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Abstract: Volunteered geographic information (VGI) plays an increasingly crucial role in flash floods.
However, topic classification and spatiotemporal analysis are complicated by the various expressions
and lengths of social media textual data. This paper conducted applicability analysis on bidirectional
encoder representation from transformers (BERT) and four traditional methods, TextRank, term
frequency–inverse document frequency (TF-IDF), maximal marginal relevance (MMR), and linear
discriminant analysis (LDA), and the results show that for user type, BERT performs best on the
Government Affairs Microblog, whereas LDA-BERT performs best on the We Media Microblog. As
for text length, TF-IDF-BERT works better for texts with a length of <70 and length >140 words,
and LDA-BERT performs best with a text length of 70–140 words. For the spatiotemporal evolution
pattern, the study suggests that in a Henan rainstorm, the textual topics follow the general pattern
of “situation-tips-rescue”. Moreover, this paper detected the hotspot of “Metro Line 5” related to a
Henan rainstorm and discovered that the topical focus of the Henan rainstorm spatially shifts from
Zhengzhou, first to Xinxiang, and then to Hebi, showing a remarkable tendency from south to north,
which was the same as the report issued by the authorities. We integrated multi-methods to improve
the overall topic classification accuracy of Sina microblogs, facilitating the spatiotemporal analysis
of flooding.

Keywords: flood; topic classification; spatiotemporal process analysis; BERT; volunteered geographic
information

1. Introduction

The frequency of extreme precipitation events has grown dramatically in recent years,
with torrential rains and floods having caused widespread deaths and economic damage.
Their direct economic losses account for about 44.4% [1] of the total losses produced by all
meteorological risks. Floods and torrential rain harm more people and are more deadly
than other calamities. In response to flooding, process monitoring and spatiotemporal
analysis can help governments and emergency agencies accelerate emergency actions and
post-disaster management. Volunteered geographic information (VGI) has become a crucial
data source for disaster response [2,3]. Compared to remote sensing and ground-based
observation data, VGI offers greater timeliness and fewer information expenses [4].

The characteristics of VGI make it feasible to be applied to flood disaster research [5–7].
Typically, when applying VGI data in flooding, researchers often utilize data from the four
aspects of spatial location, text, photo, and social network [8]. The study themes of applying
VGI in floods concentrate on textual topic recognition [9], user sentiment monitoring [10],
witness post identification [11], and the extraction of the water level from photos [12,13]. In
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the course of our research into the classification of themes, we find that the characteristics
of redundant topics, low logic, and unpredictable word count in VGI data frequently lead
to unsatisfactory classification outcomes. The majority of microblog topic classification
relies on unsupervised methods, such as clustering, but these methods are often complex
and have no defined termination conditions. For instance, Dou et al. [14] use fine-grained
topic extraction to assess disaster losses. Zhang et al. [15] classified microblog text using the
TextCNN model based on convolutional neural networks, utilizing the Government Affairs
Microblog of Peking University as an example. Junaid et al. [16] used LDA clustering
to determine the category labels for each paragraph. Han et al. [17] employed LDA and
random forest to construct a microblog topic extraction and classification model using the
microblog data. Wang et al. [18] applied K-means clustering to NCP-related microblogs
and generated 21 sentiment labels related to “NCP rumors” and “epidemic rumors”.

The supervised method [19] is trained with known samples or called prior knowledge
(known inputs and corresponding outputs) to construct an optimal model and then is ap-
plied to the new data and obtains the output. After going through this process, the model
becomes predictive. Compared to supervised methods, unsupervised [20] approaches do
not have known samples, and there is no prior knowledge concerning the training. As
opposed to unsupervised classification, supervised classification models, such as Bidirec-
tional Encoder Representation from Transformers (BERT), could allow users to set topics
as their interests. BERT has been pre-trained in cross-domain corpora, such as Wikipedia
and book corpora, and can perform well on a variety of text-processing tasks [21]. Based
on it, Tobias et al. [22] fine-tuned BERT for various tasks in the domain of requirements
analysis. Therefore, this study focuses on supervised classification. On the subject of data
language types, Jacob et al. [21] used the English corpus to propose two BERT models,
BERT-large and BERT-base. Furthermore, the classification procedure in Chinese differs
from that in English. There are natural spaces between English words to separate them;
however, in Chinese, there is no separator in the center of each sentence. As a result, when
we utilize computer technology to perform automatic semantic analysis of Chinese, the
initial operation is usually Chinese word segmentation, and Bert has a built-in word divider
that is capable of handling this problem well.

In dealing with microblogging data, the length of microblog data can range from a few
words to a few thousand, and the expressions of Government Affairs Microblog and We
Media Microblog are different; therefore, it is important to find the best way to categorize
the traits of various microblogs rather than using a single method for them. Although
microblogging themes can be categorized using clustering, it is difficult to determine the
names and numbers of the categories, and the small number of categories may be ignored
or moved into other categories to the point where it has an impact on the outcomes of
evolutionary analysis. For the evolutionary analysis of flooding themes, it is crucial that a
classification method retains a smaller number of categories and specifies the name and
number of categories in advance.

Based on the abovementioned research background and status quo, this paper aims
to solve the following problems: (1) to analyze the advantages and disadvantages of
different topic classification methods in flood-related microblogs and to formulate an
ensemble processing scheme for the optimal topic classification, and (2) to take the intensive
rainfall event in Henan, China, on 20 July 2021 as an example to validate the optimal
topic classification method, and analyze the spatiotemporal evolution of this event. To
quantitatively assess the applicability of different topic classification methods to different
types of VGI data, the whole architecture of this paper is as follows. Section 2 describes
the details of the study area and data and provides a preliminary discussion of some of
the issues with BERT . . . Section 3 describes the experimental procedure and the rationale
for each method. Section 4 explains the experiments and the corresponding results and
discusses the influence of the user type factor and the text length factor. Section 5 takes
the whole Henan intensive rainfall event as an example and analyses the spatiotemporal



ISPRS Int. J. Geo-Inf. 2023, 12, 240 3 of 21

evolution of the event to verify the feasibility of the method. Finally, Section 6 concludes
the paper and provides an outlook.

2. Experimental Scenario and Data
2.1. Experimental Scenario

On 20 July 2021, Henan, China, was hit by an unusual and catastrophic flooding
calamity. The tragedy affected 14,786,000 people in 150 counties (cities and districts), with
398 dead and missing. Zhengzhou saw 627.4 mm of 24 h rainfall, more than twice the
threshold for very high rainfall (https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011
xqxyw/201208/t20120817_182197.html accessed on 25 December 2022), and the cumulative
precipitation was close to the historical annual precipitation of 640.8 mm (https://www.
thepaper.cn/newsDetail_forward_13664770 accessed on 25 December 2022). The intensive
rainfall caused significant damage to transportation infrastructure, with water damaging
2639 highways and 351 shipping facilities (https://zhuanlan.zhihu.com/p/401527415
accessed on 6 May 2022). The 2021 Henan flooding event is a once-in-a-millennium massive
meteorological calamity that generated considerable public interest due to its severe, and it
also provided abundant data; therefore, it was chosen as a case study (hereinafter referred
to as Henan intensive rainfall). Furthermore, the 2020 Hubei flood, one of the “Top 10
Natural Disasters in 2020” in China, was used for comparison (hereinafter referred to as
Hubei intensive rainfall).

2.2. Data Acquisition and Tagging

This study utilized VGI taken from the Sina Microblog, China’s largest social media
platform, with an average of 252 million active daily users, and the data were collected
using web crawlers and APIs. The data were acquired as follows: the crawling portion of
the solution is implemented in Python, where we simulate a login by obtaining a browser
cookie, generate the requested URL based on the search parameters, and parse the requested
page using the path-finding language XPath to locate the Weibo ID that appears on the
page. We use the Show interface of the Sina Weibo API to obtain the details of the microblog
based on the obtained microblog IDs. After crawling and parsing the Weibo ID, the crawler
contacts the Show interface via the Python SDK of the Sina Weibo API to organize the
data into a library for further processing. The data were crawled using the keywords of
“torrential rain, rescue, disaster”, and “Weihui, Hebi, Henan”, etc., between 00:00 UTC+8 on
15 July and 23:59 UTC+8 on 15 August 2021. In total, 810,502 and 29,625 microblogs were
gathered, respectively, for the Henan and Hubei intensive rainfall events, with the 13 fields
of microblog ID, user ID, username, text, post location, Weibo @user, tag, retweet count,
comment count, like count, post time, posting tool, and retweet ID. To complete our tests
and analysis, we use three main fields: text, time, and location [23]. Finally, we crawled
38,894 and 2312 of them, respectively. As the text is in Chinese, all of the subsequent
processing of the text will follow the same process as used for Chinese. Eight topics of
“warning, situation, help, disaster, pray, rescue, guide, irrelevant” were defined in this
study by referring to past studies [24,25], and we randomly sampled the check-in data and
divided the training set and the test set by 8:2 in all of the experiments of this paper.

2.3. Problem in Different/Experimental Scenario

BERT, derived from the transform model, can perform NLP (natural language process-
ing) tasks such as text classification [26]. BERT is a supervised pre-trained language model
that requires manual category annotation. The version of the BERT model chosen for our
experiments is the bert-base-chinese, the tensorflow version, with 12 num_hidden_layers.
Following a series of experiments, it was determined that the Hubei and Henan deluge
datasets were annotated at 70% and 10%, respectively, in order to strike a balance between
the manual labeling burden and classification accuracy.

BERT performs effectively in news texts [27], with a fixed form, clear structure, and
no crossover between the categories. However, VGI data pertaining to the flood differed
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significantly from news texts. There are mainly two types of users present on the Sina
microblog, official and personal. Texts posted by official users are similar to those of news,
with fixed structures, common expressions, and very clearly defined meanings, while the
personal texts posted are often quite free in terms of word choice, structure, and length;
therefore, the performance of BERT in relation to these texts may vary. In this paper, these
two types of Sina microblog texts were named Government Affairs Microblog and We
Media Microblog, respectively, and quantitative analysis was performed on both of them.
The overall accuracy and the accuracy of the two text types based on the Hubei and Henan
intensive rainfall datasets are shown in Table 1.

Table 1. Accuracy statistics of BERT under different scenarios.

Datasets
Type

Overall
Government

Affairs Microblog
We Media
Microblog

Hubei intensive rainfall datasets 71.4% 87.2% 67.4%
Henan intensive rainfall datasets 59.7% 75.0% 58.0%

It can be found from T 1 that BERT performs differently in relation to different types of
datasets, with higher performance exhibited in terms of the Government Affairs Microblog
than on the We Media Microblog. Government Affairs Microblogs typically contain a
“whole-part” or “part-whole” structure, as well as discrete subject phrases from which
textual topics can be easily extracted. This paper hypothesizes that the use of too many
sentences in the We Media Microblogs affects the categorization accuracy of the BERT, and
we try to use the traditional topic classification methods to determine the key sentences to
improve the accuracy of BERT in relation to We Media Microblogs.

3. Pipeline of Applicability Analysis

As shown in Figure 1, the pipeline of applicability analysis primarily involves building
text phrase sets, extracting key sentences, pre-training the BERT classification model, evalu-
ating the accuracy, and optimizing the results. In this paper, we obtained intensive rainfall
data from Sina Weibo, selected microblogs containing geographical location information
for cleaning and preprocessing, and manually tagged a portion of the data to create the
experimental data. The extracted key sentences and the original experimental data were
then used as training inputs for BERT, which was calculated in terms of accuracy to identify
the text types to which each method was adopted.

3.1. Data Cleaning

As depicted in Figure 2, the first rectangle represents the original text of the microblog,
and we find that the text contains a great deal of redundant information; therefore, removing
irrelevant information, such as emojis, web links, L-user videos (hyperlinked representation
of microblogs), @users, etc., can enhance the focus of the text; thus, the second rectangle
represents the text after removing the irrelevant information. In addition to this, we find
that users can post tweets from mobile devices, but mobile emojis are not included in
the Emoji library. As a result, we must divide the text into words, check whether each
character is UTF-8 encoded, and eliminate non-UTF-8 encoded letters, as shown in the third
rectangle. Users frequently use colloquial language when posting texts; therefore, commas
are used more often because users are less concerned with the overall logical structure of
a paragraph. To increase the efficiency of summary extraction, a full stop should be used
in place of a comma in the text when there are fewer than three sentences during the data
cleaning phase.
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3.2. Key Sentence Extraction

Extracting key sentences from long Sina microblog texts reduces redundancy. This
method also increases the focus of the text on its subject as well as the effectiveness of
subsequent processing. This paper uses TextRank, TF-IDF, MMR, and LDA for key sentence
extraction from four perspectives: graph-based ranking, statistical-based, maximum-edge-
correlation-based, and topic-model-based. TextRank [28] and TF-IDF [29] are utilized
frequently for keyword extraction, MMR [30] is utilized for document reordering, and
LDA [31] is utilized for topic clustering. In principle, all of these methods compute the
similarity between words or sentences, and key sentence extraction can be implemented
based on the algorithm’s underlying principles.

The TextRank algorithm is a graph-based approach [32]. Furthermore, Li and Zhao [33]
assessed the similarity between words by creating a concept vector and a keywords matrix
and then extracted keywords using TextRank. TF-IDF is a statistically based method, which
tends to keep significant words while removing unnecessary ones [34,35]. The main idea
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behind TF-IDF [36] is to find words with unique traits, and it can be used to make microtext
lines easier to read. MMR considers the similarity between the extracted text and the
entire document and between the extracted sentences and the summaries [37,38]. After
calculating the similarity of each sentence to the entire text and between two sentences,
the algorithm formula is iterated to rank the sentence scores of the microblog texts. LDA
has three structural layers: words, topics, and text [39]. The topic with the most microblog
sentences is chosen via similarity computation. We use probability to rank subject sentences
to evaluate text sentence importance.

3.3. BERT Classification

BERT is a time-saving encoder that is well-suited for the migration learning of textual
tasks and does not require a large corpus for training. The workflow of BERT was described
in detail in the study by Lu et al. [40]. The BERT layer [21,41] extracts contextual semantic
information from texts using the word, segmentation, and location embeddings in the
flooded Sina microblog data topic classification task. The model in this paper is trained
on the flooded Sina microblog dataset. The pre-training input to BERT is the sum of three
vectors: token embeddings, segment embeddings, and position embeddings, where the
token vector transforms each word into a word vector, segment embeddings indicate where
the word belongs to, and position embeddings tell where the word belongs. The learned
location information is represented by the location vector. Each line begins with the [CLS]
flag, and the last position embeddings can be utilized as a semantic representation of the
entire sentence, allowing it to be used for downstream classification tasks, and the [SEP]
flag is used to distinguish between the two input sentences.

3.4. Accuracy Evaluation

On the issue of thematic classification, previous studies have typically been based on
the accuracy (ACC), precision (P), recall (R), and F1-score (F1) [42] when evaluating the
strengths and weaknesses of each model. Therefore, this paper evaluates the model using
Acc, P, R, and F1. Prediction accuracy is Acc (positive category and negative category).
P is the percentage of positive predictions that were correct. R is the ratio of accurate
positive forecasts to all positives. F1 is a model recall–accuracy average. These indexes
are calculated via four statistical evaluations: true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). TP and TN, respectively, indicate the number of true
samples and false samples, which are classified into the corresponding categories correctly.
FP indicates the number of true samples divided into the false sample. FN indicates the
number of false samples divided into the true sample. Four accuracy evaluation methods
work best for sample imbalance, misdetection, and omission errors. Equations (1)–(4) can
be used to calculate accuracy, precision, recall, and F1, respectively:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

R =
TN

TN + FN
(3)

F1 =
2× P× R

P + R
(4)

4. Applicability Analysis Experiments and Results
4.1. Topic Classification Results

The Sina microblog standard microblogs have a 140-character limit, double that of text
messages, indicating that 70 characters can express simple semantics and 140 can convey
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single-thing information. Zhang et al. [43] found that 63% of the sentences extracted are
very relevant to the text’s topic; therefore, the public usually expresses the same topic in
three sentences. To guarantee text and eliminate irrelevant sentences, three key sentences
are extracted. We use four algorithms, TextRank, MMR, TF-IDF, and LDA, to process the
text in datasets 1, 2, 3, and 4. Each dataset has 3600 training and 400 test records. One epoch
completes forward and backpropagation. Multiple experiments can be found wherein the
model test results tend to be stable when the epoch is set to 15; therefore, in the subsequent
experiments, the epoch is set to 15.

The training set accuracy for each of the different datasets was 100%, and a comparison
of the best test set accuracy comparisons is shown in Table 2 below. The results of the
elapsed time indicate that the four extractive summary algorithms reduce the length
of the text and improve the training efficiency of the model by removing redundant
sentences after extracting the text’s key information. A comprehensive evaluation of the
model using accuracy evaluation indexes, such as Acc, P, R, and F1, demonstrates that key
sentence extraction reduces the redundancy of the Sina microblog text and improves the
classification’s efficiency and accuracy. As shown in Table 2, TF-IDF-BERT, TextRank-BERT,
MMR-BERT, and LDA-BERT have all improved in some way over BERT, with TF-IDF-BERT
demonstrating the greatest improvement. The same experimental steps were carried out
on the Hubei intensive rainfall dataset, and the results are shown in Table 3; the trends are
roughly the same as the Henan intensive rainfall dataset above, except for the slightly more
erratic TextRank-BERT results.

Table 2. Accuracy comparison of BERT, TF-IDF-BERT, TextRank-BERT, MMR-BERT, and LDA-BERT
on the Henan intensive rainfall test set.

Method
Evaluation Factors

Acc Time F1 P R

BERT 57.3% 4 h 34 min 56.0% 58.0% 53.8%
TF-IDF-BERT 63.3% 3 h 30 min 63.2% 66.7% 63.3%

TextRank-BERT 58.8% 3 h 31 min 59.1% 62.3% 58.8%
MMR-BERT 62.0% 3 h 32 min 60.9% 61.7% 62.1%
LDA-BERT 60.0% 3 h 31 min 60.0% 61.4% 60.0%

Table 3. Accuracy comparison of BERT, TF-IDF-BERT, TextRank-BERT, MMR-BERT, and LDA-BERT
on the Hubei intensive rainfall test set.

Method
Evaluation Factors

Acc Time F1 P R

BERT 63.9% 4 h 11 min 63.9% 53.5% 51.9%
TF-IDF-BERT 65.3% 3 h 46 min 65.1% 57.5% 54.1%

TextRank-BERT 61.5% 3 h 41 min 61.5% 50.1% 49.8%
MMR-BERT 64.1% 3 h 51 min 64.0% 57.9% 55.4%
LDA-BERT 64.7% 3 h 49 min 64.7% 57.2% 53.5%

Confusion analysis was performed for the Henan and Hubei intensive rainfall events to
check the misclassification level. There is not much misclassification in the Hubei intensive
rainfall dataset, while for the Henan intensive rainfall dataset, misclassifications are severe,
affecting the test set accuracy of the five methods, as shown in Figure 3. The warning and
guide categories are both instructional in nature and contain forewarning and reminder
content; the help and rescue categories, although active and passive in subject matter,
typically appear together in textual expressions. Semantic proximity leads to category
confusion; therefore, they are merged to solve the problem. The topic “warning” and
“guide” were merged into “tips”, “situation” and “disaster” were merged into “situation”,
“help” and “rescue” were merged into “rescue”, and “prayer” and “irrelevant” were
merged into “emotions” to avoid confusion. In addition, a hotspot is often a focus of



ISPRS Int. J. Geo-Inf. 2023, 12, 240 8 of 21

natural disasters, and the State Council executive meeting of China was alarmed by the
Zhengzhou Metro Line 5 fatality [44]; therefore, the hotspot was also listed as a topic.
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Figure 3. Prediction and true value confusion matrices for the five training approaches (a) BERT
display, (b) TF-IDF-BERT display, (c) TextRank-BERT display, (d) MMR-BERT display, and (e) LDA-
BERT display.

The number of Sina microblog texts for each category before and after the merging is
shown in Table 4. As can be seen, there are fewer entries in the prompt category and more
in the emotions category. As it is randomly selected for labeling, it matches the ratio of the
categories of the Sina microblogs issued for the whole Henan intensive rainfall event.

The data from the model test set were reclassified into the new five categories of
“hotspots, situation, tips, rescue, and emotions” and re-entered into the prediction model.
Table 5 displays the prediction results of the five models, with the accuracy being improved
by about 10%.
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Table 4. Number of test sets by category before and after merging.

Original Category Number Present Category Number

warning 160 tips 280guide 120
situation 235

situation 640disaster 421
help 423 rescue 978rescue 570

prayer 711
emotions 2031irrelevant 1360
hotspots 71

Table 5. Comparison of the accuracy of the results of different methods for the test set after reclassifi-
cation.

Method
Evaluation Factors

Acc F1 P R

BERT 67.5% 67.4% 67.6% 67.5%
TF-IDF-BERT 69.2% 68.7% 68.5% 69.2%

TextRank-BERT 66.3% 65.9% 65.9% 66.3%
MMR-BERT 63.8% 63.9% 64.1% 63.8%
LDA-BERT 67.1% 67.2% 67.7% 67.1%

Hotspots are representative of the entire flooding event, and studying them allows us
to analyze the event from a very subtle perspective, discovering interesting and fruitful
details. Extreme rainstorms destroyed the Wulongkou car park’s water retention fence and
poured into the metro tunnel during the Henan intensive rainfall event. The discussion
of current events contains an abundance of useful information. As illustrated in Figure 4,
the change in the water level can be extracted from Sina microblogs in order to map the
severity of the Henan intensive rainfall event.
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4.2. Applicability Analysis
4.2.1. User Type Analysis

The topic classification on the Government Affairs and We Media Microblogs for the
Henan and Hubei intensive rainfall events are displayed in Tables 6 and 7. All of the
classification methods have higher accuracy in terms of the Government Affairs Microblogs
than the We Media Microblogs, and BERT has the highest accuracy. Government Affairs
Microblogs usually have explicit intentions, little redundancy, and fixed expression patterns
of “whole-part” or “part-whole”, and the first or last sentence is often able to express the
theme of the entire text. Extracting only a portion may destroy the contextual links and
affect the accuracy. Therefore, no key sentence extraction is needed for Government Affairs
Microblogs, and BERT is suitable for the processing of this type of text.

Table 6. Results of the method suitability analysis by type of user in Henan intensive rainfall dataset.

Method
Type Government Affairs

Microblog We Media Microblog

BERT 79.0% 62.0%
TF-IDF-BERT 74.0% 64.0%

TextRank-BERT 72.0% 55.5%
MMR-BERT 69.0% 51.5%
LDA-BERT 78.0% 64.5%

Table 7. Results of the method suitability analysis by type of user in the Hubei intensive rainfall
dataset.

Method
Type Government Affairs

Microblog We Media Microblog

BERT 87.2% 67.4%
TF-IDF-BERT 80.4% 67.5%

TextRank-BERT 74.3% 60.6%
MMR-BERT 81.5% 66.9%
LDA-BERT 79.9% 67.5%

Unlike the Government Affairs Microblogs, there is no fixed structure for We Media
Microblogs, and topic sentences may appear in the first, middle, or even the last sentences.
In addition, the texts often have vague and emotional expressions, focusing more on an
opinion or emotional catharsis, making it difficult to extract the topic.

4.2.2. Text Length Analysis

Sina microblogs vary in length. Figure 5 shows the number of Sina microblogs with
text lengths in 15-word intervals, such as 0–15, 16–30, . . . , and >390, etc. There is an inverse
correlation between the number of postings and the word number of a certain posting,
which suggests that individual users do not accumulate multiple events to send together
but rather tend to describe what occurred instantly and express their feelings. To choose
the most important subjects, the text must be specified using rules related to this form of
text if it comprises a given number of words, phrases, and topics.

Based on the length of the text, individual microblog texts are divided into three sets,
word count ∈ (1, 70), word count ∈ (70, 140), and word count ∈ (140, +∞). The accuracy of
each of the five models is evaluated by inserting each of the three datasets into it, and the
evaluation’s findings are presented in Tables 8 and 9.
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Table 8. Applicability analysis on text length of intensive rainfall dataset in Henan, China.

DataSet

AccMethod

Word Count
∈ [1, 70]

Word Count
∈ (70, 140)

Word Count
∈ (140, +∞)

BERT 65.7% 58.6% 61.7%
TF-IDF-BERT 68.6% 57.1% 68.3%

TextRank-BERT 58.6% 48.6% 60.0%
MMR-BERT 52.9% 57.1% 53.3%
LDA-BERT 61.4% 68.6% 63.3%

Table 9. Applicability analysis on text length of intensive rainfall dataset in Hubei, China.

DataSet

AccMethod

Word Count
∈ [1, 70]

Word Count
∈ (70, 140)

Word Count
∈ (140, +∞)

BERT 63.2% 68.7% 75.0%
TF-IDF-BERT 64.3% 65.8% 76.6%

TextRank-BERT 55.3% 62.7% 69.6%
MMR-BERT 63.3% 67.4% 74.4%
LDA-BERT 63.3% 70.5% 73.1%

The findings indicate that TF-IDF-BERT performs noticeably better when the number
of words is either relatively low or relatively high, whereas LDA-BERT performs signif-
icantly better when the number of words is medium. TF-IDF ranks the importance of
sentences more effectively than the other three methods when the number of words is small.
The dataset is then fed into BERT for training, and BERT can better learn the relationship
between the sentences. When the number of words is moderate, LDA is the most common
clustering technique, and the vocabulary of Sina microblog text is more colloquial and
less transformed. Therefore, clustering can be carried out according to the topics that are
expressed by each sentence in the text. When the word count is high, there are more topics
expressed between each sentence of the text, and it is difficult to classify them. However,
TF-IDF can not only consider the number of words in each sentence but also consider the
sentence connection according to the word frequency.
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5. Spatiotemporal Analysis of the Text Themes
5.1. Validation of Classification Results

Referring to a study by Scheele et al. [45] that combined data from social media with
data from reliable sources, we compared Sina microblog hot search-related topic terms
and plotted the validation results, where the subplots indicate the trend of the term’s
hotness over time (to ensure image clarity, the text is shown in the case category, and
the rest of the category images are placed in Figure A1(1)–(4) in Appendix A). Figure 6
and Appendix A Figure A1(1)–(4) demonstrate that Sina microblog hot search list closely
matches user attention and direction of hot content: situation, tips, rescue, emotion, and
hot categories peaked at 17:00, 18:00, 15:00, and 21:00. On July 20, urban Zhengzhou
experienced 120–201.9 mm of rain between 16:00 and 17:00. At 18:00, the Zhengzhou Metro
Line 5 access line water retaining wall broke into the main line interval. At 20:00, the flood
control level III emergency response began. The list of hot search phrases matches the
curve’s peak:

(1) In the situation category, “Zhoukou Flood Relief” and “Xinxiang torrential rain”
were among the top 10 Sina microblog searches by 22:00 on 21 July. “Eight people
killed flash flood in Wangzongdian village in Henan Xingyang” trended on the Sina
microblog at 11:00 on 29 July after the torrential rain stopped.

(2) In the category of tips, on 20 July, the microblogging search trending list at 18:00
included “Why Henan became the center of heavy rainfall in China” and “Flood
control emergency response in Zhengzhou, Henan Province was raised to level 1”;
therefore, there was a peak on 28 July, and “The State New Office introduced the flood
control and disaster relief work” was on the top lists because the government usually
sums up.

(3) For the rescue category, “Mother of rescued baby girl buried in rubble dead” and
“deputy director of Henan Xinmi Development and Reform Commission killed”
topped the 23 July rescue reports. Five days after the tragedy, government depart-
ments revealed the damage statistics, and “296,000 people in Henan in urgent need of
livelihood assistance” caught notice.

(4) Regarding the emotion category, emotional microblogs have search trending terms but
less fluctuation. At 23:00, users generally mentioned, “Last night’s Weibo comments
were so well cried”, during the 21 July Henan rainfall event. The post, “Henan cultural
relics bureau chief cries”, at 22:00 on 24 July, made many internet users grieve the
natural calamity that ruined cultural treasures and other objects.

(5) Hotspots events were mainly focused on “Metro Line 5”, while on 20 and 21 July,
the words “Zhengzhou Metro” and “Zhengzhou underground stranded person chats
with a friend” appeared, and on 27 July, the 12:00 curve peaked mainly because the
words “Niu Niu, Daddy still wants to take you home” inspired the public to mourn
the victims of the rainstorm.

5.2. Temporal Analysis

The temporal evolution of the microblog theme during the Henan intensive rainfall
event is shown in Figure 7. The two black lines in the figure help us to see the order in
which the themes appear. The unexpected occurrence of intensive rainfall in Henan caused
the first topic of concern among the users of Sina microblogs to be the disaster. This was
followed by the category of warnings and alerts issued by the counties and cities, and
the rescue category reached its peak approximately two days after the situation. This is
basically in line with the general pattern of “situation–tips–rescue”.
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5.3. Spatial Analysis

When people post on the Sina microblog, the data can be time-stamped and geolocated,
and users can share information in real-time about the storms [46] that occurred around
them. As shown in Figure 8, the Sina microblog check-in data are first compiled and then
converted into latitude and longitude coordinates by making a call to the Baidu Maps API.
Then, ArcGIS is used to visualize and analyze the data.
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The check-in data are selected as the sample for the study on the assumption that it is a
random sample of all of the data; therefore, it is representative to analyze and discuss based
on the check-in data as it is difficult to determine how many Weibo users are registered in
each province. Based on the statistical yearbook, the number of registered Weibo users in
each province or city is determined by the population aged 15 to 65. We follow Equation (5)
to calculate the attention of each region to the Henan rainstorm event, where H means the
amount of attention paid to the heavy rainfall event in Henan in that region, COUNT means
the number of microblogs positioned in that region at the check-in location throughout a
certain time period, and PERSON means the proportionate number of individuals aged
15–65 in that region. The calculation formula is as follows:

H =
COUNT
PERSON

× 100% (5)

By plotting the Sina microblog check-in data on a map, as depicted in Figure 9,
it is evident that the residents of Henan Province were the most concerned about the
event during the intensive rainfall event in Henan Province. Around Henan Province,
especially in the coastal areas, there was a high level of concern about the event. Firstly,
the location of the event determines the degree of concern, followed by the population
density and economic development of the area. In the meantime, we learn that numerous
people were affected by floods in Guizhou (http://www.xsx.gov.cn/zfbm/yjglj/zfxxgk/
fdzdgknr/zhjy/202108/t20210813_69506393.html accessed on 3 January 2023) in July, and a
significant fire broke out in Jilin (https://www.sohu.com/a/540732186_121106842 accessed
on 4 January 2023) Province on the afternoon of 24 July. From the perspective of the afflicted
population’s psychology, it is simple to empathize with the Henan rainstorm and, as a result,
pay more attention to the event. Consequently, the occurrence of comparable disasters
interacts to influence the level of attention that affected individuals pay to the disaster.

Figure 10 shows the nationwide check-in microblog heat on 19, 21, 24, and 27 July.
Deng et al. [47] found that most cities in Henan Province are at moderate risk and that
Zhengzhou is prone to severe rainfall and flooding due to its high catastrophe risk. The
Sina microblog buzz changed on 19 July, the day before the rainfall, when check-in data
were low. Normally, Henan rain talk is hot. The matter was heavily discussed in Henan
Province on 21 July, the day of the rainfall. On 27 July, subject hotness dropped substantially
across numerous provinces and cities, demonstrating that the government’s emergency
response strategy for the deluge in Henan was well received, the city recovered better, and
users gradually turned their attention to other events.

http://www.xsx.gov.cn/zfbm/yjglj/zfxxgk/fdzdgknr/zhjy/202108/t20210813_69506393.html
http://www.xsx.gov.cn/zfbm/yjglj/zfxxgk/fdzdgknr/zhjy/202108/t20210813_69506393.html
https://www.sohu.com/a/540732186_121106842
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With the development of the event, the overall heat of the topic discussed in all regions
decreased, except for Henan Province on 24 July, where it slightly decreased; the overall
look of the heat first increased and then decreased, of which Henan Province heat is steadily
high, and it lasted longer in coastal areas lasted longer than in inland areas. Figure 11 shows
the heat change in Henan Province, with Zhengzhou having the maximum heat, followed
by Xinxiang, Anyang, and Hebi. In the latter half of the period, the heat shifts north.
Liu et al. [48] employed 10 high-resolution satellite precipitation products to determine
the spatial distribution of heavy rainfall in central and northern Henan, confirming the
analysis.
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6. Conclusions

This paper offers a novel theme classification model that uses multiple classification
methods for distinct microblog expressions to tackle the problem of classifying diverse
microblog texts and integrating flooding microblog data by class classification. In this study,
we construct a microblog dataset related to Henan Province’s intensive rainfall events and
classify the texts using BERT based on a summary and analysis of the findings. We use four
algorithms, TextRank, LDA, MMR, and TF-IDF, to extract the text for summary processing
before building the dataset for text classification and reach the following conclusions:

1. BERT is superior for classifying microblogs related to government affairs. When there
are a small or a high number of words in a We Media Microblog entry, the TF-IDF
-BERT classification method is utilized, and the LDA -BERT classification method is
utilized when the number of words is medium;
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2. The intensive rainfall in Henan was unexpected. Disaster information attracted
more attention than warning information, but warning information garnered greater
attention quickly after the warning-relief statute was passed;

3. The microblog hot topics list all have corresponding category topics and are at the top,
and as the hot topics change, the number of microblogs for each category decreases
until the next hot topic appears.

4. Residents of areas around Henan Province and areas that are also suffering from other
natural disasters are more concerned about the intense rainfall in Henan Late heat
shifted northward in Henan Province, with Zhengzhou, Xinxiang, Anyang, and Hebi
having the highest topic heat;

5. Issues during the experiments may have reduced precision: the text data are insuf-
ficient, with too many categories and a small number. Humans manually annotate
categories and add subjectivity. We can improve the dataset in future experiments
to improve precision. In addition, the semantics of the microblog check-in data are
unclear; therefore, multiple sources of data can be used to improve it.

6. Due to human and material limitations, we are unable to designate a substantial
number of samples for BERT training. In addition, the irregular use of punctuation
by individual users when expressing themselves can pose a challenge in terms of
accurately identifying complete sentences when performing the main sentence ex-
traction task. Even though we optimize the data during data pre-processing, this still
diminishes the precision of the results to some degree. In addition to these, the studies
are based on the Chinese corpus, and no comparative experiments in the English
corpus have been undertaken. After that, we can add the English dataset and repeat
the experiment to see if the approach is generalizable.
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Figure A1. Comparison of predicted peaks by category with Weibo hot searches. (1) Disaster, (2) tips
(3), relief, and (4) emotions.
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