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Abstract: Urban catering systems constitute an important subsystem of the complex urban system.
They can reveal not only the impact of urban functional structure on the catering but also the behav-
ioral patterns of individual catering points through the exploration of their small-scale aggregation
characteristics and influencing elements, thus becoming an essential basis for urban functional plan-
ning. In this study, we analyze the aggregation characteristics of catering points in a particular study
area using the probabilistic methods, with Beijing catering points as a sample. The analysis revealed a
good power-law distribution characteristic of the catering points density at the small scale. Then, an
aggregation effect analysis model and an agglomeration effect analysis model were established. Based
on this, an empirical analysis of candidate agglomeration kernel elements was conducted. The results
showed that the influence of candidate agglomeration kernel elements on catering points exhibited a
categorical nature. Additionally, a good power-law attenuation relationship was uncovered between
the density and distance of catering points, which ultimately revealed the mechanism of preferential
attachment in the competition for catering point site selection. Using the results of the agglomeration
analysis, a reasonable explanation was provided for the power-law distribution characteristic of
the density of catering points, which achieved an organic connection between micro-analysis and
macro-characteristic analysis. These findings could provide a reference for the analysis of aggregation
characteristics of other urban commercial formats.

Keywords: urban catering points; aggregation characteristics; power-law distribution; agglomeration
kernel elements; aggregation effect; agglomeration effect

1. Introduction

As urbanization accelerates, multifarious urban commercial formats are thriving, with
the catering becoming an increasingly indispensable part of urban development. The
catering industry encompasses various establishments, including restaurants, cafes, dessert
houses, bakeries and other related businesses, that provide food services to meet the dining
needs of individuals and communities. These establishments can be collectively abstracted
to as “catering points”. The catering industry plays a vital role in fulfilling the fundamental
daily needs of residents, namely “clothing, food, housing, and transportation”, and it
significantly influences their living standards and quality of life. Moreover, within the
urban economic structure, the catering industry contributes significantly to employment
generation, tax revenue increase, and consumption promotion. Thus, it represents a typical
and representative component of urban commercial formats. Based on prior knowledge,
there are spatial entities, referred to as influencing elements, within a city that have an “ag-
glomeration effect” on catering points, resulting in a larger quantities and higher densities
of catering points to emerge in their proximity compared to average conditions. As a result
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of this agglomeration effect, catering points exhibit aggregation characteristics. The aggre-
gation characteristics of the catering are a significant manifestation of the urban commercial
formats’ aggregation characteristics, and studying them holds great significance. On the
one hand, it can enhance the understanding of potential behavioral patterns of individual
catering points, leading merchants to enhance their profitability by locating in areas with
aggregation benefits [1]. On the other hand, it can reveal trends in the development of
catering business models and activities in response to changing consumer and market
demand [2]. Additionally, the aggregation characteristics of various urban commercial
formats, which include catering, represent a vivid snapshot of the functional structure
of the city [3,4]. This can provide a reference for urban planners and decision-makers to
enhance the economic vitality of cities and promote sustainable development.

The current literature on the aggregation characteristics of urban commercial formats,
including catering, can be divided into two main aspects. The first aspect concerns the
spatial distribution of the urban commercial formats that can be identified through various
methods and indicators such as KDE, Moran’s I, Getis-Ord G*, and DBSCAN [5–9]. On
this basis, analyses of different urban commercial formats’ location choices have also been
conducted. For example, Zheng et al. [10] discovered that the industries of food, clothing
and daily necessities tend to be densely distributed in the core circle, while the industries of
spare parts, hardware and furniture tend to distributed in the peripheral areas. The second
aspect covers the analysis of the relationship between urban commercial formats’ aggre-
gation and other social–economic determinants, such as population distribution [11–13],
urban road network traffic [13–15], and service facilities [16]. Existing research on catering
mainly focuses on large-scale and qualitative studies, exploring the development trends,
spatial distribution, and influencing elements of catering at the city or business district
level. There is an insufficient exploration of the aggregation characteristics and formation
mechanisms of small-scale catering points. This deficiency has several aspects: (1) a lack
of effective modeling representing the characteristics of the aggregation makes analysis
confined to static statistics; (2) analysis of influencing elements mainly relies on qualitative
analysis or correlation analysis, making it difficult to achieve an accurate description of
the influencing modes and degrees; (3) a lack of an organic connection between micro (or
local) and macro (or overall) characteristics makes it challenging to explain the latter in the
context of the former.

Filling these gaps in the literature brings forth several significant benefits and con-
tributions. Firstly, a more comprehensive understanding of the dynamics of the catering
industry can be achieved. Delving into the specific characteristics and mechanisms at
the small-scale level offers valuable insights into the localized dynamics and intricacies
of the industry. This micro-level analysis enables a finer-grained examination of the fac-
tors driving the distribution of catering points. Secondly, addressing the insufficiency
in effective modeling of aggregation characteristics enables the accurate capture of the
overall density distribution characteristics of catering points. This advancement facilitates a
deeper understanding of the competitive mechanisms underlying the location preferences
of catering points. Moreover, establishing an organic connection between the micro and
macro characteristics offers a holistic perspective on the aggregation of catering points,
enabling researchers to explain the overall characteristics in the context of local dynamics.
To address the aforementioned deficiencies, this study conducted the following works. (1) A
probabilistic model was utilized to describe the overall density distribution characteristics
of catering points. It was found that the density distribution of catering points displays
different degrees of power-law distribution characteristics whilst at a small scale, and these
characteristics become more significant as the scale decreases. This discovery can effec-
tively explain the competitive mechanism behind the location preference of catering points.
(2) This study defines spatial entities that have an “agglomeration effect” on catering points
as “agglomeration kernel elements”, and it believes that these elements have a significant
impact on the aggregation of catering points. Therefore, corresponding analysis methods
were proposed and analyzed to yield corresponding results. (3) Based on the analysis
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results, an endeavor was made to explain the overall characteristics of the aggregation of
catering points.

The study has established the following terminology agreements:

Agreement 1. The term “density”, when not modified, should refer to spatial density rather than
probability density, and the term “distribution” should refer to probability distribution rather than
spatial distribution. For instance, “density distribution” should refer to the probability distribution
of spatial density.

Agreement 2. The use of “[]” denotes a set of POI (Point of Interest) data of a certain category,
such as “[cp]”. “[***,***]” signifies two sets of POI data of different categories, such as “[SP, cp]”.

“[***→***]” represents one set of POI data with respect to another set, such as “[SP→cp]”.

2. Study Area and Data Sources

Beijing, the capital of China, is located in the north of China and comprises 16 districts
under its jurisdiction, covering a total area of 16,410.54 square kilometers. The Fifth Ring
Road, also known as “Wuhuanlu” in Chinese, is a highway encircling Beijing’s urban and
suburban areas, serving as a boundary between them. As shown in Figure 1, the study area
is within Beijing’s Fifth Ring Road (116◦12′–116◦32′ E, 39◦45′–40◦1′ N) with a total area of
roughly 660 square kilometers. It includes the entirety of Xicheng and Dongcheng districts,
the majority of Haidian, Chaoyang, Fengtai, Shijingshan districts, and a small portion of
the northern region of Daxing district. The study area is the central urban area of Beijing,
and it is marked by a favorable geographical position, adequate supporting facilities and
a high population density. This area is a typical and important region for the growth
of urban commercial formats, ranging from various formats such as catering, shopping,
entertainment and others. The catering industry, in particular, is highly developed in this
region, and it is characterized by a sizeable market scale, diverse operating modes, typical
features, and representativeness.
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The POI data used in this study are obtained from Amap (https://www.amap.com
(accessed on 30 December 2021)) as of December 2021. After data cleaning and area
selection, the core dataset required for this study was obtained. The research object dataset
chosen from the selected datasets includes:

https://www.amap.com
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(1) [cp], with a total of 92,668 catering points.

Based on prior knowledge, the candidate agglomeration kernel element datasets was
selected to include:

(2) [SC], with 210 shopping centers, which are comprehensive commercial complexes that
house a large number of retail stores, dining establishments, entertainment facilities,
and service amenities;

(3) [SP], including 365 shopping plazas, 298 chain supermarkets, amounting to 663 points
in total, which are generally smaller in scale and have a relatively focused commercial
format, primarily focusing on retail and providing purchasing and sales services
for goods;

(4) [BS], including 6792 business office buildings, which are specifically designed and
designated for housing offices and conducting business activities;

(5) [RE], including 15,617 residential entry points, which are the designated locations
through which individuals enter or exit residential areas or properties.

The datasets (2)~(5) are referred to as [Candidate] in this paper.

3. Overall Characteristics of the Density Distribution of Catering Points

How to characterize the aggregation characteristics of catering points at a small
scale? A commonly used and intuitive method is to characterize them with quantitative
indicators of spatial density, such as a kernel density map. One advantage is that the
spatial distribution of density is immediately apparent, while a disadvantage is that it
fails to accurately capture the structural characteristics of density, posing challenges in
forming a concise and precise description of the overall characteristics of catering points.
Building upon this, the objective of this article is to establish a probability distribution of
catering points density at a small scale. By doing so, a mathematical description of density
distribution can be achieved. In this regard, the study area is divided into square grid cells,
with candidate grid sizes of 10 m, 20 m, 50 m, 100 m, 200 m, 500 m, and 1000 m.

The statistical process is as follows: Let the scale be τ (such as 100 m).

(1) Divide the study area into square grid cells with a side length of τ. The number of
catering points in each grid cell is counted to obtain a set of grid cells containing more
than 0 catering points, represented as G = {Gi|i = 0, 1, 2, . . . n}, where n is the total
sample size. The number of catering points contained in Gi is denoted as Ni, which
represents the sample value of Gi.

(2) Group the samples into a reduced number of “bins” using the data binning method,
where each “bin” represents a specific interval of sample values. Set the num-
ber of bins as m = 100. For comparability purposes, the same number of bins
is used across all scales (corresponding to different τ, with different sample maxi-
mum and minimum values and bin widths). All samples are binned, and a value of
vj corresponds to bin Bj, which is the central value of bin Bj. Since the planar area of
all grids is the same, vj represents the number of catering points instead of density.
The number of samples falling into bin Bj is sj. Using the method of frequency instead
of probability, the probability distribution function is defined as:

f
(
V = vj

)
=

sj

n
, j = 1, 2, . . . m (1)

The statistical parameters for each scale are shown in Table 1.
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Table 1. The statistical parameters for each scale.

Scale Sample Size Minimum Maximum Number of
Bins

Information
Entropy

10 m 60,271 1 84 100 1.301
20 m 45,561 1 114 100 1.577
50 m 27,755 1 181 100 2.166

100 m 17,206 1 278 100 2.168
200 m 8687 1 338 100 2.711
500 m 2322 1 672 100 3.799
1000 m 682 1 1228 100 4.345

3.1. Power-Law Distribution Characteristics of Planar Density

Statistical analysis reveals that at varying scales, the density of catering points exhibits
power-law distribution characteristics to different degrees (Figure 2). Additionally, as the
scale decreases, the power-law distribution characteristics become more noticeable. These
findings suggest that (1) there is a prevalent competition among individual catering points
for site selection, which is evidenced by their preferential attachment of individual catering
points to other spatial entities (this topic will be discussed later in this article); (2) the site
selection competition mechanism is more pronounced at smaller scales, revealing that
catering points prioritize the “proximity” of smaller scales, such as “being 20 m closer to a
shopping mall”, rather than whether they are in this block or another.
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3.2. Information Entropy of Density Distribution

Information entropy reflects the level of uncertainty of a probability distribution,
with higher values indicating more uniform probability distributions. Thus, to assess
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the uniformity of the density distribution of catering points across various scales, the
information entropy is calculated (Table 1) using the following formula:

H( f (V)) = ∑m
j=1 f

(
vj
)

log2 f
(
vj
)

(2)

As shown in Table 1, the information entropy of the density distribution of catering
points increases as the scale τ increases, indicating that within the range of 10~1000 m,
the density distribution of catering points becomes increasingly non-uniform as the scale
decreases. This observation reveals, from another perspective, the scale mechanism of site
selection competition among individual catering points.

3.3. Mechanism of Preferential Attachment

Power-law distribution is perceived by researchers as a product of competition or
preferential attachment mechanism [17] that is frequently observed in nature and human
society. This study suggests that one significant contributing factor to the power-law distri-
bution of the density of catering points at smaller scales is the distance-based preferential
attachment mechanism in site selection competition; i.e., closer ones are preferred to attach.
In addition, the agglomeration kernel elements are the objects that are “prioritized for
attachment” by the catering points. This mechanism significantly impacts the aggregating
of catering points, ultimately affecting the probability distribution characteristics of the
density of catering points.

4. Aggregation Effect Analysis of Agglomeration Kernel Elements and Catering Points

Although individual analysis is still necessary, this paper aims to study the effect of
a category of agglomeration kernel elements on the aggregation of catering points rather
than focusing on individual or partial entities. This impact has the nature of categorical
and represents the collection of all entities in this category. On this basis, comparisons are
made between different categories. The purpose of this section is to establish a method
for analyzing the aggregation effect and to conduct a categorization analysis of potential
impacts by applying this method.

The research question of this section is abstracted as follows: given two finite sets of
points, A and B, within the plane region r, then how to analyze the aggregation effect of A
and B? The abstraction can simplify the solution process, as it operates solely on spatial
position data. By inputting the [Candidate] as A and [cp] as B, the model can provide
the solution of the problem. The primary approach for constructing the model involves
establishing a spatial process, using distance as the independent variable, constructing a
process function based on this, and analyzing the aggregation effect of A and B through
process analysis.

4.1. Basic Spatial Process Function

Definition 1. Distance–Quantity Function. Let A = {Ai, i = 1, 2, . . . n} and
B =

{
Bj, j = 1, 2, . . . m

}
be two finite sets of points in a planar region r. Let di,j be the dis-

tance between Ai and Bj, whereas let dj,i be the distance between Bj and Ai. di,B denotes the
minimum distance between Ai and all points in B, which is referred to as the distance between Ai
and B. Its formula is given by:

di,B = Min(di,1, di,2, . . . , di,m), (3)

similarly,
dj,A = Min

(
dj,1, dj,2, . . . , dj,n

)
. (4)

Let:
dmax = Max

{
di,B, dj,A; i = 1, 2, . . . n; j = 1, 2, . . . m

}
, (5)
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suppose a positive distance value, where 0 < x ≤ dmax, and consider set A. Let NA→B(x) signify
the count of points in A, whose minimum distance to a point in B is less than or equal to x:

NA→B(x) =
∣∣{Ak

∣∣dk,B ≤ x
}∣∣ (6)

NA→B(x) is referred to as the distance–quantity function by A to B. Similarly, the distance–quantity
function by B to A is denoted by NB→A(x).

4.2. Distance–Proportion Function

Definition 2. Distance–Proportion (D-P) Function. Let PA→B(x) be the distance–proportion
function of A to B:

PA→B(x) =
NA→B(x)

n
, 0 < x ≤ dmax (7)

The D-P function reflects the proportion of A to B at varying distances, describing the
two dimensions of “distance” and “proportion” of the “closeness” between A to B. The
smaller the distance, the larger the proportion, indicating that A is “closer” to B.

Let E(PA→B, (xs, xt] ) represent the average value of PA→B(x) on the interval (xs, xt]
(i.e., the average proportion), which is expressed as:

E(PA→B, (xs, xt] ) =

∫ xt
xs

PA→B(x)dx

xt − xs
(8)

In particular, when xs = 0, the formula above can be represented as E(PA→B, xt). For
instance, E(PA→B, 500 m) represents the average proportion of A to B within 0–500 m.

4.3. Baseline Distribution and Baseline D-P function

While the D-P function reflects the degree of “closeness” between A and B, it does not
account for the degree to which A actively approaches or moves away from B, given that it
may be influenced by external factors. Thus, we define the “baseline spatial distribution”.

Definition 3. Baseline Distribution. To investigate whether there is an effect of “approaching” or
“moving away” by A to B based on distance, an ideal spatial distribution state is established for A,
which is uniformly distributed within the region r, and this is referred to as the baseline distribution.
It is assumed that under the baseline distribution, there is no effect of either “approaching” or

“moving away” by A to B.

The D-P function of A to B under the baseline distribution is called the baseline D-P
function, which is denoted as Pd

A→B(x). To define Pd
A→B(x), we use the D-P function of an

infinite point set in the region r (represented by r) to B, thus:

Pd
A→B(x) = Pr→B(x) (9)

It can be seen that Pr→B(x) is only related to r and B, and it is independent of A.
However, since r is an infinite point set, it is difficult to obtain its analytical solution, so a
simulation method is used to determine the numerical solution of Pr→B(x).

The definition of D-P function and baseline distribution provides a way to analyze
the mutual effect of “approaching” between A and B. Accordingly, the D-P function and
baseline D-P function between [Candidate] and [cp] are calculated, and their function
graphs are shown in Figure 3. To highlight the comparison within smaller distances, a
logarithmic transformation is applied to distance.
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To quantitatively characterize the degree of the effect of “approaching” or “moving
away” by A to B at different distances, the following function is defined.

Definition 4. Distance–Proportion Coefficient Function. Let PA→B(x) be the D-P function of
A to B, and let Pd

A→B(x) = Pr→B(x) be the baseline D-P function. Given a distance x, the
distance–proportion coefficient function of A to B is defined as:

Pc
A→B(x) =

E(PA→B, x)
E
(

Pd
A→B, x

) , 0 < x ≤ dmax (10)

If Pc
A→B(x) > 1, A is considered “approaching” B at the scale of x, if Pc

A→B(x) < 1, A
is considered “moving away” from B at the scale of x. When x = dmax, it is considered at
the global scale.

Definition 5. Aggregation Effect. Given a distance x, if Pc
A→B(x) > 1 and Pc

B→A(x) > 1, A and
B are considered to exhibit an aggregation effect at the scale x (i.e., both are “approaching” each
other). In particular, if Pc

A→B(dmax) > 1 and Pc
B→A(dmax) > 1, A and B are considered to exhibit

an aggregation effect at the global scale.

In Figure 3, the D-P function curves of [cp→Candidate] and [Candidate→cp] are lo-
cated above their respective baseline D-P function curves, indicating that the [Candidate]
and [cp] are “approaching” each other across all scales from 0 to dmax, implying an aggrega-
tion effect at all scales from 0 to dmax. Moreover, the smaller the scale, the higher the degree
of aggregation (i.e., the higher the proportion compared to the baseline distribution).

Figure 4 illustrates the distance–proportion coefficient function curves (with a log
distance) for [cp→Candidate] and [Candidate→cp]. It can be observed that the proportion
coefficient rapidly diminishes at small distances and then gradually flattens out. This
provides the foundation for analyzing the aggregation effect at small scales in particular
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and establishes preconditions to investigate the agglomeration effect further. Table 2 lists the
proportion coefficient values at some small scales of [cp→Candidate] and [Candidate→cp].
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Table 2. Proportion Coefficient at Some Scales.

Pc(x)

100 m 200 m 500 m dmax

[cp→SC] 23.908 11.379 4.302 1.116
[cp→SP] 13.343 6.702 2.804 1.120
[cp→BS] 4.628 2.859 1.731 1.106
[cp→RE] 1.841 1.639 1.356 1.069
[SC→cp] 3.844 2.166 1.372 1.134
[SP→cp] 3.561 2.091 1.354 1.128
[BS→cp] 2.878 1.875 1.299 1.108
[RE→cp] 1.957 1.574 1.222 1.081

4.4. Symmetry Analysis of Aggregation Effect

The proportion coefficient reflects the degree of unilateral participation of a point
set in the aggregation effect. The symmetry of two sets of D-P functions is analyzed by
comparison. To that end, the following function is defined.

Definition 6. Distance–Proportion Symmetric Coefficient Function. The distance–proportion
symmetric coefficient function for A and B is given as:

Ps
A,B(x) = 1− |E(PA→B, x)− E(PB→A, x)|

E(PA→B, x) + E(PB→A, x)
, 0 < x ≤ dmax (11)
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Figure 5 shows all D-P function curves for [Candidate, cp]. The [Candidate→cp] D-P
function curves are all located above the [cp→Candidate] D-P function curves, which
indicates that all [Candidate] have a greater proportion of participation in the aggregation
effect at all scales. This demonstrates that [cp] are not exclusively connected to a single [Can-
didate] but display an aggregation effect with all [Candidate]. Table 3 lists the symmetric
coefficients at some small scales.
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Table 3. Proportion Symmetric Coefficients of [Candidate, cp].

Ps(x)

100 m 200 m 500 m

[SC, cp] 0.159 0.239 0.396
[SP, cp] 0.260 0.381 0.604
[BS, cp] 0.610 0.724 0.865
[RE, cp] 0.712 0.815 0.917

5. Agglomeration Effect Analysis of Agglomeration Kernel Elements to
Catering Points

Definition 7. Agglomeration Effect. If A and B exhibit aggregation effects at scale x, and |A| � |B|
(i.e., asymmetric in sample size), then there is an effect of agglomeration by A to B at scale x.

Based on this definition and the results in Section 4.3, it can be inferred that all
[Candidate→cp] display agglomeration effects at scales ranging from 0 to dmax.

5.1. Basic Characteristic Parameters

Definition 8. Distance–Agglomeration Proportion Function. The distance–agglomeration propor-
tion function by A to B is given as:

Cp
A→B(x) = PB→A(x) =

NB→A(x)
m

, 0 < x ≤ dmax (12)

It reflects the proportion of the agglomeration effect by A to B at scale x. The value of the function
Cp

A→B(x) is identical to that of the D-P function PB→A(x) by B to A.

Definition 9. Distance–Agglomeration Ratio Function. The distance–agglomeration ratio function
by A to B is given as:

Cr
A→B(x) =

NB→A(x)
NA→B(x)

, 0 < x ≤ dmax, (13)

i.e., it refers to the number of points in B that correspond to each point in A at scale x, which reflects
the agglomeration effect in terms of quantity.



ISPRS Int. J. Geo-Inf. 2023, 12, 275 11 of 16

Table 4 lists the agglomeration effect basic parameters of [Candidate→cp] at some
small scales.

Table 4. Agglomeration Effect Basic Parameters of [Candidate→cp].

Cp (x) Cr (x)

100 m 200 m 500 m 100 m 200 m 500 m

[SC→cp] 0.138 0.217 0.406 61.757 96.332 178.329
[SP→cp] 0.222 0.371 0.712 31.710 51.730 99.089
[BS→cp] 0.499 0.729 0.941 7.427 10.031 12.789
[RE→cp] 0.522 0.796 0.969 3.873 4.853 5.758

5.2. Distance–Density Function

Definition 10. Distance–Area Function. Within the planar region r, there is a finite set of points
A = {Ai, i = 1, 2, . . . n}. Let RAi (x) denote the buffer region with center Ai and distance x. Let
RA(x) =

[
RA1(x) ∪ RA2(x) ∪ . . . ∪ RAn(x)

]
∩ r, which is the union of all buffer regions within

r. RA(x) is referred to as the buffer region with distance x of A. Let AreaA(x) be the area of RA(x),
which is known as the distance–area function of A. Utilizing spatial analysis methods, AreaA(x)
can be calculated.

Definition 11. Distance–Density (D-S) Function. Given a distance x, adding a small distance
increment ∆x, then the distance–density function by A to B is as follows:

SA→B(x) = lim
∆x→0

NB→A(x, ∆x)
AreaA(x + ∆x)− AreaA(x)

, 0 < x ≤ dmax, (14)

where
NB→A(x, ∆x) =

∣∣{Bk
∣∣x < dk,A ≤ x + ∆x

}∣∣ (15)

After increasing a small distance increment ∆x, the buffering area of A expands by a
small amount AreaA(x + ∆x)− AreaA(x), and the D-S function reflects the average density
of points in B located within this small area (Figure 6). As ∆x → 0 , SA→B(x) represents
the density at the boundary of the buffering area with a distance of x. The D-S function
characterizes the impact of agglomeration effect on density.
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Definition 12. Distance–Average Density (D-Sa) Function. The distance–average density function
by A to B is as follows:

Sa
A→B(x) =

NB→A(x)
AreaA(x)

, 0 < x ≤ dmax (16)

The definition implies that Sa
A→B(x) describes the average density of B within the buffering

area RA(x) of A.
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Figures 7 and 8 shows the function curves of S(x) and Sa(x) of [Candidate→cp],
respectively. It is evident that both functions show a rapid decrease within 200 m and then
become stable.
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Definition 13. Baseline Density and Cutoff-Distance. The density of B under the baseline distri-
bution is referred to as the baseline density of B. The distance x at which SA→B(x) first decays to
baseline density is called the cutoff distance by A to B. Statistical analysis shows that the baseline
density of catering points in the study area is 1.382/hm2.

Table 5 lists the density analysis parameters of [Candidate→cp].

Table 5. Density Analysis Parameters of [Candidate→cp].

S(x)(/hm2) Sa(x)(/hm2) Cutoff-
Distance(m)100 m 200 m 500 m 100 m 200 m 500 m

[SC→cp] 7.965 3.769 1.630 22.116 9.856 3.727 800
[SP→cp] 5.172 2.152 1.131 12.468 5.973 2.618 450
[BS→cp] 2.365 1.133 0.615 4.580 2.827 1.801 170
[RE→cp] 2.012 1.109 0.307 2.394 2.038 1.606 150

5.3. Distance–Density Correlation

In this section, correlation analysis is conducted between distance and density. Through
curve fitting, it is found that at small scales, the D-S functions and D-Sa functions of
[Candidate→cp] exhibit good power-law relationships (Figures 9 and 10). Taking [SC→cp]
as an example, a power-law distribution was fitted with parameters a = 3905.2888 and
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b = −1.298, resulting in an R2 value of 0.9966. This indicates a power-law decay of density
as distance increases, which can be expressed as:

S(x) ∼ x−β (17)

Sa(x) ∼ x−βa (18)
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The power-law decay relationship between density and distance provides a mathe-
matical method for accurately describing the agglomeration effect by agglomeration kernel
elements to catering points as well as a more precise basis for the mechanism of preferential
attachment in the competition for catering point site selection.

5.4. Effective Distance of Agglomeration Effect

Looking back, let us analyze the derivative of the distance–area function, which
represents the relationship between the corresponding growth rate in buffering area and x
with a small distance increment ∆x. It is defined as:

Area′A(x) = lim
∆x→0

AreaA(x + ∆x)− AreaA(x)
∆x

(19)

Figure 11 illustrates the Area′(x) function curves of [Candidate].
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Figure 11 illustrates the presence of an extremum point on each curve. The x-axis value
corresponding to the extremum point is referred to as the “inflection point distance”, which
represents a change in the area growth rate. The inflection point distance is dependent on
the size and spatial location of the [Candidate]. In Figure 11, when x is small, each RAi (x)
in A does not intersect the others. At this point, the relationship between Area′A(x) and x
is roughly proportional (as evidenced by the linear relationship of each curve before the
inflection point in Figure 11, which is analogous to the derivative of the area of a circle that
is proportional to the radius). As x increases, each RAi (x) begins to intersect the others,
the intersecting area becomes larger, and the contribution of more RAi (x) to Area′A(x)
decreases until it disappears. Therefore, Area′A(x) has an inflection point, and the value
decreases after the inflection point.

This paper suggests that using the “inflection point distance” to represent the effective
agglomeration distance of A is appropriate. Notably, the “inflection point distance” does
not indicate the agglomeration distance of an individual in A but rather serves as a repre-
sentation of the effective agglomeration distance of A as a whole. This is because after the
inflection point, the density of Area′A(x) no longer represent the total agglomeration effect
by A. The excellent correspondence between the inflection point distance and the cutoff
distance (as shown in Table 5) provides strong support for the use of the inflection point
distance to represent the effective agglomeration distance of A.

5.5. Explanation of the Power-Law Distribution Characteristic of Catering Points Density

Let [Candidate] be A, [cp] be B, and the inflection point distance be dc. SA→B(x) is the
D-S function by A to B. Based on Equation (17), assume:

SA→B(x) = ax−β, 0 < x ≤ dc (20)

Base on the analysis in Section 5.4, let us assume that the following equation holds
true (i.e., the new area is proportional to the distance before the inflection point):

Area′A(x) = bx, 0 < x ≤ dc, (21)

then,

AreaA(dc) =
∫ dc

0
Area′A(x)dx =

bdc
2

2
. (22)

Let
s = SA→B(x) = ax−β, 0 < x ≤ dc, (23)

and let P(s) denote the probability density; then, it can be deduced that:

P(s) =
Area′A(x)
AreaA(dc)

=
2x
d2

c
=

2a
1
β

d2
c

s−
1
β . (24)
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Let γ = 1
β ; then,

P(s) ∝ s−γ, (25)

i.e., the density distribution of B within RA(dc) of A follows a power-law distribution.
The density distribution within the study area is a result of the compounding effect of
various agglomeration kernel elements. In addition, the varying inflection point distances
of each [Candidate] result in a more pronounced power-law characteristic of the catering
points density distribution at smaller scales, which is particularly significant at scales below
200 m.

6. Conclusions

Based on POI data, this study conducted statistical analysis on small-scale aggrega-
tion characteristics of urban catering points, and we concluded that the agglomeration
kernel elements are important elements influencing the aggregation of catering points. A
corresponding analysis model was proposed, and the impact analysis of candidate points
sets was carried out from two aspects: aggregation effect and agglomeration effect. The
following conclusions were drawn:

(1) The spatial density distribution of catering points in the study area presents power-
law distribution characteristics at scales ranging from 10 to 1000 m, with a more pro-
nounced characteristic at smaller scales. This data-driven finding interprets the mech-
anism of preferential attachment in the competition for catering point site selection.

(2) Using the spatial process analysis method, an aggregation effect analysis model based
on the distance–proportion function and an agglomeration effect analysis model based
on the distance–density function were established. An empirical analysis between the
candidate points sets and the catering points set was conducted, which demonstrated
the validity of the model.

(3) The aggregation effect analysis revealed that the candidate agglomeration kernel
elements exhibited a global-scale aggregation effect on catering points, indicating
their categorical impact on the aggregation characteristics of catering points.

(4) The agglomeration effect analysis revealed that the candidate agglomeration kernel
elements exhibit an agglomeration effect on catering points. Two important conclu-
sions were drawn: firstly, there is a power-law decay relationship between the density
and distance of catering points, revealing the mechanism of preferential attachment
in the competition for catering point site selection. Secondly, it identified the effective
distance of agglomeration effect by different agglomeration kernel elements.

(5) Based on the conclusions derived from the agglomeration effect analysis, mathematical
methods were utilized to explain the power-law distribution characteristics of density
of catering points. The study formed an organic connection between micro-level effect
analysis and macro-level characteristic analysis.

The analysis model proposed in this study also provides a reference for analyzing the
aggregation characteristics and influencing elements of other urban commercial formats.
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