• Different number of various obstacles may occur.
• Construction area boundaries may disturb path coverage process.

Depending on the case, the analysis is performed in different ways. For Case 1, an
automatic decomposition algorithm has been taken into account. The objective function is
to minimize the total number of tracks when the geometry splitting decision is made with
respect to the approximation results. The splitting is performed according to the possible
segments, which are formatted parallel to the WP exterior wall (a detailed explanation is
provided in Section 2.4.1). The representative dataset used for training was composed of an
initially generated dataset and decomposed problems (the generation of the representative
dataset is explained in Section 2.4.2). For Case 2, the initial geometry is more complex
and so the optimal decomposition can be the result of different approaches, orienting
tracks parallel to the obstacle borders, taking into account construction area limitations,
etc. Such straightforward decomposition approaches might not provide better simple
objective function results. Also, as explained in Section 2.1, in practice, even the objective
function itself might be subjective and thus difficult to express numerically. Given these
Case 2 considerations, we limited our research to the model training and initial results
analysis. The CPP approximation model architecture and metrics results are provided in
Section 2.4.3.

2.4.1. Search of Best Polygon Decomposition Using Convolutional Neural Network

The proposed CPP algorithm (Section 2.3) uses a heuristic approach to select the
longest possible segment generated of possible segments with respect to the exterior wall
of the working polygon (WP). However, based on the problem objective, such an approach
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may not lead to the optimal solution. In this research we will examine a simplified case
(Case 1) in detail. In this case, the decomposition approach and the objective function are
straightforward. The objective is to cover an area with the lowest possible number of tracks.
An example of how track number differs based on the initial decomposition is provided
in Figure 5. If the longest track is selected out of possible boundary tracks as a reference
track, the resulting number of tracks is 93 (Figure 5a). In comparison, if the reference track
is selected using an expert’s knowledge or is based on a different algorithm, the number
of tracks is 79 (Figure 5b). This example illustrates the fact that decomposition should be
performed with consideration of the construction area geometry.

(a) (b)
Figure 5. The resulting coverage path generated by selecting longest possible track as a reference
track (a) and manually choosing the reference track (b). The reference tracks are shown in red.

In order to find the optimal decomposition which results in the minimum number of
tracks, all possible decompositions must be considered. However, the CPP algorithm is
a time-consuming process and considering all possible decompositions is not practically
acceptable. In this case, an approximator of the CPP algorithm results may be used to
predict the number of tracks for the decomposed parts and therefore the whole geometry.
The CNN-based approximator application schema is provided in Figure 6.

Initial polygon 

decomposition

CNN-based CPP 

algorithm results 

approximation

Best decomposition 

prediction

Figure 6. CNN-based approximator application schema.

The schema consists of three main parts, that is, decomposing the initial working
polygon, predicting the number of tracks for each subarea, and searching for the best
decomposition. In the decomposition step, the working polygon is partitioned with respect
to the reference track. There may be several levels of the decomposition; however, in this
research, the decomposition level was limited to the first one. In the prediction step, the
number of tracks is predicted for each decomposition result. For example, geometry Gi can
be decomposed in K different ways and K sets of geometries are generated: {Gi11, Gi12, . . . },
. . . , {GiK1, GiK2, . . . }. The number of tracks pj for the jth set of geometries is calculated as

pij = ∑
l

pijl + 1 (1)

where pijl is the number of tracks for the lth part in the jth set of geometries with initial ith
geometry. The sum is augmented by 1 as the geometries are generated by subtracting the
polygon covered by the reference track. The decomposition algorithm provided for Case 1
dataset generation can be directly applied in this case. An example of the initial problem



ISPRS Int. J. Geo-Inf. 2023, 12, 313 9 of 19

decomposition, if splitting is performed based on possible segments formatted parallel to
the SP exterior wall extension and its node connection, is provided in Figure 7.

…

Graphical representation of

CPP problem decomposition

Figure 7. Tree of decomposition cases.

2.4.2. Generation of Representative Dataset

Training the CNN model requires many samples to capture the geometry features.
The automatic generation of the dataset enables us to create a desired number of samples
and therefore the training dataset is not limited by the real-world examples. Thus, the
datasets in the research were generated artificially. A parameterized algorithm has been
constructed in order to prepare the representative dataset for the approximation model.
The typical geometric features can depend on the country because of urban state laws for
parking lots. They can also change in time because of the new technologies and dynamic
environmental requirements. By changing the parameters of the dataset generation algo-
rithm, a desired number of examples with typical geometric features can be generated.
Each case is formatted as follows:

1. The probabilities for every shape to become a rectangle or circle are prectangle and
pcircle = 1− prectangle, respectively.

2. Generate a random base shape (circle or rectangle) with predefined dimensions in the
interval [bmin, bmax]. Here, bmin and bmax, respectively, are the min and max values of
height and width for a rectangle or radius for a circle.

3. Generate m number of sub-shapes in the same way as in Step 1.
4. The center of every additional shape is randomly placed inside already generated

shapes. The final polygon is constructed as the union of shapes.
5. Perform the resulting polygon external boundary discretization by step in the range

[bstepmin, bstepmax], and for every point, apply random offset [bu f f ermin, bu f f ermax]
along the curve.

6. Randomly place (with the same probability) k ellipse- or rectangle-type obstacles in-
side a working area formatted as follows (in both cases, the rotation angle is randomly
selected from 0 to 360):

• Ellipse: The parameters of the ellipse are [obse_min, obse_max] for the dimensions
of an ellipse along the x and y axes, respectively.

• Rectangle: Create the rectangle with random width and height from the range
[obsr_min, obsr_max]. The shear transformation is applied with a probability of 0.5.
The shear angle is a random value from the interval [−15◦, 15◦].

In all dataset generation cases, the same parameters for values [bmin, bmax] = [100, 150]
were used. In cases with obstacles considered, the parameters to generate them are [obse_min,
obse_max] = [obsr_min, obsr_max] = [1, 20]. The main difference is that Case 1 samples do
not have any obstacles (k=0), the construction area does not disturb tracks (bu f f ermin >
truckLen), and geometries are created out of rectangles (prectangle = 1). Both types of
disturbances can occur in the Case 2 dataset ([bu f f ermin, bu f f ermax] = [0.5, 20]), and the
ellipse shape may occur with probability pcircle = 0.1.

Finally, the geometries were transformed into grayscale images of 250× 250 pixels ori-
enting them in the middle of the image to represent an area of 400× 400 m. By considering
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that Case 1 problems depend only on the geometry of the working polygon (the construc-
tion polygon does not impact the results), the problem is represented as a white polygon
against a black background. For the Case 2 dataset, two additional colors, “light gray” and
“dark grey”, are used for the construction area and obstacles, respectively. Examples of
randomly generated cases with different values of m and k and their image representations
are provided in Figure 8.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. The examples of the samples generated in order to represent cases in which the construction
vehicle can freely move out of the working area to the construction area (a,b) and cases in which the
motion of the construction vehicle is restricted by the boundaries of the construction area (c,d) and
their image representations (e–h), respectively.

For the Case 1 dataset, 1000 geometries were generated for each number of polygons
Tpoly = {1, 2, 3, 4}, that is, 4000 geometries in total. The geometries were split into training,
validation, and test datasets in the ratio 60/20/20% using a stratified sampling technique
with respect to the number of polygons. Each image was decomposed with respect to the
procedure provided in Section 2.4.1, and each decomposed subproblem is stored as an
independent one in the same subset as the initial problem. Finally, the dataset for Case
1 consisted of 69,784 problems, with 41,924, 13,771, and 14,089 problems in the training,
validation, and testing datasets, respectively. For Case 2, a relatively small dataset has been
created because of limited computational resources to obtain an exact solution for each
case. Different types of polygons (including circles and ellipses) and considering obstacles
result in many possible decomposition cases. Thus, analyzing all possible decompositions
by exactly solving the CPP problem for each decomposed geometry is a time-consuming
process. In this research, the representative dataset of 1000 cases for each combination
of parameters m ∈ {0, 1} and k ∈ {0, 1, 2} has been created (zero or one additional
subshape, and zero, one, or two obstacles). In total 6000 cases have been created, and these
were divided by the same ratio into 3400 cases for training and 1200 cases for validation
and testing.

2.4.3. Convolutional Neural Network (CNN) Model

CNN models are mainly applied to analyze images in the form of multi-dimensional
matrices. To evaluate the geometry of the working and construction areas using the CNN
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model, they were represented as a square grayscale image. The architecture of the CNN
model was based on the AlexNet architecture [28]. Compared to the recently developed
architectures, AlexNet is a light CNN model that demonstrates high performance. The
input size of AlexNet (224 × 224 × 3 pixels) was changed to 250 × 250 × 1 pixels to fit
the dimensions of the input image. The number of channels was reduced from three,
relevant to RGB images, to one, since a grayscale image was analyzed and one channel is
enough to describe the geometry classes, such as working area, construction area, obstacles,
and background. Thus, the number of trainable parameters changed accordingly. The
model has five convolutional layers, with max pooling layers after the first, second, and
fifth convolutional layers. The convolutional layers are followed by two fully connected
layers, with a dropout layer after each of them and five fully connected layers. To apply
the CNN model to the regression problem, the output layer consists of three numbers,
which represent an average of track lengths, its standard deviation, and total tracks for the
analyzed geometry. The architecture of the CNN used in the regression model is provided
in Figure 9 with parameters defined for each layer.

Image 250 (height)⨯250 (width)⨯1 (channels)

Convolution with 11⨯11 kernel + 4 stride: 60⨯60⨯96, ReLu

MaxPool with 3⨯3 kernel + 2 stride: 29⨯29⨯96

Convolution with 5⨯5 kernel + 2 pad: 29⨯29⨯256, ReLu

MaxPool with 3⨯3 kernel + 2 stride: 14⨯14⨯256

Convolution with 3⨯3 kernel + 1 pad: 14⨯14⨯384, ReLu

Convolution with 3⨯3 kernel + 1 pad: 14⨯14⨯384, ReLu

Convolution with 3⨯3 kernel + 1 pad: 14⨯14⨯256, ReLu

MaxPool with 3⨯3 kernel + 2 stride: 6⨯6⨯256

Dense: 4096 fully connected neurons, ReLu, Dropout 0.5

Dense: 4096 fully connected neurons, ReLu, Dropout 0.5

Output: 3, Linear

Flatten

Dense: 2048 fully connected neurons, ReLu

Dense: 2048 fully connected neurons, ReLu

Dense: 1024 fully connected neurons, ReLu

Dense: 1024 fully connected neurons, ReLu

Dense: 512 fully connected neurons, ReLu

Figure 9. The architecture of the CNN-based regression model.

The loss function is constructed of terms that represent average track length, the
standard deviation of track lengths, and the number of tracks. These terms allow an expert
to assess the quality of the results. The desired result is to cover the geometry in a low
number of tracks of similar practically acceptable track length. Thus, all the included
components are important to know and therefore are used in the CNN approximation
model as output. The averaged mean squared error (MSE) was used as the loss function in
the training process:

MSE =
1

3n

(
n

∑
i=1

(yleni
− ŷleni

)2 +
n

∑
i=1

(ystdi
− ŷstdi

)2 +
n

∑
i=1

(ytoti − ŷtoti )
2

)
(2)
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where n is the number of samples. Each term represents the difference between actual
and predicted track lengths (yleni

− ŷleni
), standard deviations (ystdi

− ŷstdi
), and total

tracks (ŷtoti − ŷtoti ) for the i-th case. Here, y and ŷ represent actual and predicted values of
different metrics, respectively.

3. Numerical Experiments
3.1. Results of CPP Algorithm

The CPP results are demonstrated for the datasets with distinct characteristics. Firstly,
the CPP results were shown for the selected samples from the benchmark dataset [6]. The
same examples have been analyzed with the condition that the construction area is large
enough for the construction vehicle to fully leave the working area and with the condition
that the construction area may disturb the vehicle’s motion, including randomly rotated
obstacles of rectangular or ellipsoidal form (Figure 10).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. The CPP results for shapes from the benchmark dataset with large construction area (a–d)
and narrow construction area (e–h).

The geometries with narrow construction area and obstacles usually have a higher
number of tracks because of the maneuvers the vehicle must perform to cover the working
area. The obstacles also create additional tracks if they cannot be overtaken. In addition,
for some cases, the planned path does not fully cover the working area and there are
regions that must be filled manually. The number of tracks and other performance may
differ for known geometry because of the randomization of the obstacles and construction
area. The subset of the benchmark dataset [6] has been used only for the Case 1 dataset in
further analysis of the results’ approximation (see Section 2.4). Tracks for the samples from
Section 2.4 are provided in Figure 11.
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(a) (b) (c) (d)

Figure 11. Tracks for the samples from Case 1 (a,b) and Case 2 (c,d) datasets.

The final datasets are prepared by passing all the generated problems of the respective
dataset (Case 1 or Case 2) through the CPP algorithm to calculate tracks in order to train
the model with the actual results. This process is time-expensive, so it has been parallelized
on technical equipment with 64 cores. Also, it must be mentioned that several cases (∼1%,
70 of 6000) of Case 2 did not pass successful track coverage. However, the research focus is
the process of applying an approximation model for the decomposition, so the failed cases
have been removed from the dataset in further analysis to avoid inappropriate training
data for model construction.

3.2. Model Training and Results

The model has been trained for 200 epochs. Loss functions and mean absolute errors
of averaged Case 1 and Case 2 datasets for training and validation datasets are provided in
Figure 12.

(a) (b)
Figure 12. Loss function values during model training: (a) Case 1 dataset; (b) Case 2 dataset.

The results demonstrate that the training curve is slightly below the validation one.
This means that for Case 1 data, the model adapts too much for the training data. For
such a case, the model can be simplified or the variety of training data should be increased
to obtain accurate results. However, for the Case 2 dataset, the same model architecture
results in noisier loss function curves for the training and validation dataset. For the Case 2
dataset, better results can be obtained by increasing the number and variety of the generated
samples or using a different model architecture. However, this research is focused on the
process of CNN-based model application instead of tuning the model architecture and its
hyperparameters for a specific problem. Thus, the same model architecture and parameters
are used for both cases.
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3.2.1. Analysis of the Benchmark Dataset

In order to perform analysis for the simplified problem, the [6] dataset has been inves-
tigated. The circle-based samples were eliminated because there were no circle polygons
included in the training dataset. The analysis of differences between the approximation
and actual values for the geometry in the benchmark dataset is provided in Figure 13.

(a) (b) (c)
Figure 13. The differences in total tracks (a), length of tracks (b), and standard deviation of tracks (c).

The best- and worst-approximated shapes are additionally displayed in Figure 13
(all shapes by title are provided in [6]). It can be stated that problems of triangle-based
geometry provide results close to the real ones. However, for the small rectangles or other
shapes with track output that strongly differs from the average, the approximation errors
are much larger, i.e., ELE_F has 20 tracks, the ENT_A shape of the same area has 78 tracks,
and the predictions made by the model are 39 and 56, respectively. The errors may be
related to the dataset used for training the approximation model, which was generated by
the procedure provided in Section 2.4.2 and does not cover the specific cases presented in
the benchmark dataset of long narrow rectangles and symmetric geometries. Nevertheless,
the differences are practically acceptable in the majority of cases to give an initial estimate
of the CPP problem results.

3.2.2. Analysis of Decomposition Efficiency for Simplified Problem

To evaluate the performance of decomposition-based decision making, the test Case
1 dataset has been analyzed. The objective was to minimize the number of tracks by
performing initial splitting decisions based on the results of the approximation model. It
must be mentioned that the approximation model does not guarantee the best splitting
option; it may even suggest splitting the geometry when the non-splitting option provides
better results. The impact of using decomposition is provided in Table 2 for the geometries
generated out of 1, 2, 3, and 4 polygons (DS1, DS2, DS3, and DS4, respectively). The
numbers of tracks for the algorithm that guarantee the optimal decomposition and the
CNN-based algorithm for the decomposition are compared to the numbers of tracks
calculated for the decomposition without any decomposition applied.



ISPRS Int. J. Geo-Inf. 2023, 12, 313 15 of 19

Table 2. Decomposition results for Case 1 types with geometry combined of 1, 2, 3, 4 polygons (DS1,
DS2, DS3, DS4, respectively).

Dataset Type DS1 (200
Samples)

DS2 (200
Samples)

DS3 (200
Samples)

DS4 (200
Samples)

Case Example

Splitting applied
by algorithm
(optimal solution)

total samples with
decomposition
applied

0 40 19 22

difference in track
number 0 284 178 211

Splitting applied
by CNN-based
approximation

total samples with
decomposition
applied

0 37 19 17

expected difference
in track number − 186 140 133

actual difference in
track number 0 184 58 103

The results in Table 2 demonstrate that current splitting strategy can improve perfor-
mance for∼20% cases of DS2 type problem, and∼10% for DS3 and DS4 type problems. The
problems of DS1 type are too simple and decomposition can only increase the number of
tracks. No splitting recommendations were generated for this dataset type by CNN-based
approximation model too. For the other problem types (DS2, DS3, DS4), the number of
impacted samples for both optimal and approximation strategies are similar. However, the
difference in track number is significantly different. The optimal decomposition results in
reducing the number of tracks by 284, 178, and 211 for DS2, DS3, and DS4 type problems
whereas the decomposition strategy to use to the CNN-based model recommendations
results in reducing the number of tracks by 184, 58, 103 for DS2, DS3, and DS4 type prob-
lems respectively. For all types of the problems the difference for the approximation model
is positive, thus, the CNN-based approximation model is able to identify the beneficial
decomposition scenarios for the case if decomposition is considered as an optimal strategy
for only ∼10–20% of the problems.

3.3. Analysis of Result Approximation for Case 2

The analysis for the more complex case (Case 2) was performed by taking into con-
sideration subsets generated under different combinations of number of polygons m and
obstacles k. The results of the approximation model were compared to the prediction made
of the linear regression (LR) model trained with the data obtained using theconventional
CPP algorithm:

y = β1 · S + β0 (3)

where y is the predicted values (number of tracks, average length of tracks, standard
deviation of the track length), S is the working area of the problem geometry, and β0, β1
are coefficients of the LR model. The linear regression model covers the case when only
the working area is considered, without taking into account its shape. LR is a simple and
fast approximation technique that defines relationships between the variables. An intuitive
approach is to estimate the cost of the parking lot pavement using area as a variable,
although the actual time and cost of the construction work depend on the track plan (track
length, number of tracks, difference in track length). Thus, comparing the results obtained
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using LR- and CNN-based approaches enables us to evaluate the influence of geometry
on CPP problems. The mean absolute error (MAE) for each predicted parameter and
configuration has been provided in Table 3.

Table 3. The accuracy evaluation of linear regression and approximated predictions for track parameters.

DS Type
MAE of Average

Track Length MAE of STD MAE of Number
of Tracks

LR Approx LR Approx LR Approx

m = 0, k = 0 22.96 5.44 17.54 8.52 12.91 2.86
m = 0, k = 1 12.25 7.22 8.35 5.64 7.45 4.85
m = 0, k = 2 20.74 7.57 10.88 4.07 13.78 6.90
m = 1, k = 0 18.44 11.38 16.43 12.07 12.37 6.96
m = 1, k = 1 12.48 10.95 12.36 9.75 9.15 8.31
m = 1, k = 2 19.38 8.95 11.99 8.61 14.97 8.73

All problems 17.71 8.60 12.95 8.14 11.77 6.44

The results demonstrate that using the LR approach has been outperformed by the
CNN-based approximation model. The better results obtained using approximation mean
that even for complex cases, the model evaluates the relationship between the shape of the
working area and the predicted results. Examples of all configurations with actual values
and values predicted by the approximation model are provided in Figure 14.

(a) (b)

(c) (d)

Figure 14. Cont.
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(e) (f)
Figure 14. Examples of approximation modelmodel results for each DS type from Case 2 dataset:
(a) m = 0, k = 0; (b) m = 0, k = 1; (c) m = 0, k = 2; (d) m = 1, k = 0; (e) m = 1, k = 1; (f) m = 1,
k = 2.

4. Discussion

The CPP is a complex problem with many constraints related to the dimensions of the
construction vehicle, environment, computational time, and resources. Thus, the estimation
of CCP problem results has a practical value in planning the work schedule and resources,
analyzing a large set of problems in order to choose the best decomposition, and other
tasks. A strategy to train the CNN model and use it for this purpose has been suggested
in this article. The CNN model is employed to predict the average length of the tracks,
the standard deviation of the track lengths, and the number of tracks. The results show
that CNN outperforms the linear regression model with area as input for both generated
datasets with different levels of complexity. This demonstrates that the CNN model detects
the relationship between the geometry and predicted features.

An obvious disadvantage of using CNN is the adjustment to the environment of the
problem, such as dimensions of the construction vehicle, the analyzed geometry, and other
values. That is, if a vehicle with another set of parameters is used or the geometry does not
fit into the boundaries, the output value should not be interpreted directly as a number of
tracks or track length. However, it still can provide a reasonable approximation of which
decomposition case would result in a smaller number of tracks. In this research, the quality
of the planned coverage path was evaluated with respect to the number of tracks, the length
of tracks, and standard deviation. The lower number of tracks results in a lower number
of stops during the movement of the construction vehicle. Similarly, the other parameters
related to the track length enable us to evaluate whether the tracks are of a similar length
and to prevent short tracks. Thus, the other coverage path or other decomposition can
be chosen as optimal after the definition of the coverage path quality metric is modified.
Although CNN model is used for fast approximation of model results, the CPP algorithm
still takes a long time to process. The application of generative artificial intelligence models
for the CPP problem can be an objective of future research.

5. Conclusions

In this paper, a CNN-based strategy to approximate the results of CPP has been
proposed. The strategy enables us to evaluate a large number of configurations in a short
period of time and select the best one for the considered problem. The approximation
results have been compared with the results obtained using a linear regression model with
area as input. Two generated datasets of different complexity levels have been used in
the numerical experiments. The numerical experiments demonstrated that the suggested
strategy outperforms the direct approach of linear regression for both analyzed datasets.
Moreover, an example of CNN-based model application for finding the best decomposition
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strategy has been demonstrated. The performance of the presented strategy depends on the
geometry of samples used to train the CNN model. By determining the typical geometries,
generating the representative dataset, and training the CNN model, the presented approach
can be extended to be suitable for more complex CPP problems.

Although the algorithm was created to solve the CPP problem for the parking lot
pavement, it can almost directly be transferred to CPP for agricultural purposes.
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