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Abstract: Archaeological predictive modeling (APM) is an essential method for quantitatively as‑
sessing the probability of archaeological sites present in a region. It is a necessary tool for archaeo‑
logical research and cultural heritage management. In particular, the predictive modeling process
could help us understand the relationship between past human civilizations and the natural envi‑
ronment; moreover, a better understanding of the mechanisms of the human–land relationship can
provide new ideas for sustainable development. This study aims to investigate the impact of topo‑
graphic and hydrological factors on archaeological sites in the Japanese archipelago and Shaanxi
Province, China and proposes a hybrid integration approach for APM. This approach employed a
conditional attention mechanism (AM) using deep learning and a frequency ratio (FR) model, in ad‑
dition to a separate FR model and the widely‑used machine learning MaxEnt method. The models’
outcomes were cross‑checked using the four‑fold cross‑validation method, and the models’ perfor‑
mances were compared using the area under the receiver operating characteristic curve (AUC) and
Kvamme’s Gain. The results showed that in both study areas, the AM_FR model exhibited the most
satisfactory performances.

Keywords: archaeological predictive modeling; GIS; spatial analysis; deep learning; conditional
attention mechanism; frequency ratio model; maximum entropy; topographic factors

1. Introduction
A basic definition of archaeological predictive modeling (APM) was proposed by

Kohler and Parker [1] as “a technique that, at a minimum, tries to predict the locations
of archaeological sites or materials in a region, based either on a sample of that region or
on fundamental notions concerning human behavior.” With further technological innova‑
tions, APM has now become an essential method for quantitatively assessing the probabil‑
ity of archaeological sites’ presence, and has been successfully applied in archaeological
research and cultural resource protection in many areas of the world, including northwest‑
ern Belize [2], northeastern Romania [3], SouthCentral Utah, USA [4], Israel, andNortheast
China [5].

Willey’s [6] pioneering work in Viru Valley, USA, has played an essential role in the
history of predictive modeling, influencing the development of subsequent analyses and
methods. As the origin of directional settlement research, Willey’s work revealed that the
location of human settlements is closely related to the characteristics of the natural environ‑
ment. Subsequent studies by other scholars [7–11] further elucidated the relationship be‑
tween archaeological sites and space: the locations of archaeological sites are non‑random
since spatial conditions limit human behaviors. As such, the realization that archaeological
sites are closely related to the natural environment, coupled with the processual empha‑
sis on quantitative methods, enabled the formulation of statistical models for predicting
archaeological sites in a region. The input parameters are critical to the results of predic‑
tive modeling. Studies by other scholars [12–16] have shown that topographic factors and
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distance from bodies of water play an important role in the distribution of archaeological
sites. However, topographic factors have not received sufficient attention in the existing
research. In the current related studies, three or four topographic factors, such as eleva‑
tion, slope, and curvature, are generally examined; however, these represent only a few
topographic characteristics.

Since theAPMwas first proposed, the research subjects have become increasingly var‑
ied, and the research methods have continuously utilized innovative methods. For exam‑
ple, with the recent development of artificial intelligence, some machine learning models
have been applied to APM [4,5]. However, as Verhagen and Whitley [17] point out, the
predictive model as a cultural resource management (CRM) tool has achieved reasonable
success, but it has not commanded much respect from academic scholars. This is due to
the desire to use predictive models for minimizing field effort rather than for explaining
the differential spatial patterning of archaeological sites. Indeed, much current research
focuses on the study of the model itself but overlooks the relationship between archaeolog‑
ical sites and the surrounding natural environments.

In our quest to comprehend the key factors influencing past human landform utiliza‑
tion, we propose a hybrid integration approach for APMwith a conditional deep learning
attention mechanism (AM) and a frequency ratio (FR). This method intends to tackle the
limitation that FR is a density transfer and is unable to accurately decide the importance of
individual factors [18]. Furthermore, the original FR model and the MaxEnt method [4,5]
were applied to the same data for comparison. Eight predictive input factors were selected
for this study. These included elevation, slope, and distance from a river, which are com‑
monly used, as well as several topographical factors rarely used in APM: roughness, relief
degree of the land surface (RDLS), plan curvature, profile curvature, and cutting depth.
Our proposed data‑driven deep learning AM can model these inputs jointly to analyze
how they interact with the locations of archaeological sites. In this process, the model
learns the effect of all input factors on archaeological site locations and then automatically
selects the most relevant factors under the class labels of archaeological sites. We focus on
the model’s performance and the relationship between archaeological sites and environ‑
mental factors and offer explanations for the model’s results. This can help us understand
the relationship between past human civilizations and the natural environment.

2. Materials
2.1. Study Area and Archaeological Background

The study explored the Japanese archipelago (Figure 1a) and Shaanxi Province, China
(Figure 1b). These areas were selected because they represent two distinct topographies
along an island arc and in a continent, which may affect the interactions between archae‑
ological sites and topographic factors, as well as water availability. The analysis of such
areas may provide insight into how past humans interacted with the natural environment
under different environmental conditions.

Japan is an island country in East Asia located around the northwest Pacific Ocean,
with 6852 islands covering 377,975 km2. Approximately three‑quarters of the country’s ter‑
rain is mountainous [19]. Kyoto and Nara are representative historical capitals, home to
thousands of archaeological sites (monuments, rituals, burial sites, etc.) [20]. The Japanese
archaeological sites considered in this study are burial tombs built in the Kofun period,
from the 3rd to the 6th centuries CE [21] or between the middle of the 3rd and the early
7th centuries [22]. The Kofun era is named for the large earthen tombs that character‑
ized and defined the period. The typical tomb type is called “Zempō‑kōen fun” in Japanese
from its characteristic shape: a square protrusion connects to a main circular hill, form‑
ing a keyhole shape [22,23]. Hence, the name “Keyhole‑shaped tomb” is used in some
related studies [24,25]. The scale of the tombs ranges from several meters to more than
400 m [26–28]; the tomb’s size is thought to represent the buried person’s power and sta‑
tus [29,30]. In addition, this keyhole‑shaped tomb is unique to Japan [31].
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Figure 1. Study area maps of (a) Japan and (b) Shaanxi, China. 
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Shaanxi Province is an inland region located in Northwest China; it has a total area of
205,800 km2. Approximately 45% of the area consists of plateaus, followed by mountains
(36%) and plains (18%) [31]. The province is an important cradleland of the Chinese nation.
For nearly 2000 years, from the establishment of the Western Zhou Dynasty to the fall of
the Tang Dynasty, 14 successive dynasties established their capitals there [32]. Particularly
notable is Xi’an, the current capital city of the provincewith a long and rich cultural history,
wheremost previous dynasties established their capitals [33]. Moreover, the Silk Road, the
historical network of Eurasian trade routes, originated in this region [34]. The Mausoleum
of Qin Shihuang in Shaanxi Province is the largest tomb in Chinese history. Xi’an also has
the Terracotta Warriors and Horses in a mausoleum, China’s earliest World Heritage Site.
There are many ground‑level and underground ruins near the mausoleum [35]. Because
of its diverse cultural history, the Shaanxi dataset contains a variety of archaeological mon‑
uments, such as tombs, temples, and palaces, spanning over 2000 years (1046 BC–907 AD).

2.2. Archaeological Data
The archaeological site data included archaeological or historical monuments and

tombs in Japan (n = 1367) and Shaanxi, China (n = 200) (for details, see supplementary). For
Japan, these data were collected from an open‑access database named the Kofun database,
compiled by researchers at Osaka Electro‑Communication University. This database lists
specific attributes of the archaeological sites, including location, direction, and construc‑
tion time. For China, the archaeological site data were collected from the Chinese Archae‑
ology website provided by the Institute of Archaeology, the Chinese Academy of Sciences.
Initially, archaeological site data from the mentioned publication and database could not
be input directly into the ArcGIS 10.6 platform, as the data did not include geographical
coordinates. To this end, we vectorized the archaeological sites and stored them in the
digital geographic database as point data (Figure 1); these points are mainly located in
the centers of the archaeological sites. The same amount of absence data was randomly
generated under a restriction of 10 km outward from the archaeological sites.

2.3. Geomorphological Predictive Factors
Archaeological site predictive factors, whichmay influence site occurrence or absence,

need to be selected as explanatory or independent variables for APM [4,13,36]. In research
about the relationship between archaeological/historical sites and their surrounding ter‑
rain, topography is often regarded as one of the most influential parameters [37]. In addi‑
tion, the existing research results [12–16] have shown that topographic factors, as well as
the distance from bodies of water, play an important role in the performance of the predic‑
tive model. To consider the influence of these factors, seven topographic factors and one
hydrological factor were selected for this study, as explained below.

This study utilizes Digital Elevation Models (DEMs) to understand topographic con‑
ditions. DEMs for Japan are provided by the Geospatial Information Authority of Japan,
with an original resolution of 10m. To facilitate the comparisonwithChina, we re‑sampled
the DEMs at a resolution of 30 m and rectified them to the northern Universal Transverse
Mercator projection zone 54. For China, the 30 m‑resolution ASTER GDEMs are used and
projected as World Geodetic System 1984 Albers.

Generally, using the topographic data of an original point to represent that of a re‑
gion offers a one‑sided view. Considering that the archaeological sites in both study areas
range in size from several meters to hundreds of meters, and the detailed outline of each
archaeological site is unavailable, we used the ArcGIS 10.6 focal statistics tool to obtain the
topographic factors for each site. The tool employs overlapping neighborhoods to calcu‑
late a statistic for the cells within a specified neighborhood around each input cell [38]. In
our case, the topographic data for each archaeological site were calculated as the mean of
factor values in a 3 × 3 neighborhood around the central point of each archaeological site
in an input raster. In this way, the one‑sidedness caused by calculating topographic data
from a point can, to some extent, be avoided.
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This study has selected seven topographic factors to explore the relationship between
the locations of ancient sites and topography. These factors are elevation, slope, rough‑
ness, RDLS, plan curvature, profile curvature, and cutting depth (Figures 2 and 3). Eleva‑
tion and slope are fundamental properties applied in topography analysis, and the latter is
calculated using the Slope Tool of ArcGIS software 10.6. Roughness reflects the degree of
ground fragmentation in amacro‑region, which is calculated as the ratio of the surface area
of a cell to its projected area on the horizontal plane [39]. RDLS represents the difference
between the highest and lowest values in the DEM around a central point within a specific
neighborhood [40]. Plan curvature is determined as the contour curvature [40], perpendic‑
ular to the direction of themaximum slope. Profile curvature is slope profile curvature [40]
parallel to the direction of the maximum slope. Both curvatures are computed using the
Curvature Tool of ArcGIS 10.6. Cutting depth refers to the difference between average
and minimum elevations in a given neighborhood, which reflects surface erosion [39]. In
this study, the size of the neighborhood is set to 90 × 90 m, which is a moving window
of 3 × 3 cells. Initially, several other topographic factors, such as the slope aspect and
the variance coefficient in elevation, were also chosen and tested using statistical analysis;
however, they were eliminated as they had almost no regularity with the distribution of
archaeological sites.
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Data on major rivers in Japan were collected from the online database of MLIT (Min‑
istry of Land, Infrastructure, Transport, and Tourism) of Japan. The data for Shaanxi,
China, were obtained from the Resource and Environmental Science Data Center of the
Chinese Academy of Sciences. To clarify the use of the hydrological factor, the fact that
the waterways have changed constantly throughout history means that the main rivers
are considered stable and can be explored in this research (Figure 4). These rivers are typ‑
ically larger than other rivers and play an essential role in terms of river area and runoff.
Here, we use the distance between the archaeological sites and the major river to evaluate
the water availability and input this into the predictive model as a hydrological factor.
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3. Methodology
3.1. Selection of Predictive Factors

To assess whether selected factors have a significant association with archaeological
sites, we employ Pearson correlation analysis. Only factors that exhibit significant corre‑
lations (p < 0.05) are retained. Checking for multicollinearity among predictive factors is
an essential step in predictive modeling but is often overlooked [4]. Strong collinearity
between predictors can lead to an overestimation of the predictive power of the model [4]
or weaken model interpretability [41]. Therefore, we employed the variance inflation fac‑
tor (VIF) and tolerance (TOL) to detect collinearity between predictors. VIF values greater
than 10 or TOL values close to 0.1 indicate the presence of strong multicollinearity [42,43].
Based on the result, we retained only meaningful factors for modeling.

3.2. Frequency Ratio (FR)
The FR model is a bivariate statistical method that can indicate the susceptibility of

related factors under certain conditions based on quantitative statistical results [44]. Due
to its conceptual simplicity and straightforward calculation of the susceptibility index, FR
is widely used in geoscience, such as landslide susceptibility mapping [45–47] and map‑
ping ground subsidence potential [48]. In our study, we employ the geometrical interval
classification method offered by ArcGIS 10.6 to classify predictors and optimize them ac‑
cordingly. The FR formula is as follows:

FRi,j =
Npix

(
Si,j

)
/∑j NPix

(
Si,j

)
Npix

(
Ni,j

)
/∑j NPix

(
Ni,j

) (1)

where Npix
(
Si,j

)
is the number of pixels containing archaeological sites within class j of

factor i; ∑j NPix
(
Si,j

)
is the number of total pixels containing archaeological sites in the

study area; Npix
(

Ni,j
)
refers to the number of pixels of class j of factor i; and ∑j NPix

(
Ni,j

)
is the number of total pixels in the study area.

The FR value represents the degree of the influence of each input factor on the occur‑
rence of archaeological sites: FRi,j > 1 indicates a strong correlation with site occurrence,
while FRi,j < 1 indicates a low correlation.
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The summation of each factor’s ratio is used to calculate the site probability (SP) using
the following Equation:

SP = ∑ FRi (2)

where FRi is the FR value of different classes within factor i, and the SP is an index of site
probability.

3.3. Hybrid Model of Attention Mechanism and Frequency Ratio (AM_FR)
Deep learning using artificial neural networks with representation learning is a sub‑

field of machine learning. Deep learning methods perform automatic feature extraction
from raw data and have had success in many areas, such as classification [49,50], predic‑
tion [51,52], and natural language processes (NLP) [53,54]. The attention mechanism was
formally proposed in 2014 when Bahdanau et al. [55] first utilized it for machine transla‑
tion in NLP [56]. Inspired by the human visual mechanism to focus on a specific area of
an image in high resolution while perceiving surrounding areas in low resolution [56], the
attention mechanism in the neural network pays more attention to relevant information
while decreasing the concentration of irrelevant information. In this section, we propose a
novel data‑driven predictive model for archaeological site locations, as shown in Figure 5,
which incorporates all input factors and jointly learns how these topographic and hydro‑
logical factors affect the locations of archaeological sites. The proposed model intuitively
scores and selects the most relevant factors using an attention mechanism conditioned on
class labels of archaeological sites.
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Figure 5. Overview of our model’s architecture. First, one‑hot embedding [57,58] is used to embed
each topographic factor. Then, we utilize a conditional attention mechanism to learn the different
weights of the input factors in relation to archaeological sites and estimate archaeological site loca‑
tions. The whole model is trained end‑to‑end.

3.3.1. Problem Formulation
We assume there are I sites in our dataset. For each site i ∈ {1, 2, · · · , I}, the obser‑

vation data are input factors si =
{

sm
i |m = 1, 2, · · · , M

}
and class labels yi. We aim to

estimate the class labels of sites while learning the different weights of the input factors
in relation to archaeological sites, considering the obtained topographic and hydrological
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factors. To this end, we obtain the posterior distribution p(ŷ|s ) through our conditional
attention‑based neural methods:

p(ŷ|s ) =∑
i

p(ŷi|si )

= ∑
i

p(ŷi|si, wi )p(wi|si, yi )
(3)

where wi indicates how the input factors interact with the locations of archaeological sites.

3.3.2. Model Architecture
We conduct the one‑hot encoding [57], utilizing the one‑hot vector vm

i to indicate each
inputting factor sm

i . vm
i is a vector of ones and zeros without an ordinal relationship, and

its length is determined by the number of input factors. Likewise, we generate a one‑hot
vector ui with a length of two for labels. Then, we embed vm

i and ui, respectively.

f m
i = ϕm(ϕ̃m(vm

i ∗ sm
i ; ω̃∗

m); ω∗
m) (4)

hi = ϕ0(ui; ω∗
0 ) (5)

Here, f m
i is the feature of inputting factor sm

i , hi is the feature of the class label, ϕ̃m, ϕm,
and ϕ0 are the fully connected layers; the latter two have a dropout value of 0.50 and ReLU
non‑linearity. ω̃∗

m, ω∗
m and ω∗

0 are their respective weights.
To determine the interactions between the archaeological sites and the input factors,

we introduce an attentionmechanism [59] conditioned on the class labels of archaeological
sites to learn the different weights of the input factors. The attention feature am

i is derived
from f m

i and hi.

am
i =

exp(S( f m
i , hi))

∑m exp(S( f m
i , hi))

(6)

Here, am
i is a tensor [60] with sizeM which indicates the weights of the input factors.

S(·) is the matrix product as follows:

S( f m
i , hi) = ( f m

i )Thi (7)

Then, Hi, a feature representing all input factors, is derived bymultiplying am
i with f m

i .

Hi = ∑
m

am
i f m

i (8)

Hi is the weighted average tensor over all the features f m
i . Hi is utilized to identify

the probability of archaeological site occurrence as follows:

ỹi = Φ1(Hi; ω∗
Φ1) (9)

ŷi = ε(Φ2(ỹi; ω∗
Φ2)) (10)

where Φ1(·) and Φ2(·) are the fully connected layers with ReLU non‑linearity, where the
former also has a dropout value of 0.50; their weights are ω∗

Φ1 and ω∗
Φ2, respectively. ε(·)

is a softmax function and ỹi is the probability distribution over the predicted class of the
archaeological site. ŷi consists of two classes and sums to 1. The larger probability indicates
whether the current location is an archaeological site.

3.3.3. Implementation
We utilize Binary Cross‑Entropy [61], a distinction measurement between two pos‑

sible distributions (ground truth and predicted distributions) used when the number of
classes is two, as a loss function of our model. Our model is implemented using PyTorch
under Ubuntu 16.04LTS with a GTX 1080GPU. The embedding size of ϕ̃m(·) and Φ1(·) is
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set to 32, while that of the other fully connected layers is set to 64. The proposed method
is trained for 1000 epochs with a batch size of eight. We train the model end‑to‑end with
an AdaGrad optimizer at a learning rate of 0.01. We also clip the gradients of the model
with a maximum threshold of five to stabilize the training process. Finally, the weight of
each predictive input factor was obtained; this was then applied to the APM model as the
index of weight.

As noted, we propose a weighted archaeological predictive model by integrating the
conditional attention mechanism with the FR model and consider the weight of each clas‑
sification within each factor, as well as the weight of all of these factors. This weighted
calculation can be implemented in ArcGIS 10.6 using the tool for geographically weighted
overlay analysis. The site probability is calculated by Equation (11):

SP = ∑ WFRi (11)

where W is the weight of each factor generated from the proposed conditional attention
mechanism neural network, FRi is the frequency ratio of different classes within factor i,
and SP is an index indicating the probability of site occurrence.

3.4. MaxEnt
MaxEnt is a machine learning model that combines information theory and statistics

to select the best model from all possible models [62,63]. MaxEnt identifies the model
with the maximum entropy in the condition set that satisfies the site presence constraints
(e.g., geomorphological factors in this study) [64]. The model can work with only known
site data, making it ideal for cases with a presence‑only feature. This study used MaxEnt
software version 3.3.3k to model the probability of archaeological site presence based on
geomorphological and hydrological factors. The mathematical steps of the modeling are
as follows.

Assume C as the set of models satisfying all constraints fi:

C = {P|EP ( fi) = EP̃( fi), i = 1, · · · , n
}

(12)

where P refers to experience distribution, and fi is the feature function corresponding to
the input factor n(= 8 in this study) on the presence of archaeological sites, defined as:

fi =

{
1,
0,

(13)

The model is constrained by the eight factors with setting the expectation from the
observed data (EP( fi)) to be equal to the model’s expectation (EP̃( fi)) under the maximum
entropy condition. Entropy, according to Phillips and Borda [63,65], is:

H(P) = − ∑
x∈X

P̃(x) ln P̃(x) (14)

where x is a random location within the study area X, and P̃ is the expected probability
distribution. The logarithm function here makes independent sources to be additive (e.g.,
x within X). This equation sets the sum of probabilities to be one. The probability distri‑
bution of archaeological site presence P∗ is as follows:

P∗ = argmax
P∈C

H(P) (15)

3.5. Model Evaluation
The predictive performance of the two models for the two study areas is compared

using the area under the receiver operating characteristic curve (AUC), a commonly used
statistical parameter [66]. It measures the overall performance of a model across all possible
classification thresholds. A higher AUC value close to 1 indicates that the model has a high
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true positive rate and a low false positive rate and can accurately distinguish between posi‑
tive and negative cases [67]. AUC is calculated for the training and test data, respectively.

To evaluate model performance, we also use Kvamme’s Gain, which gives a ratio of
the precision of a model against its accuracy [68] as:

Kvamme’s Gain = 1 − (% of the area with high probability/% of sites with high probability). (16)

This metric evaluates whether the probability area is small enough compared to its
accuracy. A smaller probability area with more archaeological sites will generate a greater
gain value close to 1, which suggests that the model has a good predictive ability. A zero‑
gain value indicates that the model’s predictions are no better than guesses.

4. Results
4.1. Selected Predictive Factors

Table 1 presents the results of Pearson correlation analysis of the predictors. The as‑
pect factor is not strongly correlated with archaeological sites in both the Japanese and
Shaanxi study areas, with p > 0.05, while all the other factors exhibit strong correlations.
Consequently, the predictors used in the subsequent steps are those other than the aspect.

Table 1. Pearson correlations of predictors.

Factor
Japan Shaanxi, China

r p r p

Elevation −0.512 * 0.000 −0.603 * 0.000
Slope −0.532 * 0.000 −0.480 * 0.000

Roughness −0.407 * 0.000 −0.408 * 0.000
RDLS −0.611 * 0.000 −0.478 * 0.000

Plan curvature 0.189 * 0.000 0.144 * 0.004
Profile curvature −0.218 * 0.000 −0.167 * 0.001
Cutting depth −0.585 * 0.000 −0.453 * 0.000

Aspect 0.021 0.277 −0.009 0.858
Distance from major rivers −0.320 * 0.000 −0.239 * 0.000

Elevation variation 0.215 * 0.000 −0.129 * 0.000
* Significant correlation at the 0.01 level (2‑tailed).

Table 2 shows that the VIF and TOL values for all the factors except for elevation vari‑
ation were within the acceptable range (VIF < 10 or TOL > 0.1), indicating no significant
multicollinearity among them. Consequently, the eight factors other than elevation varia‑
tion and aspect were retained.

Table 2. Multicollinearity results for predictors in the pretest (1st run) and the posttest (2nd run).

Factor
Japan Shaanxi, China

VIF (1st/2nd) TOL (1st/2nd) VIF (1st/2nd) TOL (1st/2nd)

Elevation 1.736/1.663 0.576/0.601 3.316/2.683 0.302/0.372
Elevation Variation 20.927/– 0.048/– 25.497/– 0.039/–

Slope 19.403/8.019 0.052/0.125 18.980/9.489 0.053/0.105
Roughness 5.295/5.163 0.189/0.194 5.906/5.722 0.169/0.175
RDLS 6.980/5.633 0.143/0.178 10.972/8.520 0.091/0.117

Plan curvature 1.510/1.484 0.662/0.674 1.830/1.606 0.546/0.623
Profile curvature 1.547/1.487 0.646/0.672 2.525/2.052 0.396/0.487
Cutting depth 6.604/5.222 0.151/0.191 8.512/7.981 0.123/0.125
Distance from
major rivers 1.315/1.298 0.761/0.770 1.726/1.656 0.580/0.604
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4.2. APM by FR
Based on the classification of each independent input factor, FR indexes are calcu‑

lated (Figures 6 and 7). The FR values quantify the degree of correlation, and the input
factor classes with an FR value of >1 show a markedly high correlation with the archaeo‑
logical site.
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It was found that the elevation class <133 m shows a higher correlation with archae‑
ological sites in the study area of Japan, while in Shaanxi, China, the same is true of the
range 187–921 m. As for slope and roughness, the FR values are more or less the same
in Shaanxi, China, and Japan, which indicates that archaeological sites in these two study
areas tend to be located in plains‑type regions with gentle slopes; these slopes are com‑
monly less than 15◦. For the RDLS in Japan, the class of 23–36 m has the most significant
impact on archaeological sites, followed by the class <23 m and 36–59 m. Meanwhile, in
Shaanxi, China, the class <11 m has the greatest impact on archaeological sites, followed
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by the classes 11–16 m and 16–20 m. The plan curvature values from −1.06 to 1.6 show a
stronger correlation with archaeological sites in Japan; the corresponding class in Shaanxi,
China, is −0.2 to 3. In Japan, the profile curvature with values −1.8 to 0.5 is highly cor‑
related with archaeological site occurrence, while in Shaanxi, China, the same is valid for
values −2.1 to 0.4. In terms of cutting depth, in the study area of Japan, the classes of
<5 m, 5–14 m, and 14–29 m had FR values greater than one, showing a significant contri‑
bution to the archaeological site’s occurrence; meanwhile, in Shaanxi, China, such classes
are <7 m and 7–10 m. This indicates that the archaeological sites of both study areas are
commonly located in areas with low erosion and a gentle cutting of the ground surface;
the level of gentleness tends to be lower in Shaanxi, China, than in Japan. The distance
frommajor rivers is also a major input factor influencing the distribution of archaeological
sites in both study areas. The FR values of the first three classes in each study area are all
greater than one, indicating a strong correlation with the locations of archaeological sites.
Moreover, in both study areas, the distance frommajor rivers is negatively correlated with
the distribution of archaeological sites. This indicates that archaeological sites are densely
located close to major rivers in Japan as well as in Shaanxi, China, since people considered
water availability or the strategic role of rivers when establishing a site.

4.3. APM by the AM_FR Model
Concerning the sensitivities of factors in determining the likelihood of an archaeolog‑

ical site’s occurrence, a conditioned attention mechanism was utilized for weight determi‑
nation. Table 3 shows the weighting results, indicating that the sensitivities of archaeolog‑
ical sites to the input factors are different under the distinct topographic conditions in the
two study areas. In Japan, the relationship between the site locations and the input fac‑
tors can be quantified by values from 0.0145 to 0.3356, while in Shaanxi, China, the values
range from 0.0809 to 0.2878. A higher value implies a higher correlation. In Japan, the fac‑
tors with the most significant correlations with archaeological sites are RDLS and cutting
depth, followed by roughness; in Shaanxi, they are slope and RDLS, followed by elevation
(Table 3). SP for Japan is expressed as Equation (17), and that for Shaanxi is defined as
Equation (18):

APM = 0.0145ElevationFR + 0.0714 SlopeFR + 0.0997RoughnessFR +
0.3356RDLSFR + 0.0424Plan_CurvatureFR + 0.0717Profile_CurvatureFR +

0.2813Cutting_depthFR + 0.0834Distance from major riversFR
(17)

APM = 0.1223ElevationFR + 0.2878 SlopeFR + 0.0948RoughnessFR +
0.1524RDLSFR + 0.0809Plan_CurvatureFR + 0.0916Profile_CurvatureFR +

0.0869Cutting_depthFR + 0.0833 Distance from major riversFR
(18)

Table 3. Weighting results for each factor.

Factor
Weight

Japan Shaanxi, China

Elevation 0.0145 0.1223
Slope 0.0714 0.2878

Roughness 0.0997 0.0948
RDLS 0.3356 0.1524

Plan curvature 0.0424 0.0809
Profile curvature 0.0717 0.0916
Cutting depth 0.2813 0.0869

Distance from major rivers 0.0834 0.0833
Total 1.0000 1.0000

4.4. APM by MaxEnt
The use of MaxEnt software enables the creation of a predictive map and the evalu‑

ation of factor contribution to modeling. Table 4 displays the factor contributions to the
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modeling using the training dataset. In the Japanese modeling, major contributors are
roughness (33.7%), RDLS (24.3%), and cutting depth (16.5%), while in the Chinese model‑
ing, they are elevation (25.7%), slope (23.8%), and RDLS (18.5%).

Table 4. Contribution percent of the factors on the Maxent modeling process.

Factor
Contribution (%)

Japan Shaanxi, China

Elevation 8.7 25.7
Slope 3.0 23.8

Roughness 33.7 16.2
RDLS 24.3 18.5

Plan curvature 1.2 3.7
Profile curvature 2.3 1.2
Cutting depth 16.5 2.7

Distance from major rivers 10.3 8.2

4.5. Model Evaluation
The AUC values for the test data indicate that the AM_FR model has the highest ac‑

curacy in both study areas (see mean AUC values in Table 5). However, the AUC for the
training data indicates the best performance of MaxEnt for China

Table 5. Predictive performance of models based on four‑fold data.

Study Area K‑Fold
Training AUC Test AUC

AM_FR Maxent FR AM_FR Maxent FR

Japan

1 0.903 0.875 0.841 0.909 0.876 0.868
2 0.896 0.874 0.845 0.895 0.873 0.835
3 0.902 0.876 0.862 0.897 0.865 0.864
4 0.898 0.876 0.854 0.901 0.874 0.856

Mean 0.900 0.876 0.851 0.901 0.872 0.856

Shaanxi, China

1 0.789 0.782 0.776 0.813 0.780 0.781
2 0.809 0.805 0.763 0.826 0.803 0.812
3 0.767 0.795 0.754 0.814 0.783 0.798
4 0.768 0.791 0.763 0.812 0.773 0.772

Mean 0.783 0.793 0.764 0.816 0.785 0.791

Table 6 shows that all three models effectively identified regions with very high prob‑
ability in both study areas. However, MaxEnt had a higher efficiency in identifying such
regions, with a Kvamme’s Gain value of 0.92 for Japan and 0.89 for China. In comparison,
the AM_FR and FRmodels had lower efficiency, with values of 0.78 and 0.72, respectively,
for Japan and 0.84 and 0.83 for China.

Table 6. Kvamme’s Gain values based on probability classes of the optimal model for each method.

Model Class
Japan Shaanxi, China

Area (%) Site Site (%) Kvamme’s
Gain Area (%) Site Site (%) Kvamme’s

Gain

AM_FR

Very Low 42.67% 29 2.12% −19.11 35.14% 2 1.00% −34.14
Low 19.12% 61 4.46% −3.29 28.11% 21 10.50% −1.68

Moderate 11.20% 170 12.44% 0.10 13.16% 23 11.50% −0.14
High 18.09% 542 39.65% 0.54 15.91% 55 27.50% 0.42
Very
High 8.92% 565 41.33% 0.78 7.68% 99 49.50% 0.84
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Table 6. Cont.

Model Class
Japan Shaanxi, China

Area (%) Site Site (%) Kvamme’s
Gain Area (%) Site Site (%) Kvamme’s

Gain

Maxent

Very Low 70.07% 82 6.00% −10.68 72.10% 23 11.50% −5.27
Low 11.89% 138 10.10% −0.18 15.66% 19 9.50% −0.65

Moderate 8.77% 281 20.56% 0.57 2.05% 21 10.50% 0.80
High 6.46% 413 30.21% 0.79 4.87% 42 21.00% 0.77
Very
High 2.81% 453 33.14% 0.92 5.32% 95 47.50% 0.89

FR

Very Low 31.62% 36 2.63% −11.01 23.79% 7 3.50% −5.80
Low 24.04% 98 7.17% −2.35 36.35% 23 11.50% −2.16

Moderate 10.77% 117 8.56% −0.26 15.54% 35 17.50% 0.11
High 19.37% 433 31.68% 0.39 17.06% 48 24.00% 0.29
Very
High 14.20% 683 49.96% 0.72 7.25% 87 43.50% 0.83

4.6. Archaeological Predictive Maps and Statistics
The predictive maps for each study area based on the two models are generated with

the help of ArcGIS 10.6 software (Figures 8 and 9). In order to ensure the fairness of the
comparison, the output susceptibilitymaps are divided into five categories using the equal
interval classificationmethod, classifying probabilities ranging from 0 to 1 into five classes.
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Figure 8 shows that the high and very high probability classes are mainly concentrated
in two parts of Japan. One is in the Kanto region, which includes Tokyo, Chiba, and Saitama
Prefectures; the other is in the Kansai region, which includes Kyoto, Osaka, and Nara Pre‑
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fectures. To this day, these areas are active political, economic, and cultural centers. Very
low and low probability classes mainly covered the entire study area. Moderate probabil‑
ity classes are generally distributed in the areas where those low and very low‑class areas
intersect with the high and very high‑class areas. The statistics of area percentage for each
probability class are shown in Table 6. For the AM_FRmodel, the very low probability class
accounts for the largest area (42.67%), followed by high (18.09%), low (19.12%), moderate
(11.20%), and very high (8.92%). For the FR model, the very low probability class accounts
for the largest area (31.62%), followed by low (24.04%), high (19.37%), very high (14.20%),
and moderate (10.77%). For the Maxent model, the area percentage consistently decreases
from very low to very high classes: 70.07%, 11.89%, 14.19%, 6.46%, and 2.81%, respectively.

The very high and high probability classes in Shaanxi, China (Figure 9) are mainly con‑
centrated in three regions: namely, the northwestern, central, and southwestern parts of the
study area, especially in the central part, where the ancient city of Xi’an is located. Moderate
probability classes are evenly distributed throughout the study area. Very low and low prob‑
ability classes are, respectively, concentrated in the northern and southern parts of the study
area. According to Table 6, for the AM_FRmodel, the very low probability class accounts for
the largest area (35.14%), followed by low (28.11%), high (15.91%), moderate (13.16%), and
very high (7.68%). For the MaxEnt model, the very low probability class accounts for the
largest area (72.10%), followed by low (15.66%), very high (5.32%), high (4.87%), and moder‑
ate (2.05%). For the FRmodel, the low probability class accounts for the largest area (36.35%),
followed by very low (23.79%), high (17.06%), moderate (15.54%), and very high (7.25%).

To understand the relationship between archaeological site locations and the highly
correlated topographic factors, zonal statistical analyses are conducted for those topographic
raster data to calculate the statistic value based on the classification area of the predictedmap.
The results show a linear correlation between topographic factors and archaeological site
presence, and their characteristics are more or less the same, as the higher the average value
of each topographic factor, the lower the probability of site presence (Figures 10 and 11).
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5. Discussion
The current study validated the applicability of the proposed AM_FRmodel through

its application to Japan and Shaanxi, China, with different terrain conditions. For both
areas, the AM_FR performed slightly better than the MaxEnt and FR based on the val‑
ues of AUC (Table 5). The deep learning AM_FR method better captures the highly cor‑
related environmental factors in the prediction model, locking the target and narrowing
down the areas with a high probability of archaeological site occurrence. At the same time,
the FR model has also provided a reasonably good result, indicating that the correlations
between the environmental factors and archaeological site occurrence are strong and de‑
tectable even from a traditional statistical method. However, in terms of model efficiency,
Kvamme’sGainwas used as ameasure ofmodel efficiency inAPM, andMaxEntwas found
to be more effective than AM_FR and FR in identifying regions with a very high probabil‑
ity of archaeological site occurrence in both study areas. Nevertheless, this comes at the
cost of many sites being classified as moderate and low probability areas, meaning that
some true archaeological sites may be missed in practice.

According to the importance of each predictive factor determined by the APM pro‑
cesses, topographic deviations from the horizontal flat surfaces play an essential role in
deciding archaeological site locations. The three most important factors for Japan (RDLS,
cutting depth, and roughness) and the two of the three most important factors for Shaanxi
(RDLS and slope) (Tables 3 and 4) represent deviations from horizontal flat surfaces in
a broad sense. Their blatantly negative relationships with the existence likelihood of ar‑
chaeological sites (Figures 10 and 11a,b) show that these sites tend to be located in open,
gentle, and flat terrain, such as lowland areas or basins away from hills and mountains.
This may reflect the needs of ancient people for a better living environment in relation to
resource‑sharing strategies, transportation, water availability, and agricultural activities.
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As known, widely gentle areas without distinctive inclines, declines, or severe downcut‑
ting are beneficial for human activity. They were crucial in the absence of advancedmeans
of transportation at that time. They also benefit agricultural activities because of highwater
availability and the deposition of fine sediments containing micronutrients.

However, among the factors representing deviations from the horizontal and flat sur‑
face, only RDLS strongly influences both Japan and Shaanxi. In Japan, the cutting depth
and roughness are more influential, whereas sloping is dominant in Shaanxi. The cut‑
ting depth and roughness strongly reflect local topographic undulations with short wave‑
lengths rather than overall inclination. It is understandable that if local topographic un‑
dulations are high, the earthen keyhole‑shaped tombs typical in Japan are difficult to con‑
struct. Their construction by embankment needs a relatively wide, continuously flat sur‑
face. In contrast, archaeological sites in Shaanxi are mainly composed of bricks and rocks
and have various structures and shapes that could be adjusted to land surfaces with local
slight topographic undulations. Besides, the overall slope becomesmore critical in Shaanxi.
Based on Figure 11a, a slope value of around 5◦ is most favorable for the archaeological site
occurrence, and a slope greater than 27◦ is highly unfavorable. A Chinese study assessing
land suitability [69] noted that areas steeper than 25◦ are unsuitable for farming, whereas
areas gentler than 5◦ are suitable for cultivation and human habitation, suggesting that the
archaeological sites tended to be constructed in areas with strong human activities. The ar‑
chaeological sites in Shaanxi differ from the Japanese sites in that they include temples and
palaces, as well as tombs. Temples and palaces usually occur in populated areas because
they have more frequent visitors than tombs. This may explain why the sites in Shaanxi
are more concentrated in lower‑slope areas with enhanced human activities.

In Shaanxi, elevation also plays a significant role in determining the distribution of
archaeological sites. As shown in Figure 11c, lower elevations correspond to more sites,
particularly abundant in the lowest elevation zone. Elevation as a geographical parameter
differs from the four parameters mentioned above because it is independent of flatness by
definition. Shaanxi is located in a continental inland area, with significant variations in
daily and yearly temperatures and more limited rainfall compared to Japan, with a mar‑
itime, more moderate climate. Therefore, higher areas in Shaanxi with occasional lower
temperatures and water availability are particularly unfavorable for human activities.

The negative correlations shown in Figures 10 and 11 are consistent, except for partial
positive correlations for the high and very high probability classes of RDLS and cutting
depth in the AM_FR statistics for Japan (Figure 10a,b). One possible explanation for this
exception is the construction of the archaeological sites. Because the Japanese sites are
earthen tombs, their elevations are included in the analyzed DEMs. Therefore, the dense
distribution of the sites leads to higher topographic undulations. Overall, this study has
examined the effects of natural topographic conditions that already existed before site con‑
struction, as evidenced by the negative correlations in Figures 10 and 11. However, the
artificial topographic change due to the construction of earthen mounds in Japan may also
affect the results slightly. Another possible explanation is the preference of ancient people
for slightly complex terrains. For example, in Belgium, the Early and Middle Bronze Age
populations built their burial monuments onmore prominent lands rather than in very flat
positions [37]. As noted, however, the comparison between Japan and Shaanxi indicates
that continuously horizontal and flat surfaces were more favored in Japan, suggesting that
the first explanation is more acceptable.

This paper focuses on the effects of topographic factors on human activities, which
in turn affect the distribution of archaeological sites. However, social and cultural ele‑
ments could also directly affect the site distributions, which looks evident in the Japanese
case. Although some 5000 keyhole‑shaped tombs are distributed in most of the Japanese
archipelago [23,70], such tombs scarcely exist in 4 out of 47 prefectures in Japan: Hokkaido,
Aomori, andAkita in the north, andOkinawa in the south (Figure 12), because of historical
backgrounds related to cultural stages and political regimes. Themain island of Hokkaido
is away from the other territories of Japan. During theKofun period, when keyhole‑shaped
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tombs were constructed in most other regions in Japan, Hokkaido was under a more prim‑
itive culture analogous to what the other regions experienced before the Kofun period
(Jōmon culture) [71,72]. Therefore, people in Hokkaido did not have a custom or tradition
for constructing keyhole‑shaped tombs at that time. The lack of keyhole‑shaped tombs in
Aomori and Akita can be attributed to politics. These areas were controlled by the Emishi
people during the Kofun period, who were hostile to the Yamato kingdom, ruling most
other regions in Japan [73,74]. The situation in Okinawa was similar to the northern pre‑
fectures in that the culture of the Kofun period hardly extended to the southern Ryukyu Is‑
lands, and a unique political and cultural system existed in the islands [75]. The predictive
maps of keyhole‑shaped tombs for the whole of Japan generated by the AM_FR, Maxent,
and FR models show some high and very high probability areas in these four prefectures
(Figures 8 and 9) because only natural factors were considered in the models. This exam‑
ple indicates that the results of archaeological predictive modeling should be evaluated
carefully when marginal areas surrounding the core area are included in the constructed
predictive maps.
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6. Conclusions
This study has proposed a weighted archaeological predictive model. The model uti‑

lizes the weights of input factors obtained from the conditional‑attention‑based method
and the weight of each class within inputting factors obtained from the FR model. The
performance of the new model in Japan and Shaanxi, China, was evaluated using AUC
values and Kvamme’s Gain and compared with that of a separate FR model and MaxEnt.
In general, the AM_FRmodel showed more satisfactory performances in both study areas.
Therefore, the development of the new model was meaningful. The widely used MaxEnt
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and the more traditional FR model still provided reasonably good results. Therefore, mul‑
tiple modeling methods indicate that archaeological sites in the two study areas tend to
occur in areas with certain environmental characteristics, supporting the notion that ar‑
chaeological sites are not randomly distributed [4]. Admittedly, our models have proven
successful in identifying the sites under the current study, but their effectiveness in identi‑
fying other site types, such as villages or hunting camps, is yet to be fully determined. Since
tombs and places of worship do not require proximity to food or water sources for their
specific uses, they have a specific history of landscape use, diverging from those typically
linked to settlements or hunting grounds.

Exploring the relationship between the locations of archaeological sites and the eight
geomorphological and hydrological factors has revealed that archaeological sites in the
two study areas are highly correlated to some topographic factors, suggesting that the
distribution of the archaeological sites reflects local conditions. In Japan, the three main
factors highly correlated to the location of archaeological sites are RDLS, cutting depth,
and roughness, while in the Chinese study area, they are slope, RDLS, and elevation. All
these factors are negatively correlated with the probability of archaeological site occur‑
rence, meaning that horizontal and flat land surfaces favored human activities, including
transportation, agriculture, and water usage, and in turn, the construction of archaeolog‑
ical sites. The dominance of somewhat different factors in the two countries may reflect
the structure of the archaeological sites and regional climates.

Author Contributions: Conceptualization, Yuan Wang and Takashi Oguchi; methodology, Yuan
Wang and Xiaodan Shi; formal analysis, Yuan Wang and Takashi Oguchi; writing—review and edit‑
ing, Yuan Wang., Takashi Oguchi and Xiaodan Shi. All authors have read and agreed to the pub‑
lished version of the manuscript.

Funding: This work was supported by JSPS Grants‑in‑Aid for Scientific Research (18K18536).

Informed Consent Statement: Not applicable.

Data Availability Statement: The 10m‑resolution DEMs of Japan are openly available from the
Geospatial Information Authority of Japan: “https://fgd.gsi.go.jp/download/menu.php (accessed on
28 November 2020)”. The 30m‑resolution DEMs of Shaanxi, China are openly available from:
“https://gdemdl.aster.jspacesystems.or.jp/ (accessed on 24 November 2020)”. Archaeological data
are not publicly available due to privacy and ethical reasons.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kohler, T.A.; Parker, S.C. PredictiveModels for Archaeological Resource Location. Adv. Archaeol. Method Theory 1986, 9, 397–452.

[CrossRef]
2. Vaughn, S.; Crawford, T. A predictive model of archaeological potential: An example from northwestern Belize. Appl. Geogr.

2009, 29, 542–555. [CrossRef]
3. Nicu, I.C.; Mihu‑Pintilie, A.; Williamson, J. GIS‑Based and Statistical Approaches in Archaeological Predictive Modelling (NE

Romania). Sustainability 2019, 11, 5969. [CrossRef]
4. Yaworsky, P.M.; Vernon, K.B.; Spangler, J.D.; Brewer, S.C.; Codding, B.F. Advancing predictive modeling in archaeology: An

evaluation of regression and machine learning methods on the Grand Staircase‑Escalante National Monument. PLoS ONE 2020,
15, e0239424. [CrossRef] [PubMed]

5. Wachtel, I.; Zidon, R.; Garti, S.; Shelach‑Lavi, G. Predictive modeling for archaeological site locations: Comparing logistic regres‑
sion and maximal entropy in north Israel and north‑east China. J. Archaeol. Sci. 2018, 92, 28–36. [CrossRef]

6. Willey, G. Prehistoric Settlement Patterns in the Viru Valley. Bur. Am. Ethnol. Bull. 1953, 155, 1–453.
7. Hodder, I. Spatial Analysis in Archaeology; Cambridge University Press: Cambridge, NY, USA, 1976.
8. Klesert, A. Intrasite Spatial Analysis in Archaeology. Am. Antiq. 1987, 52, 201–202. [CrossRef]
9. Oguchi, T.; Saito, K. Relationship between distribution of landscape and natural/cultural environment in Poland based on GIS.

Geogr. Res. Rep. Saitama Univ. 1999, 19, 41–59.
10. Asada, H.; Matsumoto, J.; Lin, Z.; Oguchi, T. Relationship between Distribution of Residential Areas and Topographic Factors

in the Sagarmatha Zone, Eastern Nepal. J. Geogr.‑Chigaku Zasshi 2008, 117, 561–567. [CrossRef]
11. Kondo, Y. An ecological niche modelling of Upper Palaeolithic stone tool groups in the Kanto‑Koshinetsu region, eastern Japan.

Quat. Res. Daiyonki‑Kenkyu 2015, 54, 207–218. [CrossRef]

https://fgd.gsi.go.jp/download/menu.php
https://gdemdl.aster.jspacesystems.or.jp/
https://doi.org/10.1016/b978-0-12-003109-2.50011-8
https://doi.org/10.1016/j.apgeog.2009.01.001
https://doi.org/10.3390/su11215969
https://doi.org/10.1371/journal.pone.0239424
https://www.ncbi.nlm.nih.gov/pubmed/33002016
https://doi.org/10.1016/j.jas.2018.02.001
https://doi.org/10.2307/281078
https://doi.org/10.5026/jgeography.117.561
https://doi.org/10.4116/jaqua.54.207


ISPRS Int. J. Geo‑Inf. 2023, 12, 238 25 of 27

12. Warren, R.E. Predictive Modelling in Archaeology: A Primer. In Interpreting Space: GIS and Archaeology; Allen, K.M.S., Green,
S.W., Zubrow, E.B.W., Eds.; Taylor & Francis: London, UK, 1990; pp. 90–111.

13. Kvamme, K.L. A Predictive Site Location Model on the High Plains: An Example with an Independent Test. Plains Anthr. 1992,
37, 19–40. [CrossRef]

14. Stancic, Z.; Kvamme, K. Settlement pattern modelling through Boolean Overlays of social and environmental variables. In New
Techniques for Old Times, Proceedings of the CAA Conference, 26th Annual Meeting, Barcelona, Spain, March 1998; (BAR International
Series 757); British Archaeological Reports: Oxford, UK; pp. 231–237.

15. Bauer, A.; Nicoll, K.; Park, L.; Matney, T. Archaeological site distribution by geomorphic setting in the southern lower Cuyahoga
River Valley, northeastern Ohio: Initial observations from a GIS database. Geoarchaeology 2004, 19, 711–729. [CrossRef]

16. Kondo, Y.; Sano, K.; Omori, T.; Abe‑Ouchi, A.; Chan, W.L.; Kadowaki, S.; Naganuma, M.; O’ishi, R.; Oguchi, T.; Nishiaki, Y.; et al.
Ecological Niche and Least‑Cost Path Analyses to Estimate Optimal Migration Routes of Initial Upper Palaeolithic Populations
to Eurasia. In The Middle and Upper Paleolithic Archeology of the Levant and Beyond; Nishiaki, Y., Akazawa, T., Eds.; Replacement
of Neanderthals by Modern Humans Series; Springer: Singapore, 2018. [CrossRef]

17. Verhagen, P.; Whitley, T.G. Integrating Archaeological Theory and Predictive Modeling: A Live Report from the Scene. J. Ar‑
chaeol. Method Theory 2011, 19, 49–100. [CrossRef]

18. Verhagen, P. Case Studies inArchaeological PredictiveModelling. Ph.D. Thesis, LeidenUniversity Press, Archaeological Studies
Leiden University, Leiden, The Netherlands, 2007.

19. Ikeya, H. Debris flow and its countermeasures in Japan. Bull. Int. Assoc. Eng. Geol.‑Bull. De L’Association Int. De Géologie De
L’Ingénieur 1989, 40, 15–33. [CrossRef]

20. Takagi, H. The Restoration of the Ancient Capitals of Nara and Kyoto and International Cultural Legitimacy in Meiji Japan. In
The Meiji Restoration: Japan as a Global Nation; Cambridge University Press: Cambridge, NY, USA, 2020; pp. 249–265. [CrossRef]

21. Kondo, Y. The Period of the Keyhole Tombs; Iwanami Publishing: Tokyo, Japan, 1983.
22. Okada, H. Zempō‑kōen fun. In Japanese Ancient History Dictionary; Daiwa Shobo Publishing: Tokyo, Japan, 2006.
23. Yanagisawa, K. Zempō‑kōen fun. In East Asian Archaeological Dictionary; Tokyodo Publishing: Tokyo, Japan, 2007.
24. Ozawa, K. Classification of the Keyhole Shaped Tombs by Template Matching Method. IEEE Trans. Comput. 1978, 27, 462–467.

[CrossRef]
25. Hiroshi, T. Chiefly lineages in Kofun‑period Japan: Political relations between centre and region. J. Antiq. 1990, 64, 923–931.
26. Shiraishi, T. Study of the Kofun Tomb and Kofun Tomb Group; Hanawa Shobo Publishing: Tokyo, Japan, 2000.
27. Wada, A. History of Japan 2, The era of Kofun; Shogakukan Library Publishing: Tokyo, Japan, 1992.
28. Hirose, K. Zempō‑Kōen Fun (前方後円墳) Nation; Kadokawa Shoten Publishing: Tokyo, Japan, 2003.
29. Takashima, A. The meaning of the Kofun’s moat. Annu. Rep. Grad. Sch. Nara Univ. 2008, 13, 174–178.
30. Amakasu, K. Technology history of the Zempō‑kōen fun. Papers of the researchmeeting on the civil engineering history in Japan.

J. Jpn. Soc. Civ. Eng. 1985, 5, 1–10. [CrossRef]
31. Min, A.C.; Han, Q.F.; Jia, Z.K. China Climate Change Partnership Framework—Enhanced Strategies for Climate‑Proofed and Environ‑

mentally Sound Agricultural Production in the Yellow River Basin (C‑PESAP), Situation Analysis of Shaanxi Province; Northwest Agri‑
culture and Forestry University: Yangling, China, 2008.

32. Xu, W.M. Shaanxi Provincial Local History Office. Epitaph of Shaanxi Emperor’s Mausoleum; Sanqin Publishing: Xi’an, China, 2017.
33. Anderson, J.G. Chinese cultures during ancient times. Geol. Rep. 1923, 5, 11–12.
34. Wang, Z.Y. The historical geography and contemporary value of “One Belt One Road Initiative”. Eurasian Econ. 2016, 3, 52–64.
35. Yuan, B.Q.; Liu, S.Y.; Lu, G.Y. An Integrated Geophysical and Archaeological Investigation of the Emperor Qin Shi Huang

Mausoleum. J. Environ. Eng. Geophys. 2006, 11, 73–81. [CrossRef]
36. Brandt, R.; Groenewoudt, B.J.; Kvamme, K.L. An experiment in archaeological site location: Modeling in the Netherlands using

GIS techniques. World Archaeol. 1992, 24, 268–282. [CrossRef]
37. De Reu, J.; Bourgeois, J.; De Smedt, P.; Zwertvaegher, A.; Antrop, M.; Bats, M.; De Maeyer, P.; Finke, P.; Van Meirvenne, M.;

Verniers, J.; et al. Measuring the relative topographic position of archaeological sites in the landscape, a case study on the Bronze
Age barrows in northwest Belgium. J. Archaeol. Sci. 2011, 38, 3435–3446. [CrossRef]

38. ArcGIS Desktop. ESRI: How Focal Statistics Works. Available online: http://desktop.arcgis.com/en/arcmap/latest/tools/spatial‑
analyst‑toolbox/how‑focal‑statistics‑works.htm (accessed on 8 February 2020).

39. Tang, G.A.; Li, F.Y.; Liu, X.J. Digital Elevation Model Tutorial, 3rd ed.; Science Press Publishing: Beijing, China, 2016.
40. Wilson, J.P.; Gallant, J.C. Digital Terrain Analysis in Terrain Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.;

John Wiley & Sons Inc.: New York, NY, USA, 2000; Volume 1, pp. 1–27.
41. Dormann, C.F.; Elith, J.; Bacher, S.; Carré, G.C.G.; García Márquez, J.R.; Gruber, B.; Lafourcade, B.; Leitao, P.J.; Münkemüller, T.;

McClean, C.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance:
Open access. Ecography 2013, 36, 27–46. [CrossRef]

42. Marquardt, D.W. You should standardize the predictor variables in your regression models. J. Am. Stat. Assoc. 1980, 75, 74–103.
[CrossRef]

43. Belsley, D.A.; Kuh, D.; Welsch, R.E. Regression Diagnostics; John Wiley & Sons Inc.: New York, NY, USA, 1980.

https://doi.org/10.1080/2052546.1992.11909662
https://doi.org/10.1002/gea.20021
https://doi.org/10.1007/978-981-10-6826-3_13
https://doi.org/10.1007/s10816-011-9102-7
https://doi.org/10.1007/BF02590339
https://doi.org/10.1017/9781108775762.013
https://doi.org/10.1109/TC.1978.1675128
https://doi.org/10.11532/journalhs1981.5.1
https://doi.org/10.2113/JEEG11.2.73
https://doi.org/10.1080/00438243.1992.9980207
https://doi.org/10.1016/j.jas.2011.08.005
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-focal-statistics-works.htm
http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-focal-statistics-works.htm
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1080/01621459.1980.10477430


ISPRS Int. J. Geo‑Inf. 2023, 12, 238 26 of 27

44. Deeben, J.; Hallewas, D.; Kolen, J.; Wiemer, R. Beyond the crystal ball: Predictive modelling as a tool in archaeological heritage
management and occupation history. In Archaeological Heritage Management in the Netherlands. Fifty Years State Service for Archae‑
ological Investigations; Willems, W., Kars, H., D. Hallewas, D., Eds.; Van Gorcum: Assen, The Netherlands, 1997; pp. 76–118.

45. Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote
sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [CrossRef]

46. Choi, J.; Oh, H.‑J.; Lee, H.‑J.; Lee, C.; Lee, S. Combining landslide susceptibility maps obtained from frequency ratio, logistic
regression, and artificial neural network models using ASTER images and GIS. Eng. Geol. 2012, 124, 12–23. [CrossRef]

47. Rasyid, A.R.; Bhandary, N.P.; Yatabe, R. Performance of frequency ratio and logistic regression model in creating GIS based
landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters 2016, 3, 19. [CrossRef]

48. Na, T.; Kawamura, Y.; Kang, S.S.; Utsuki, S. Hazardmapping of ground subsidence in east area of Sapporo using frequency ratio
model and GIS. Geomat. Nat. Hazards Risk 2021, 12, 347–362. [CrossRef]

49. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception‑v4, inception‑resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

50. Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An
Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [CrossRef]

51. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.‑Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Trans.
Intell. Transp. Syst. 2015, 16, 865–873. [CrossRef]

52. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al.
Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [CrossRef] [PubMed]

53. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

54. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre‑training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

55. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014,
arXiv:1409.0473.

56. Zhang, L.; Wang, S.; Liu, B. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
2018, 8, e1253. [CrossRef]

57. David, H.; Harris, S.L.H. Digital Design and Computer Architecture, 2nd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2012;
p. 129. ISBN 978‑0‑12‑394424‑5.

58. Grbovic, M.; Cheng, H.B. Real‑time Personalization using Embeddings for Search Ranking at Airbnb. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18); Association for Computing Machinery:
New York, NY, USA, 2018; pp. 311–320. [CrossRef]

59. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention‑based neural machine translation. arXiv 2015,
arXiv:1508.04025.

60. Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Review 2009, 455–500. [CrossRef]
61. De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the Cross‑Entropy Method. Ann. Oper. Res. 2005, 134, 19–67.

[CrossRef]
62. Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik,M.; Ferrier, S.; Guisan, A.; Zimmermann, N.E.Novelmethods improve prediction

of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [CrossRef]
63. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006,

190, 231–259. [CrossRef]
64. Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [CrossRef]
65. Borda,M. Statistical and informationalmodel of an ITS. InFundamentals in InformationTheory andCoding; Springer: Berlin/Heidelberg,

Germany, 2011; pp. 7–52.
66. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,

30, 1145–1159. [CrossRef]
67. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
68. Kvamme, K.L. The fundamental principles and practice of predictive archaeological modeling. In Mathematics and Information

Science in Archaeology: A Flexible Framework; Holos: Bonn, Germany, 1990.
69. Shi, T.G.; Zheng, G.Q.; Wang, Z.Y.; Wang, L.L. Research progress of land suitability evaluation in China. Adv. Geogr. Sci. 2007,

2, 106–115.
70. Hirose, K. A Consideration of Reconstructing our Image of the Kofun Period: Does the Period of Keyhole Tombs Predate the

Ritsuryo State? Bull. Natl. Mus. Jpn. Hist. 2009, 150, 33–147.
71. Barnes, G.L. Archaeology of East Asia: The Rise of Civilization in China, Korea and Japan; Oxbow Books: Oxford, UK, 2015; p. 49.

ISBN 978‑1785700705.
72. Batten, B.L. To the Ends of Japan: Premodern Frontiers, Boundaries, and Interactions; University of Hawai’i Press: Honolulu, HI,

USA, 2003.
73. Charles, E. Nihongi: Chronicles of Japan from the Earliest Times to AD 697; Aston, W.G., Translator; Tuttle Publishing: Tokyo,

Japan, 1972.

https://doi.org/10.1080/01431160412331331012
https://doi.org/10.1016/j.enggeo.2011.09.011
https://doi.org/10.1186/s40677-016-0053-x
https://doi.org/10.1080/19475705.2021.1873198
https://doi.org/10.1109/TGRS.2019.2907932
https://doi.org/10.1109/TITS.2014.2345663
https://doi.org/10.1038/s41586-019-1923-7
https://www.ncbi.nlm.nih.gov/pubmed/31942072
https://doi.org/10.1002/widm.1253
https://doi.org/10.1145/3219819.3219885
https://doi.org/10.1137/07070111X
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1016/j.patrec.2005.10.010


ISPRS Int. J. Geo‑Inf. 2023, 12, 238 27 of 27

74. Nakanishi, S.What is Emishi—Ancient East Asia and Northern Japan; Kadokawa Shoten Publishing: Tokyo, Japan, 1993.
75. Hirose, K.; Wada, S. Kofun Period (Part 1), Japanese Archaeology Series; Aoki Shoten Publishing: Tokyo, Japan, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Materials 
	Study Area and Archaeological Background 
	Archaeological Data 
	Geomorphological Predictive Factors 

	Methodology 
	Selection of Predictive Factors 
	Frequency Ratio (FR) 
	Hybrid Model of Attention Mechanism and Frequency Ratio (AM_FR) 
	Problem Formulation 
	Model Architecture 
	Implementation 

	MaxEnt 
	Model Evaluation 

	Results 
	Selected Predictive Factors 
	APM by FR 
	APM by the AM_FR Model 
	APM by MaxEnt 
	Model Evaluation 
	Archaeological Predictive Maps and Statistics 

	Discussion 
	Conclusions 
	References

