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Abstract: The Sendai Framework for Disaster Risk Reduction 2015–2030 (SFDRR) proposed seven
targets comprising 38 quantified indicators and various sub-indicators to monitor the progress of
disaster risk and loss reduction efforts. However, challenges persist regarding the availability of
disaster-related data and the required resources to address data gaps. A promising way to address
this issue is the utilization of Earth observation (EO). In this study, we proposed an EO-based disaster
evaluation framework in service of the SFDRR and applied it to the context of tropical cyclones
(TCs). We first investigated the potential of EO in supporting the SFDRR indicators, and we then
decoupled those EO-supported indicators into essential variables (EVs) based on regional disaster
system theory (RDST) and the TC disaster chain. We established a mapping relationship between
the measurement requirements of EVs and the capabilities of EO on Google Earth Engine (GEE).
An end-to-end framework that utilizes EO to evaluate the SFDRR indicators was finally established.
The results showed that the SFDRR contains 75 indicators, among which 18.7% and 20.0% of those
indicators can be directly and indirectly supported by EO, respectively, indicating the significant role
of EO for the SFDRR. We provided four EV classes with nine EVs derived from the EO-supported
indicators in the proposed framework, along with available EO data and methods. Our proposed
framework demonstrates that EO has an important contribution to supporting the implementation of
the SFDRR, and that it provides effective evaluation solutions.

Keywords: Sendai Framework for Disaster Risk Reduction (SFDRR); Sustainable Development Goals
(SDGs); disaster; earth observation (EO); essential variable (EV); tropical cyclone (TC); Google Earth
Engine (GEE)

1. Introduction

The Sendai Framework for Disaster Risk Reduction 2015–2030 (SFDRR) is a 15-year
agreement adopted by the United Nations (UN) Member States in 2015 at the Third UN
World Conference on Disaster Risk Reduction (DRR) in Sendai City, Japan. The SFDRR
aims to reduce the existing disaster risk, level of exposure, and vulnerability to disasters,
and to enhance international cooperation in disaster risk reduction and the availability
and access to pre-disaster warnings and post-disaster assessments [1]. The SFDRR has
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seven targets and four action priorities to achieve a substantial reduction of disaster risk
and losses in the global population, gross domestic product (GDP), and infrastructure.
Since the SFDRR is a product of interconnected natural, social, and economic processes,
it is also closely associated with the Sustainable Development Goals (SDGs) (Figure 1).
Three goals of SDGs involving 11 indicators are monitored and measured by the SFDRR,
facilitating considerable synergy between the two policy instruments [2]. Therefore, the
SDGs and the SFDRR constitute an overarching global milestone for creating a better and
more sustainable future worldwide [3–5].
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To monitor the progress of the seven SFDRR targets, the open-ended intergovernmen-
tal expert working group (OIEWG) on indicators and terminology relating to disaster risk
reduction has recommended a set of 38 indicators and relevant sub-indicators to track the
progress made in implementing the seven targets of the SFDRR [6]. These indicators play a
key role in demonstrating global progress in achieving the goals of the SFDRR. Member
states are required to report on these indicators over two ten-year periods to assist in assess-
ing the global trends in disaster risk reduction and supporting informed decision-making
and policy-making at the national/global level. In 2018, the United Nations for Disaster
Risk Reduction (UNDRR) launched the Sendai Framework Monitor (SFM) as an online
database platform to help countries report on the indicators and progress of the SFDRR
targets and make risk-informed policy decisions. The UNDRR also produced Technical
Guidance for Monitoring and Reporting on Progress in Achieving the Global Targets of the Sendai
Framework for Disaster Risk Reduction (henceforth referred to as the Technical Guidance),
which outlined the computation methodologies as well as the minimum and desirable data
requirements for each indicator [7].

The introduction of measurable and monitorable indicators for the SFDRR has spurred
a global initiative to develop more accurate and comprehensive assessment approaches
for disaster impact [8]. However, the effectiveness and long-term utility of the proposed
indicators for meeting the aims of the SFDRR remains uncertain. The seven targets with
their 38 indicators as well as various sub-indicators pose challenges for countries to collect
disaster-relevant data to measure and monitor all these indicators [9]. In 2017, the UN
produced a summary report in which 87 countries assessed their levels of availability of
national disaster-related data, their disaster-related data gaps, and the type of resources
needed to fill these data gaps. The report showed that not all countries had the capacity
to report on each of the SFDRR indicators. For example, in terms of Target B, only 66%
of the countries could report on the number of people directly affected by disasters; in
terms of Target C, less than 50% of countries were able to report on the indicators regarding
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productive assets, critical infrastructure, and cultural heritage [10]. Following the adage
that “you cannot manage what you cannot measure”, the lack of data availability presents
challenges for monitoring the progress made towards achieving all the SFDRR targets
and hinders countries from developing disaster risk reduction strategies and allocating
resources for preventing new disaster risks.

Earth observation (EO) has become a widely-used solution for obtaining Earth surface
information. EO data, including satellite, airborne, land, and marine-based data, can track
changes in ground features before and after a disaster with proper spatial and temporal
resolution. Compared with traditional data collection approaches in disaster situation
assessment, such as field surveys, census datasets, and statistical reports, EO provides
spatial, spectral, and temporal information that can be extracted and associated with
relevant indicators. With advantages including rapid imaging capability, large scanning
ranges, and free from ground limitation, EO data, especially satellite remote sensing images,
have been widely applied in assessing natural disasters, such as fires [11], floods [12,13],
earthquakes [14], and tsunamis [15,16]. Providing a historical record of Earth changes,
EO can be combined with demographic, statistical, and other data to measure the SFDRR
indicators and to support indicator monitoring data-driven decision-making and action
across government institutions and programs [10].

To fill the gap between accurately measuring the progress of the SFDRR or SDGs and
the availability of disaster-relevant data and solutions, scholars and relevant organizations
are sparing no efforts to apply EO data, methods, and frameworks in measuring and
monitoring related indicators [8,17–19]. Some studies focused on constructing comprehen-
sive frameworks or technique guidelines for indicator measurement. The Group on Earth
Observations (GEO) proposed an EO4SendaiMonitoring Initiative to promote the use of
earth observation data and the collaborative development of EO datasets, analytical tools,
and quality standards to support the implementation and the monitoring of indicators of
the SFDRR [20]. Considering that free satellite data is increasingly becoming available and
accessible, the United Nations Economic and Social Commission for Asia and the Pacific
(UNESCAP) aimed to strengthen regional mechanisms for implementing the SFDRR and
proposed a procedural guideline for sharing space-based information during emergency
response to embrace the use of EO data in disaster risk management [21]. The Asian
and Pacific Centre for the Development of Disaster Information Management (APDIM)
released a step-by-step guide to monitoring the impact of sand and dust storms using
the SFDRR indicators, where satellite data provide an opportunity to fill in data gaps for
monitoring losses in population, GDP, and infrastructure resulting from sand and dust
storms [22]. Masó et al. [23] proposed EO networks that produced essential variables
to link with the SDGs and improved the SDG indicators framework by suggesting new
EO-based indicators.

Other studies focused on specific targets or indicators of the SFDRR and provided
effective measuring approaches. To report on the progress of SFDRR Indicator B-5a, i.e., the
number of workers in agriculture with crops damaged or destroyed, Urrutia II et al. [24]
used Sentinel-1 synthetic aperture radar (SAR) data and relevant spatial data to quantify
indicator B-5a for Ecuador and developed a geospatial modelling approach for this indicator
in the context of flooding. Ghaffarian et al. [25] developed an approach combining high-
resolution satellite images and machine learning methods to monitor the urban deprived
areas in Tacloban city in the Philippines over a four-year period after super Typhoon
Haiyan, which focused on the resilience of the human community and addressed one of
the action priorities of the SFDRR.

Although the gap between the measurement of indicators and the availability of
disaster-relevant data and solutions is narrowing, there is still a lack of a complete EO-
based framework to support the global progress towards fulfilling the SFDRR. First, a
systematical identification of which SFDRR indicators can be measured and monitored by
EO is needed. With the integration of some key SFDRR indicators into the global indicator
framework of the SDGs, the potential of EO-derived monitoring and methodologies for
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the SFDRR indicators should be explored. Second, few studies have focused on matching
EO data and methods to specific SFDRR indicators. Satellite-derived and geospatial infor-
mation is increasingly used for SFDRR implementation, while there are no comprehensive
methodologies for making the best use of these resources or listing the options that are
suitable and applicable in different disaster scenarios. Therefore, an integrated framework
that links the EO database, EO-based evaluation methods, and SFDRR indicators is needed.

In terms of the construction principle, both the SFDRR and the SDGs constitute a
“network of targets” that links goals into a system, requiring trade-offs and interdepen-
dencies, and facilitating policy integration across sectors [26]. In some cases of the SDGs,
different indicators converge in a minimum set of essential variables (EVs) to match with
EO data in terms of spectral, spatial, and temporal dimensions. This methodology has been
applied in various fields such as climate [27], biodiversity [28], and social economy [29]. A
similar situation can also be found for the SFDRR while relevant studies are still lacking.
In terms of decoupling indicators, regional disaster system theory (RDST) is a systematic
theory concerning the formation mechanism and development process of natural disasters.
Since the SFDRR interlinks indicators within and across seven targets using a synergistic
approach, it accounts for the existing targets’ trade-offs and reinforcements and avoids
the unintended consequences that focusing on a single target or indicator can often have
on the other indicators [26]. Aiming to solve the problems that exist in previous studies,
the specific objectives of this study are: (1) to review the scope for using EO, especially
for the full breadth of the SFDRR indicators, and to assess its potential for providing data,
and select indicators that can be supported by EO; (2) to decouple and recouple the initial
SFDRR indicators as EVs based on the RDST; and (3) to match EO data and methods to
the proposed EVs and to construct the mapping relationship between the measurement re-
quirements of EVs and the capabilities of EO. We finally proposed an EO-based framework
in the scenario of tropical cyclones (TCs) that defines a minimum set of EVs to guide the
application of EO data and methods.

2. Methods

We proposed an EO-based framework to support the measurement and monitoring of
the SFDRR, which consists of three layers: indicator layer, EV layer, and EO layer (Figure 2).
The indicator layer identifies which SFDRR indicators can be supported by EO. We used
quantitative and qualitative methods to analyse the potential of EO for each indicator
and select those that can be supported by EO. The EV layer defines the set of EVs to
be measured by EO. We decoupled the SFDRR indicators that were directly supported
by EO into EVs based on the RDST. The EO layer represents the mapping relationship
between the monitoring requirements of EVs and the capabilities of EO. We analysed the
monitoring capabilities of existing satellite remote sensing data products and provided
available EO data and methods for each EV on Google Earth Engine (GEE), a remote sensing
big data platform. Finally, based on the established principles of comprehensiveness,
systematicity, independence, and operability, we constructed an EO-based framework to
support the SFDRR.

2.1. Indicator Layer: SFDRR Indicators Supported by EO

The SFDRR is articulated by 7 targets, 38 main indicators, and many sub-indicators
under each main indicator [27]. However, not all indicators and sub-indicators can be
supported by EO data and methods, or the results, especially those related to socioeconomic
indicators of sustainable development, are not exclusively based on EO data due to the
important role of non-EO data. Therefore, it is a challenging task to evaluate the potential
of EO for measuring and monitoring the SFDRR indicators, and to select those indicators
that can be directly or indirectly supported by EO. Based on current indicator evaluation
methods and the requirements for basic data, we classified the SFDRR indicators into four
categories, as shown in Table 1.
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Table 1. SFDRR indicator tier definitions.

Tier Definition Example

Tier I
Independent indicator directly supported by EO, that is, by inputting

EO data as well as other sources of basic data into the evaluation
method, the value of the indicator can be obtained.

Indicator B-3a: Number of
dwellings/houses damaged attributed

to disasters

Tier II
Compound indicator that are indirectly supported by EO, that is, it
needs to be calculated through the use of independent indicators,
basic data, and specific algorithms provided by the UNDRR [22].

Indicator D-1: Damage to critical
infrastructure attributed to disasters

Tier III
Indicator cannot be supported by EO, that is, post-disaster data and

information need to be collected by such means as filed surveys
rather than by EO.

Indicator B-2: Number of injured or ill
people attributed to disasters

Tier IV
Indicator that does not need to be supported by EO, that is, data and
information acquirement and indicator evaluation can be completed
before the disaster, and no post-disaster evaluation work is needed.

Indicator G-1: Number of countries that
have multi-hazard early

warning systems

To ensure the objectivity of indicator selection and spontaneously consider the prac-
tical significance of indicators, we adopted a combination of quantitative and qualitative
methods for classifying indicators into their corresponding tiers [30,31]. We systematically
reviewed relevant literature that mainly included papers, reports, and standards with the
following content: (1) data sources for the SFDRR indicators or similar indicator systems
such as the SDGs; (2) methods that use EO data to extract ground objects and retrieve earth
parameters; and (3) disaster situation assessment methods based on EO. We synthesized the
opinions in the acquired literature and reasonably determined the possibility and degree of
SFDRR indicators being supported by EO, which was implemented based on a hierarchical
selection structure, as shown in Figure 3.

We classified the SFDRR indicators into corresponding categories according to the
following steps: (1) determining the level of dependence of each indicator on other indica-
tors; (2) determining the demand for post-disaster data and information relating to each
indicator; and (3) analyzing the potential of EO data and methods for measuring and moni-
toring each indicator, including the common technical issues faced in basic data acquisition
and processing, such as statistical data decomposition, international data applicability, and
crowdsourcing data applicability. Through the progressive selection structure design, we
selected the SFDRR indicators and determined their characteristics based on two premises
and the answers to previous questions. Question 1 determines which types of indicators
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(independent/compound) are sought. Considering that some composite indicators need to
be calculated with the involvement of other indicators, the different response options for
this question are used to provide two different premise conditions for subsequent questions.
Question 2 determines whether the indicator can be evaluated by relevant statistical data
before the disaster, with the goal of eliminating indicators that do not need EO support.
Question 3 determines whether these indicators are directly or indirectly supported by EO.
Among these EO-supported indicators, independent indicators can be directly supported
by EO data and methods, while compound indicators can only be indirectly supported
because they have been derived from other indicators and calculation methods. Except for
Question 1, the subsequent questions are based on two premise conditions revealed by the
answers to previous questions. While summarising the opinions from different literature,
we gave preference to higher EO-relevant potential for the indicator categories. When the
questionnaire was finally completed, we obtained detailed opinions from the respondents
regarding the characteristics of the indicators that were relevant to EO.
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2.2. EV Layer: Decoupling and Recouping SFDRR Indicators

In Section 2.1, we selected those SFDRR indicators that can be supported by EO (Tier I
and Tier II). However, these indicators are organized according to the seven targets of the
SFDRR, which involve multiple aspects, such as human casualties, economic losses, and
infrastructure damage. These indicators involve measuring variables involving multiple
types, wide ranges, scattered distributions, and large data volumes and pose challenges
for constructing a systematic measuring and monitoring framework. Decoupling and
recoupling the SFDRR indicators as EVs that can be evaluated using EO provides an
opportunity to monitor and report on regional goals and indicators, to monitor the progress
made in reducing and enhancing disaster risk reduction efforts, and to better capture and
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understand the cross-border impacts and effects involved in disaster and risk reduction.
We decoupled the SFDRR indicators as EVs based on the RDST under the scenario of TCs,
where cascading disasters were also considered; then we recoupled those EVs based on
their physical characteristics as well as their affected mechanism by disasters. Figure 4
shows the decoupling and recoupling process under the scenario of TCs.
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According to the RDST, a disaster is considered to be a comprehensive outcome result-
ing from the interactions among disaster-inducing factors (DIFs), disaster-affected bodies
(DABs), and disaster-formative environments (DFEs) [32–34]. DFEs play a crucial role as
the settings where DIFs originate and where DABs suffer damage (Figure 4). The complex
relationship between DIFs and DABs often forms disaster chains and causes a series of
disaster events. Since compound disaster chains commonly refer to the interaction of
multiple hazards or events that combine to produce extreme disasters capable of generating
widespread losses, it is advisable to consider primary disasters as well as cascading disas-
ters in a specific disaster scenario in order to decouple SFDRR indicators into measuring
variables. In the scenario of TC, this kind of low-pressure system often results in strong
winds, heavy rainfalls, and cascading disasters such as storm surges and floods. Table 2
shows the disaster chain of TCs.

Table 2. Disaster chains of TCs.

DEFs DIFs 1 Influences on DABs

Ocean T-W-S Disruption of productive activities

Coast

T-W Hit by strong winds
T-W-S Hit by water flows

T-W-S-F Flooded by seawater
T-R-F Flooded

Plain T-W Hit by strong winds
T-R-F Flooded

Mountain land T-R-F Flooded
T-R-F-L Hit by debris flow

1 T: TC; W: Strong wind; S: Storm surge; F: Flood; R: Heavy rainfall; L: landslide.
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On the indicator layer, the EO-supported SFDRR indicators were classified as either
directly (Tier I) or indirectly supported (Tier II). Directly supported indicators can be mea-
sured through EO data and methods, while indirectly supported indicators need to be
calculated with the help of directly supported indicators and in conjunction with other
pre-disaster information. Therefore, we reviewed all directly supported indicators, detailed
their characteristics, and decoupled them into EVs to be measured by EO. Different commu-
nities have used various criteria to choose their EVs [27–29]. We selected and defined EVs
according to the following justifications: (1) describing the disaster system with a minimum
set of variables; (2) using variables that can be measured by EO; and (3) defining them to
respond to specific reporting needs of SFDRR and useful to EO-supported indicators.

Based on the RDST, we chose the elements of DABs as EVs because they are the
core components of disaster loss evaluation and determine which variables need to be
monitored. In the SFDRR, DABs are mainly presented in terms of fatalities, missing persons,
affected populations, direct economic losses, and infrastructure damage, including damage
to measuring objects such as crops, forests, and aquaculture areas. Those DABs are affected
by TCs as well as cascading disasters while considering the disaster chain of TCs. Therefore,
we explored the DIFs that impact DABs and analyzed what kind of damage would occur to
the DABs in specific disaster scenarios. Since each EV is identified as particularly relevant
to one EO-supported SFDRR indicator and can be observed by EO data such as satellite
images, it provides the opportunity to monitor and report the progress of the SFDRR and
increase mitigation efforts to better capture the transboundary effects and impact of the
SFDRR. However, the extraction of EVs from remote sensing data may be a challenge for
the limited capacity of the ground segment, which may have difficulty supporting the
timely creation of a large number of variables. Fortunately, different sets of variables are not
completely isolated from one another but are rather interlinked across SFDRR indicators
and targets, and some common EO data and methods can be used to identify those variables,
acquire their disaster-related attributes, and further evaluate the corresponding SFDRR
indicators. We classified our EVs according to their physical characteristics, which are
key characteristics that determine the selection of EO data and methods for identification.
Finally, we decomposed those directly supported indicators into EVs and reorganized them
as 4 classes (Figure 4).

2.3. EO Layer: Mapping the Links between the Requirements of EVs and the Capabilities of EO

The process of determining the set of EVs helped to harmonize and simplify the usage
of EO data and methods. However, the EO data requirements for measuring those EVs
were still ambiguous. Indeed, a solid framework of indicators needs multiple types of
good and reliable data and clear methodological guidelines for their metadata. The global
policy landscape relevant to disaster reduction is vast, while the synergies across reporting
requirements and relevant actors have not yet been optimized. The progress of disaster
reduction and emergency management is hindered by the application of EO data with
inappropriate spectral bands and spatiotemporal resolutions to understand the changes in
EVs. The question of how to quickly obtain available EO data and apply proper methods
to measure different EVs during huge and complex disasters affects the effectiveness of
disaster reduction and relief. Previous disaster services mainly evaluated the physical
amount of disaster damage and underestimated the dynamic monitoring and analysis of
disaster situations. It is crucial to improve the timeliness of disaster emergency monitoring
through the collaborative observation and application of various EO data.

In the era of big data, Earth’s big data real-time monitoring platforms represented by
GEE have emerged. They provide cloud-based geospatial processing computing platforms
that enable geospatial data retrieval, processing, and analysis from the local to planetary
scales [35]. Compared with traditional disaster loss evaluation workflow, a framework
built on GEE has certain advantages: (1) GEE provides petabytes of EO big data that can
be available in near-real time, and those data produced by different organizations have
been gathered by GEE and can be made freely available, catching up to the deluge of



ISPRS Int. J. Geo-Inf. 2023, 12, 232 9 of 20

open data; (2) GEE provides open application programming interface (API), which can be
embedded in the user’s custom framework, and the GEE API allows an end-to-end disaster
loss evaluation workflow, where one can acquire EO data, implement measuring methods,
and obtain evaluation results based on an integrated platform. Therefore, we analysed
commonly used EO data products and their monitoring capabilities from the perspective of
data acquisition capability (temporal resolution) and data representation capability (spatial
resolution and spectrum) by GEE, as shown in Figure 5.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Three-dimensional visualization (elevation = 45°; azimuth = 45°) of EO capabilities in terms 
of their temporal, spatial, and spectral factors (MODIS: Moderate Resolution Imaging Spectroradi-
ometer; VIIRS: Visible Infrared Imaging Radiometer Suite; GOES: Geostationary Operational Envi-
ronmental Satellites). 

We analysed the capabilities of commonly used EO data on GEE and surveyed the 
data requirements for measuring and monitoring EVs according to the relevant literature 
acquired in Section 2.1. This process varied by disaster contexts, because different disaster 
events and progress and also types of EVs require different quantities of EO data. From 
the perspective of observation spectrum, visible and microwave data have certain appli-
cation abilities and the potential for measuring various EVs, among which microwave 
data with different bands and polarization modes can achieve all-weather disaster moni-
toring. From the perspective of spatial resolution, TCs with large impact areas require 
large, wide, medium, and low-resolution EO capabilities, while constructions and other 
DABs need spatial identification capabilities of meters or even submeters for refined eval-
uation. From the perspective of observation frequency, the requirements for disaster re-
visiting observation time vary by disaster context. For example, TCs develop and change 
quickly, and the observation interval needs to reach hours or even minutes, requiring ge-
ostationary weather satellites such as the Geostationary Operational Environmental Sat-
ellites (GOES). In contrast, the ground change in delayed disasters such as floods is rela-
tively slow, so the observation can be conducted in units such as days and ten day spans. 

3. Results 
3.1. SFDRR Indicators Supported by EO 

We reviewed the scope for using EO for the full breadth of 75 SFDRR indicators and 
sub-indicators by combining quantitative and qualitative methods. More than 80 papers 
and reports that explore the use of EO data and methods were systematically reviewed to 
deliver results that support the monitoring of SFDRR indicators. We found that the liter-
ature directly targeting the design of evaluation methods for specific SFDRR indicators 
was lacking. However, many strands of the literature have provided EO-based methods 
for the measurement of EVs involved in the SFDRR indicators. Figure 6a,b show the 

Figure 5. Three-dimensional visualization (elevation = 45◦; azimuth = 45◦) of EO capabilities in
terms of their temporal, spatial, and spectral factors (MODIS: Moderate Resolution Imaging Spec-
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Environmental Satellites).

We analysed the capabilities of commonly used EO data on GEE and surveyed the
data requirements for measuring and monitoring EVs according to the relevant literature
acquired in Section 2.1. This process varied by disaster contexts, because different disaster
events and progress and also types of EVs require different quantities of EO data. From the
perspective of observation spectrum, visible and microwave data have certain application
abilities and the potential for measuring various EVs, among which microwave data
with different bands and polarization modes can achieve all-weather disaster monitoring.
From the perspective of spatial resolution, TCs with large impact areas require large,
wide, medium, and low-resolution EO capabilities, while constructions and other DABs
need spatial identification capabilities of meters or even submeters for refined evaluation.
From the perspective of observation frequency, the requirements for disaster revisiting
observation time vary by disaster context. For example, TCs develop and change quickly,
and the observation interval needs to reach hours or even minutes, requiring geostationary
weather satellites such as the Geostationary Operational Environmental Satellites (GOES).
In contrast, the ground change in delayed disasters such as floods is relatively slow, so the
observation can be conducted in units such as days and ten day spans.
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3. Results
3.1. SFDRR Indicators Supported by EO

We reviewed the scope for using EO for the full breadth of 75 SFDRR indicators and
sub-indicators by combining quantitative and qualitative methods. More than 80 papers
and reports that explore the use of EO data and methods were systematically reviewed
to deliver results that support the monitoring of SFDRR indicators. We found that the
literature directly targeting the design of evaluation methods for specific SFDRR indicators
was lacking. However, many strands of the literature have provided EO-based methods
for the measurement of EVs involved in the SFDRR indicators. Figure 6a,b show the
quantitative distribution of indicators supported by EO across Targets A–G. 38 indicators
and 37 sub-indicators were recommended by the SFDRR, among which 14 indicators and
15 indicators could be directly and indirectly supported by EO, respectively, accounting for
38.7% of all SFDRR indicators. A total of 27 indicators cannot be supported by EO, because
the variables (such as injured people) involved in those indicators cannot be observed
from remote sensing images. Tier IV had 19 indicators that could be measured before the
disaster. Therefore, except for those indicators free from the requirements of post-disaster
information, 51.8% of the SFDRR indicators could be supported by EO, which demonstrated
the huge potential of EO in service of the SFDRR.
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Figure 6. Quantitative distribution of all SFDRR indicators within Tier I-IV across Targets A-G: (a) for
numbers and (b) for proportions (Tier I: Indicators directly supported; Tier II: Indicators indirectly
supported; Tier III: Indicators that cannot be supported; Tier IV: Indicators that do not need to
be supported).

Figure 7 shows the proportions of SFDRR indicators from Tier I to Tier IV for each
target. All indicators supported by EO were gathered in Target B–D. Target B concerns the
number of people affected by disasters; 61.6% of the indicators within this target could
be directly/indirectly supported by EO, which is able to measure the relevant losses of
dwellings, productive assets, and crops. Target C focuses on direct economic loss; 58.8%
of indicators within this target could be supported by EO, among which those indicators
directly supported by EO are used to measure the physical influences of disasters on
productive assets. The indicators of Target D depict the influences caused by disasters on
infrastructures, 12.5% of those indicators could be directly/indirectly supported by EO;
another 12.5% of those indicators were of Tier IV and can be measured based on pre-disaster
data. No EO-supported indicators exist in Targets A, E, F, and G. Target A aims to measure
disaster mortality, which requires field surveys to obtain usable results and cannot be
estimated merely by EO data and methods. Targets E–G focus on disaster risk reduction
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strategies, international cooperation, and disaster early warning; the indicators of these
targets are administrative and political and are free from evaluation with post-disaster
information, which explains why the EO-based indicators disappeared in these targets.
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3.2. Links between EVs and SFDRR Indicators

Based on the RDST and disaster chains of TCs, we decoupled the SFDRR indicators as
EVs in Section 2.2. Figure 8 shows the linkage between EVs and SFDRR indicators, where
the user can navigate from SFDRR indicators to networks for EVs to further get the EO data
and methods. Those indicators of Tiers II–IV were removed (as there were not relevant here)
and only Tier I indicators, i.e., those directly supported by EO were shown. We selected
DABs from those 14 Tier I indicators and chose 9 EVs, which were recoupled as 4 classes:
ocean-related, vegetation-related, water-related, and construction-related classes. Those
DABs in each EV class were impacted by 5 DIFs according to the disaster chains of TCs.
All Tier I indicators of Target B were matched with EVs of the construction-related class
because they measured the damage situation of dwellings/houses, which can be reduced
to construction-related losses. Indicators of Target C measured direct economic losses of
multi-types of DABs including crops, houses, and so on. From the physical characteristics
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of DABs, EVs matching indicators of Target C were divided into all four classes. Most
indicators of Target D were construction-related, except green infrastructures. According
to Technical Guidance, green infrastructures are one of the infrastructure sectors according
to the proposed UNDRR classification; this sector includes green areas and rain gardens,
which are vegetarian-related.
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3.3. Mapping Relationship between EVs and EO

The EO-based framework aimed to provide a simple yet robust approach to address all
targets and indicators outlined in the SFDRR. In order to achieve this, we constructed the EO
layer in our proposed framework and mapped the relationship between the measurement
requirements of EVs and the capabilities of EO. Figure 9 illustrates the EO data available
for different disaster elements, considering the time scale of observation frequency and
the spatial scale of spatial resolution. Given the diverse monitoring requirements of EVs,
it is essential to leverage multi-source data to enhance the capability of comprehensive
disaster observation through the networking of high-low-orbit and medium-high resolution
satellites. There are now freely and openly available images visible through shortwave
infrared that are available every 2–4 days at a spatial resolution of less than 30 m (combining
Landsat 8–9 and Sentinel-2), as well as 10 m dual-polarization C-band SAR every 1–6 days
(Sentinel-1) [36]. Geostationary weather satellites such as the GOES can even provide
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observations with intervals shorter than 15 min. As a constellation of 21 high-resolution
Earth imaging satellites, Skysat can acquire sub-meter resolution satellite images with
sub-daily revisit time. However, stable and real-time data delivery of high-resolution
images from Skysat on GEE has not yet been achieved. Nevertheless, due to worldwide
collaborations such as the International Charter Space and Major Disasters, EO data,
especially those high-resolution images, can be combined from different space agencies
and be acquired in time when a disaster event occurs, which allows for the coordination of
resources and expertise to facilitate rapid response to major disaster situations [37].

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 14 of 21 
 

 

GOES can even provide observations with intervals shorter than 15 min. As a constellation 
of 21 high-resolution Earth imaging satellites, Skysat can acquire sub-meter resolution sat-
ellite images with sub-daily revisit time. However, stable and real-time data delivery of 
high-resolution images from Skysat on GEE has not yet been achieved. Nevertheless, due 
to worldwide collaborations such as the International Charter Space and Major Disasters, 
EO data, especially those high-resolution images, can be combined from different space 
agencies and be acquired in time when a disaster event occurs, which allows for the coor-
dination of resources and expertise to facilitate rapid response to major disaster situations 
[37]. 

 
Figure 9. Mapping relation between the requirements of EVs and the capabilities of EO in the sce-
nario of TCs (Pan indicates panchromatic band, VIS indicates spectral coverage in the visible range, 
NIR is “near infrared”, SWIR is “shortwave infrared”, MWIR is “mid-wave infrared”, LWIR is “long 
wave infrared”, and TOA indicates the top of atmosphere radiances). 

3.4. Matching EO to SFDRR 
We built an EO-based framework for monitoring and measuring the SFDRR progress 

in the context of TCs with the combination of the indicator layer, EV layer, and EO layer. 
The new framework gives full play to the advantages of EO data and methods and pro-
vides a comprehensive system that matches EO data and methods to the SFDRR indica-
tors. Figure 10 shows the workflow of our framework. The end-to-end framework took 
EO data as input, measured EVs using suggested methods, and output the assessment 
results of the SFDRR indicators. In the scenario of TCs, we suggested EO data and method 
references for measuring and monitoring all EVs in the proposed framework. 

Figure 9. Mapping relation between the requirements of EVs and the capabilities of EO in the scenario
of TCs (Pan indicates panchromatic band, VIS indicates spectral coverage in the visible range, NIR is
“near infrared”, SWIR is “shortwave infrared”, MWIR is “mid-wave infrared”, LWIR is “long wave
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3.4. Matching EO to SFDRR

We built an EO-based framework for monitoring and measuring the SFDRR progress
in the context of TCs with the combination of the indicator layer, EV layer, and EO layer. The
new framework gives full play to the advantages of EO data and methods and provides
a comprehensive system that matches EO data and methods to the SFDRR indicators.
Figure 10 shows the workflow of our framework. The end-to-end framework took EO data
as input, measured EVs using suggested methods, and output the assessment results of the
SFDRR indicators. In the scenario of TCs, we suggested EO data and method references for
measuring and monitoring all EVs in the proposed framework.

3.4.1. Ocean-Related Class

The monitoring of EVs in the ocean-related class requires EO data with frequent
revisits. According to the mapping relationship between the measurement requirements of
EVs and capabilities of EO (Figure 9), images from geosynchronous earth orbit satellites
such as GOES can provide continuous monitoring of the Earth’s surface and get useful
information about the storms’ location, strength, and movement. This can be helpful in
forecasting and disaster management. As shown in Figure 11, we suggested cloud and
moisture imagery from GOES to measure the EVs of the ocean-related class. These data can
be obtained from GEE and have been widely used to measure the movement and strength
of TCs [38]. It is viable to extract fishery production areas based on the daily fishing and
vessel hours from Global Fishing Watch (GFW) data, and then identify affected areas by
assessing the extent of the storm’s impact on fishing production areas [39].
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3.4.2. Water-Related Class

As shown in Figure 12, the measurement of EVs in the water-related class involves
a two-step process. First, the extraction of pre-disaster spatial information of aquacul-
ture production areas from EO data is required. We recommended utilizing medium-
resolution optical images with time series obtained from GEE for pre-disaster information
extraction [40]. Second, the identification and measurement of post-disaster information
pertaining to water bodies, specifically floods, is necessary [12]. In the case of extreme
weather events, such as TCs, it is often challenging to access cloud-free images both before
and after the main impact for several days. In this situation, SAR data serve as a unique and
reliable source of information, as they work irrespective of weather and sunlight conditions.
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3.4.3. Vegetarian-Related Class

The procedure for measuring Evs of the vegetarian-related class using EO data and
methods is illustrated in Figure 13. The pre-disaster spatial information of Evs in the
vegetarian-related class was easy to acquire because several studies have produced land-
use land cover (LULC) products and made them available on open-access platforms.
The spatial information of crops and forests can be obtained from the European Space
Agency (ESA) WorldCover 10 m products on GEE. Additionally, the information regarding
green infrastructures such as parks and green areas can be acquired and selected from the
area of interest (AOI) and area of point (POI) data provided by OpenStreetMap (https://
wiki.osmfoundation.org/wiki/How_To_Get_OpenStreetMap_Data, accessed on 18 March
2023). To assess the damage or destruction to those vegetarian-related Evs, changes in the
normalized difference vegetation index (NDVI) can be used. Therefore, we recommended
utilizing optical data such as Landsat and Sentinel-2 to measure those Evs, and we provided
EO methods from the relevant literature that used NDVI to evaluate disaster losses for
further guidance [41,42].
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3.4.4. Construction-Related Class

Similar to the EVs in the vegetarian-related class, pre-disaster spatial information of
those in the construction-related class is also easy to acquire. OpenStreetMap (OSM) pro-
vides global construction data, including building classifications. GEE also provides large-
scale open datasets consisting of the outlines of buildings derived from high-resolution satel-
lite imagery (https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_
Research_open-buildings_v2_polygons, accessed on 18 March 2023). For measuring
construction-related EVs, the main tasks involve construction classification and change
detection. The type of acquired constructions can be identified according to spatial-related
AOI or the point of interest (POI) data, and then can be classified as four kinds of EVs
according to the Technical Guidance. In SAR imagery, changes in amplitude and coherence
occur when there are changes in ground surface properties (e.g., reflectance, roughness,
and dielectric properties) before and after disaster events [43]. Therefore, we recommended
utilizing 10m Sentinel-1 imagery to measure construction changes and provided correspond-
ing evaluation methods [44,45]. The procedure for measuring EVs of the vegetarian-related
class using EO data and methods is shown in Figure 14.

https://wiki.osmfoundation.org/wiki/How_To_Get_OpenStreetMap_Data
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4. Discussion

In the proposed EO-based framework, we provided EO data and methods that di-
rectly supported the SFDRR indicators. EO data was recommended based on the mapping
relationship between the measurement requirements of EVs and capabilities of EO; corre-
sponding EO methods were also recommended on the basis of relevant literature acquired
in Section 2.1. Though our framework gave full play to the advantages of EO data and
methods and provided a comprehensive system that matched EO data and methods to the
SFDRR indicators, it could go further with the improvement of EO data and methods.

4.1. EO Data: Space-Air Platform Collaboration

To effectively address the needs of major disasters, disaster chain monitoring, early
warning, dynamic assessment, emergency response, rescue, and relief efforts, it is crucial
to implement task-driven joint scheduling of space-air data resources and utilize multi-
platform collaborative planning methods. EO data from spaceborne platforms can be
used to measure those EVs in a wide range and monitor their changes during the whole
evolution stage of the disaster. While our framework primarily relies on satellite remote
sensing data provided by GEE, there are limitations in terms of weather conditions and
spatial resolution, which can result in unavailable observation and incomplete coverage in
disaster areas. To overcome these limitations, it is significant to incomplete spatial sampling
acquisition technology methods for both spaceborne and airborne platforms. For example,
unmanned aerial vehicle (UAV) platforms equipped with visible-light cameras or light
detection and ranging (LiDAR) can provide precise assessment during the post-disaster
stage, particularly in heavy disaster areas, thereby ensuring timely information support
for emergency command [46], search operations [47], and rescue efforts [48]. However, it
should be noted that implementing the flight, processing the aerial images, and obtaining
disaster information take time and resources. Pre-disaster information also cannot be
obtained from airborne platforms due to the lack of historical data. To meet the decision-
making needs associating with emergency response, rescue and relief, and search and rescue
efforts for major disasters and disaster chains, we should build a collaborative monitoring
planning system of EO resources with high-low orbit multi-satellite collaboration, space-
air collaboration, remote sensing-station collaboration, multi-temporal-spatial resolution
combination, and multi-sensor complementary advantages. Therefore, it is encouraged to:
(1) establish a disaster emergency collaborative observation technology and application
system driven by the disaster event process; (2) study the integration techniques for the
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collaborative monitoring resources that combine EO data from GEE and airborne platforms;
and (3) ensure that the disaster collaborative monitoring scheme can be completed in the
shortest time following the launch of disaster responses.

4.2. EO Methods: Available for Various Disaster Contexts

EO methods have been widely used in land cover information extraction, disaster
situation monitoring, and assessment. Through EO methods, on the one hand, we can
identify the distribution of monitoring elements before disasters and obtain pre-disaster
baseline data; on the other hand, we can compare pre-disaster and post-disaster ground
conditions through change detection or classification comparison of multi-temporal EO
data. We have proposed an EO-based framework for the SFDRR, which provided a set
of methodologies with recognized or mature calculation approaches to support SFDRR
indicators. However, the methods provided by this framework are specifically available for
the scenario of TCs. Since it is required to report on SFDRR indicators over two ten-year
periods at the national/global level, a comprehensive framework that applies EO data and
methods to a broader range of disaster contexts needs to be further developed. For this
purpose, universal methods for measuring the SFDRR indicators as well as considering
their applicability in different disaster scenarios should be developed. For example, the
affected areas of TCs change over time as the storms move, necessitating methods applied at
a large scale. In contrast, the impact of earthquakes tends to focus on epicenters, requiring
more precise evaluation methods. To enhance the role of EO methods in serving the
SFDRR, improvements can be made in the following areas. First, EO methods could be
improved with the combination of artificial intelligence and spatiotemporal big data. In
the era of big data, data science and artificial intelligence have played crucial roles in
knowledge discovery, as the volume of data continues to explode in practically every
research domain. By leveraging artificial intelligence models to learn from disaster big data
and embedding these models into our framework, we can improve the time efficiency of
handling the disaster situation and enhance the evaluation accuracies of SFDRR indicators.
Secondly, we could also consider developing multi-scenario simulation methods oriented
to the SFDRR. By considering various development modes that may emerge in the future,
we can lay the foundation for conducting a comprehensive multi-scenario simulation
analysis. These simulations can provide valuable insights to propose optimized regulation
countermeasures. To accomplish this, synergistic integration of EO data and Geographic
Information Systems (GIS) is essential. By leveraging the combined power of EO data and
GIS technology, we can establish a comprehensive disaster loss and risk assessment model.
This model would simulate typical disaster risk scenarios that may occur in future disaster-
prone areas. Furthermore, it would establish the corresponding relationship between the
intensity of typical hazards and the resulting disaster risk scenarios.

5. Conclusions

This study proposed an EO-based framework to support the measurement and mon-
itoring of the SFDRR. The framework consists of indicator layer, EV layer, and EO layer.
We systematically reviewed the relevant literature and assessed the potential of EO data to
directly or indirectly support each SFDRR indicator. We decoupled the indicators directly
supported by EO and recoupled them as EVs based on the RDST and disaster chains. The
mapping relation between the measurement requirements of EVs and the capabilities of EO
was proposed. The proposed EO-based framework can be used for further development
and provide opportunities to enhance the role of EO in offering rich support for the SFDRR
via robust, timely, readily updated, independent, transparent, and relevant data at disaster
losses. The following conclusions can be drawn from this research:

• Except for the indicators free from the requirements of post-disaster information, 51.8%
of the SFDRR indicators could be supported by EO, which demonstrated the huge
potential of EO in service to the SFDRR.
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• In the TC scenarios, we proposed 11 EVs within four classes. This provided a clear
system by which variables could be measured by EO for the SFDRR indicators, which
demonstrated the potential to develop EVs outside the established set of SFDRR
indicators that may be more amenable to the use of EO-derived data.

• An EO-based framework for the SFDRR was proposed, with an end-to-end workflow
where one can acquire EO data, implement measuring methods, and obtain evaluation
results based on an integrated platform on GEE.

• Future work with space-air collaborative EO data and universal EO methods oriented
to the EO-based framework and the SFDRR is expected. For example, more EO
data from airborne platforms would be available for the framework, and artificial
intelligence models with disaster big data and knowledge would be integrated into
the framework.

Author Contributions: Conceptualization, Jing Li and Adu Gong; methodology, Boyi Li; software,
Boyi Li and Xiang Pan; validation, Longfei Liu, Adu Gong and Jing Li; formal analysis, Boyi Li
and Jinglin Li; investigation, Boyi Li and Zikun Chen; resources, Longfei Liu; data curation, Boyi Li
and Zikun Chen; writing—original draft preparation, Boyi Li; writing—review and editing, Boyi Li
and Adu Gong; visualization, Boyi Li and Lingling Li; supervision, Jing Li and Adu Gong; project
administration, Jing Li, Adu Gong and Longfei Liu; funding acquisition, Jing Li. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (Grant No. 2019YFE01277002), the Open Fund of State Key Laboratory of Remote Sensing
Science and Beijing Engineering Research Center for Global Land Remote Sensing Products (Grant
No. OF202216), and the National Natural Science Foundation of China (Grant No. 41671412).

Data Availability Statement: Our research data are from relevant open data websites, which can be
obtained according to the links listed in our references.

Acknowledgments: The authors would like to thank the high-performance computing support from
the Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University.
We would like to express deep gratitude to Zhiqing Huang and Wenxuan Bao from Beijing Normal
University for their help in manuscript editing. We are also very grateful to the anonymous reviewers
for their valuable comments and suggestions for the improvement of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations (UN). Sendai Framework for Disaster Risk Reduction 2015–2030; UN: New York, NY, USA, 2015.
2. The Sendai Framework and the SDGs. Available online: https://www.undrr.org/implementing-sendai-framework/sf-and-sdgs

(accessed on 9 March 2023).
3. Lucatello, S.; Alcántara-Ayala, I. Addressing the Interplay of the Sendai Framework with Sustainable Development Goals in Latin

America and the Caribbean: Moving Forward or Going Backwards? Disaster Prev. Manag. 2022. [CrossRef]
4. Salvacion, A.R. Measuring Spatial Accessibility of Healthcare Facilities in Marinduque, Philippines. ISPRS Int. J. Geo-Inf. 2022,

11, 516. [CrossRef]
5. Gidda, S.B.; Padmavati, R.V.V.; Mulongoy, J. Sustainable Seas: Overdue SDG Target Could Be Met This Year. Nature 2022, 605, 619.

[CrossRef]
6. UN General Assembly (UNGA). Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology

Relating to Disaster Risk Eduction; UNGA: New York, NY, USA, 2016.
7. United Nations for Disaster Risk Reduction (UNISDR). Technical Guidance for Monitoring and Reporting on Progress in Achieving the

Global Targets of the Sendai Framework for Disaster Risk Reduction; UNISDR: New York, NY, USA, 2017.
8. Zaidi, R.Z. Beyond the Sendai Indicators: Application of a Cascading Risk Lens for the Improvement of Loss Data Indicators for

Slow-Onset Hazards and Small-Scale Disasters. Int. J. Disaster Risk Reduct. 2018, 30, 306–314. [CrossRef]
9. Ciullo, A.; Strobl, E.; Meiler, S.; Martius, O.; Bresch, D.N. Increasing Countries’ Financial Resilience through Global Catastrophe

Risk Pooling. Nat. Commun. 2023, 14, 922. [CrossRef] [PubMed]
10. United Nations (UN). Sendai Framework Data Readiness Review 2017—Global Summary Report; UN: New York, NY, USA, 2017.
11. Feng, X.; Merow, C.; Liu, Z.; Park, D.S.; Roehrdanz, P.R.; Maitner, B.; Newman, E.A.; Boyle, B.L.; Lien, A.; Burger, J.R. How

Deregulation, Drought and Increasing Fire Impact Amazonian Biodiversity. Nature 2021, 597, 516–521. [CrossRef] [PubMed]

https://www.undrr.org/implementing-sendai-framework/sf-and-sdgs
https://doi.org/10.1108/DPM-07-2022-0152
https://doi.org/10.3390/ijgi11100516
https://doi.org/10.1038/d41586-022-01415-6
https://doi.org/10.1016/j.ijdrr.2018.03.022
https://doi.org/10.1038/s41467-023-36539-4
https://www.ncbi.nlm.nih.gov/pubmed/36808160
https://doi.org/10.1038/s41586-021-03876-7
https://www.ncbi.nlm.nih.gov/pubmed/34471291


ISPRS Int. J. Geo-Inf. 2023, 12, 232 19 of 20

12. DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and Robust Monitoring of Flood Events Using
Sentinel-1 and Landsat Data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [CrossRef]

13. Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite Imaging
Reveals Increased Proportion of Population Exposed to Floods. Nature 2021, 596, 80–86. [CrossRef]

14. Wang, L.; Chang, M.; Le, J.; Xiang, L.; Ni, Z. Two Multi-Temporal Datasets to Track Debris Flow after the 2008 Wenchuan
Earthquake. Sci. Data 2022, 9, 525. [CrossRef]

15. Koshimura, S.; Moya, L.; Mas, E.; Bai, Y. Tsunami Damage Detection with Remote Sensing: A Review. Geosciences 2020, 10, 177.
[CrossRef]

16. Virtriana, R.; Harto, A.B.; Atmaja, F.W.; Meilano, I.; Fauzan, K.N.; Anggraini, T.S.; Ihsan, K.T.N.; Mustika, F.C.; Suminar, W.
Machine Learning Remote Sensing Using the Random Forest Classifier to Detect the Building Damage Caused by the Anak
Krakatau Volcano Tsunami. Geomat. Nat. Hazards Risk 2023, 14, 28–51. [CrossRef]

17. Maly, E.; Suppasri, A. The Sendai Framework for Disaster Risk Reduction at Five: Lessons from the 2011 Great East Japan
Earthquake and Tsunami. Int. J. Disaster Risk Sci. 2020, 11, 167–178. [CrossRef]

18. Chmutina, K.; von Meding, J.; Sandoval, V.; Boyland, M.; Forino, G.; Cheek, W.; Williams, D.A.; Gonzalez-Muzzio, C.; Tomassi, I.;
Páez, H.; et al. What We Measure Matters: The Case of the Missing Development Data in Sendai Framework for Disaster Risk
Reduction Monitoring. Int. J. Disaster Risk Sci. 2021, 12, 779–789. [CrossRef]

19. Fauzi, A.I.; Azizah, N.; Yati, E.; Atmojo, A.T.; Rohman, A.; Putra, R.; Rahadianto, M.A.E.; Ramadhanti, D.; Ardani, N.H.; Robbani,
B.F. Potential Loss of Ecosystem Service Value Due to Vessel Activity Expansion in Indonesian Marine Protected Areas. ISPRS Int.
J. Geo-Inf. 2023, 12, 75. [CrossRef]

20. GEO Community Activity—Earth Observation and Copernicus in Support of Sendai Monitoring. Available online: https:
//www.earthobservations.org/documents/gwp20_22/EO4SENDAI-MONITORING.pdf (accessed on 27 March 2023).

21. ESCAP. Sharing Space-Based Information: Procedural Guidelines for Disaster Emergency Response in ASEAN Countries; ESCAP: Bangkok,
Thailand, 2017.

22. Asian and Pacific Centre for the Development of Disaster Information Management (UNESCAP-APDIM). Guideline on Moni-
toring and Reporting the Impact of Sand and Dust Storms through the Sendai Framework Monitoring; UNESCAP-APDIM: Bangkok,
Thailand, 2020.

23. Masó, J.; Serral, I.; Domingo-Marimon, C.; Zabala, A. Earth Observations for Sustainable Development Goals Monitoring Based
on Essential Variables and Driver-Pressure-State-Impact-Response Indicators. Int. J. Digit. Earth 2020, 13, 217–235. [CrossRef]

24. Urrutia II, J.M.; Scheffczyk, K.; Riembauer, G.; Mendoza, J.; Yanez, D.; Jímenez, S.; Ramírez, A.; Acosta, M.; Argüello, J.; Huerta, B.
A Validated Geospatial Model Approach for Monitoring Progress of the Sendai Framework: The Example of People Affected in
Agriculture Due to Flooding in Ecuador. Prog. Disaster Sci. 2022, 15, 100233. [CrossRef]

25. Ghaffarian, S.; Emtehani, S. Monitoring Urban Deprived Areas with Remote Sensing and Machine Learning in Case of Disaster
Recovery. Climate 2021, 9, 58. [CrossRef]

26. Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth Observation in Service of the 2030 Agenda for Sustainable
Development. Geo-Spat. Inf. Sci. 2017, 20, 77–96. [CrossRef]

27. Giuliani, G.; Egger, E.; Italiano, J.; Poussin, C.; Richard, J.-P.; Chatenoux, B. Essential Variables for Environmental Monitoring:
What Are the Possible Contributions of Earth Observation Data Cubes? Data 2020, 5, 100. [CrossRef]

28. Lehmann, A.; Mazzetti, P.; Santoro, M.; Nativi, S.; Maso, J.; Serral, I.; Spengler, D.; Niamir, A.; Lacroix, P.; Ambrosone, M. Essential
Earth Observation Variables for High-Level Multi-Scale Indicators and Policies. Environ. Sci. Policy 2022, 131, 105–117. [CrossRef]

29. Lehmann, A.; Masò, J.; Nativi, S.; Giuliani, G. Towards Integrated Essential Variables for Sustainability. Int. J. Digit. Earth 2020, 13,
158–165. [CrossRef]

30. Andries, A.; Morse, S.; Murphy, R.; Lynch, J.; Woolliams, E.; Fonweban, J. Translation of Earth Observation Data into Sustainable
Development Indicators: An Analytical Framework. Sustain. Dev. 2019, 27, 366–376. [CrossRef]

31. Allen, C.; Smith, M.; Rabiee, M.; Dahmm, H. A Review of Scientific Advancements in Datasets Derived from Big Data for
Monitoring the Sustainable Development Goals. Sustain. Sci. 2021, 16, 1701–1716. [CrossRef]

32. Shi, P. Disaster Risk Science; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9811366896.
33. Cui, S.; Yin, Y.; Wang, D.; Li, Z.; Wang, Y. A Stacking-Based Ensemble Learning Method for Earthquake Casualty Prediction. Appl.

Soft Comput. 2020, 101, 107038. [CrossRef]
34. Li, B.; Gong, A.; Zeng, T.; Bao, W.; Xu, C.; Huang, Z. A Zoning Earthquake Casualty Prediction Model Based on Machine Learning.

Remote Sens. 2021, 14, 30. [CrossRef]
35. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial

Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
36. Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, C.O. Meeting Earth Observation Requirements for Global Agricultural

Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing
Missions. Remote Sens. 2015, 7, 1482–1503. [CrossRef]

37. Helleis, M.; Wieland, M.; Krullikowski, C.; Martinis, S.; Plank, S. Sentinel-1-Based Water and Flood Mapping: Benchmarking
Convolutional Neural Networks against an Operational Rule-Based Processing Chain. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2022, 15, 2023–2036. [CrossRef]

https://doi.org/10.1016/j.rse.2020.111664
https://doi.org/10.1038/s41586-021-03695-w
https://doi.org/10.1038/s41597-022-01658-y
https://doi.org/10.3390/geosciences10050177
https://doi.org/10.1080/19475705.2022.2147455
https://doi.org/10.1007/s13753-020-00268-9
https://doi.org/10.1007/s13753-021-00382-2
https://doi.org/10.3390/ijgi12020075
https://www.earthobservations.org/documents/gwp20_22/EO4SENDAI-MONITORING.pdf
https://www.earthobservations.org/documents/gwp20_22/EO4SENDAI-MONITORING.pdf
https://doi.org/10.1080/17538947.2019.1576787
https://doi.org/10.1016/j.pdisas.2022.100233
https://doi.org/10.3390/cli9040058
https://doi.org/10.1080/10095020.2017.1333230
https://doi.org/10.3390/data5040100
https://doi.org/10.1016/j.envsci.2021.12.024
https://doi.org/10.1080/17538947.2019.1636490
https://doi.org/10.1002/sd.1908
https://doi.org/10.1007/s11625-021-00982-3
https://doi.org/10.1016/j.asoc.2020.107038
https://doi.org/10.3390/rs14010030
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.3390/rs70201482
https://doi.org/10.1109/JSTARS.2022.3152127


ISPRS Int. J. Geo-Inf. 2023, 12, 232 20 of 20

38. Lu, X.; Yu, H.; Yang, X.; Li, X. Estimating Tropical Cyclone Size in the Northwestern Pacific from Geostationary Satellite Infrared
Images. Remote Sens. 2017, 9, 728. [CrossRef]

39. Fang, W.; Guo, C.; Han, Y.; Qing, R. Impact of Tropical Cyclone Avoidance on Fishing Vessel Activity over Coastal China Based
on Automatic Identification System Data during 2013–2018. Int. J. Disaster Risk Sci. 2022, 13, 561–576. [CrossRef]

40. Li, B.; Gong, A.; Chen, Z.; Pan, X.; Li, L.; Li, J.; Bao, W. An Object-Oriented Method for Extracting Single-Object Aquaculture
Ponds from 10 m Resolution Sentinel-2 Images on Google Earth Engine. Remote Sens. 2023, 15, 856. [CrossRef]

41. Charrua, A.B.; Padmanaban, R.; Cabral, P.; Bandeira, S.; Romeiras, M.M. Impacts of the Tropical Cyclone Idai in Mozambique: A
Multi-Temporal Landsat Satellite Imagery Analysis. Remote Sens. 2021, 13, 201. [CrossRef]

42. Wang, Z.; Wei, C.; Liu, X.; Zhu, L.; Yang, Q.; Wang, Q.; Zhang, Q.; Meng, Y. Object-Based Change Detection for Vegetation
Disturbance and Recovery Using Landsat Time Series. GIScience Remote Sens. 2022, 59, 1706–1721. [CrossRef]

43. Handwerger, A.L.; Jones, S.Y.; Huang, M.H.; Amatya, P.; Kerner, H.R.; Kirschbaum, D.B. Rapid Landslide Identification Using
Synthetic Aperture Radar Amplitude Change Detection on the Google Earth Engine. Nat. Hazards Earth Syst. Sci. 2020, 2020, 1–24.
[CrossRef]

44. Malmgren-Hansen, D.; Sohnesen, T.; Fisker, P.; Baez, J. Sentinel-1 Change Detection Analysis for Cyclone Damage Assessment in
Urban Environments. Remote Sens. 2020, 12, 2409. [CrossRef]

45. Gruenhagen, L.; Juergens, C. Multitemporal Change Detection Analysis in an Urbanized Environment Based upon Sentinel-1
Data. Remote Sens. 2022, 14, 1043. [CrossRef]

46. Hildmann, H.; Kovacs, E. Using Unmanned Aerial Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for Disaster Response,
Civil Security and Public Safety. Drones 2019, 3, 59. [CrossRef]

47. Wan, Y.; Zhong, Y.; Ma, A.; Zhang, L. An Accurate UAV 3-D Path Planning Method for Disaster Emergency Response Based on
an Improved Multiobjective Swarm Intelligence Algorithm. IEEE Trans. Cybern. 2022, 53, 2658–2671. [CrossRef]

48. Wang, Y.; Su, Z.; Xu, Q.; Li, R.; Luan, T.H.; Wang, P. A Secure and Intelligent Data Sharing Scheme for UAV-Assisted Disaster
Rescue. IEEEACM Trans. Netw. 2023, 1–17. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs9070728
https://doi.org/10.1007/s13753-022-00428-z
https://doi.org/10.3390/rs15030856
https://doi.org/10.3390/rs13020201
https://doi.org/10.1080/15481603.2022.2129870
https://doi.org/10.5194/nhess-2020-315
https://doi.org/10.3390/rs12152409
https://doi.org/10.3390/rs14041043
https://doi.org/10.3390/drones3030059
https://doi.org/10.1109/TCYB.2022.3170580
https://doi.org/10.1109/TNET.2022.3226458

	Introduction 
	Methods 
	Indicator Layer: SFDRR Indicators Supported by EO 
	EV Layer: Decoupling and Recouping SFDRR Indicators 
	EO Layer: Mapping the Links between the Requirements of EVs and the Capabilities of EO 

	Results 
	SFDRR Indicators Supported by EO 
	Links between EVs and SFDRR Indicators 
	Mapping Relationship between EVs and EO 
	Matching EO to SFDRR 
	Ocean-Related Class 
	Water-Related Class 
	Vegetarian-Related Class 
	Construction-Related Class 


	Discussion 
	EO Data: Space-Air Platform Collaboration 
	EO Methods: Available for Various Disaster Contexts 

	Conclusions 
	References

