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Abstract: Crime is always one of the most important social problems, and it poses a great threat to
public security and people. Accurate crime prediction can help the government, police, and citizens
to carry out effective crime prevention measures. In this paper, the research on crime prediction is
systematically reviewed from a variety of temporal and spatial perspectives. We describe the current
state of crime prediction research from four perspectives (prediction content, crime types, methods,
and evaluation) and focus on the prediction methods. According to various temporal and spatial
scales, temporal crime prediction is divided into short-term prediction, medium-term prediction, and
long-term prediction, and spatial crime prediction is divided into micro-, meso-, and macro-level
prediction. Spatio-temporal crime prediction classification can be a permutation of temporal and
spatial crime prediction classifications. A variety of crime prediction methods and evaluation metrics
are also summarized, and different prediction methods and models are compared and evaluated.
After sorting out the literature, it was found that there are still many limitations in the current
research: (i) data sparsity is difficult to deal with effectively; (ii) the practicality, interpretability, and
transparency of predictive models are insufficient; (iii) the evaluation system is relatively simple; and
(iv) the research on decision-making application is lacking. In this regard, the following suggestions
are proposed to solve the above problems: (i) the use of transformer learning technology to deal
with sparse data; (ii) the introduction of model interpretation methods, such as Shapley additive
explanations (SHAPs), to improve the interpretability of the models; (iii) the establishment of a
set of standard evaluation systems for crime prediction at different scales to standardize data use
and evaluation metrics; and (iv) the integration of reinforcement learning to achieve more accurate
prediction while promoting the transformation of the application results.

Keywords: crime; public security; multi-scale; spatio-temporal; crime prediction

1. Introduction

Crime is a continuous, dynamic, and complex process that is complexly related to
time, space, and environment [1]. Most crimes, such as theft and robbery, are deeply
connected to their spatial and temporal distribution. It has been proven that the spatial
and temporal distribution of crime is not random, but rather exhibits a certain regularity
and aggregation [2,3]. The places where the crimes occur are constantly concentrated,
eventually forming “crime hotspots” [4,5]. Therefore, this makes crime prediction possible.
Accurate and effective crime prediction has become an indispensable means of curbing and
combating crime. It not only reduces the occurrence of crime, diminishes economic losses,
and improves public safety, it also helps governments and police agencies to reasonably
deploy police resources and improve allocation efficiency.

Crime prediction is mainly based on historical crime and environmental, socio-
economic, and network social data, from which crime-related features are mined to predict
the occurrence of crime in a certain spatial and temporal range in the future. This enables
police departments to proactively allocate police resources and implement targeted preven-
tion and control measures for a specific time and location, such as deploying scientific and
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reasonable patrol routes, determining the optimal patrol time, calculating the necessary
number of patrols, and creating timely arrest plans. Based on this, many scholars have
contributed substantially to the fields of crime prediction, crime hotspot mapping, and
crime simulation, resulting in significant progress [6–8].

This paper focuses on crime prediction methods by analyzing the latest research on
temporal and spatial crime prediction. The main work is as follows.

1. Studies related to crime prediction are systematically reviewed from various temporal
and spatial perspectives.

2. Common temporal and spatial crime prediction methods and evaluation metrics are
summarized.

3. The limitations of the current study are reviewed, and reasonable suggestions for
future directions of exploration are provided.

The remaining structure of this review is organized as follows. In Section 2, the
research methodology and an overview of the relevant studies are introduced. Section 3
introduces the common crime prediction methods and evaluation metrics. Sections 4–6
describe in detail the multi-scale temporal, spatial, and spatio-temporal crime prediction
studies. Among them, temporal crime prediction is divided into short-term, medium-term,
and long-term prediction; spatial crime prediction is divided into micro-, meso-, and macro-
level prediction; and spatio-temporal crime prediction classification as a permutation of
temporal and spatial crime prediction classifications, as shown in Figure 1. The last section
concludes the paper and provides some suggestions for future work.
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Figure 1. Multi-scale spatio-temporal crime prediction.

2. Materials and Methods
2.1. Publications Sources

This study followed the methods of collecting and screening literature that are in line
with the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
guidelines [9] and conducted searches and screening of publications related to “spatio-
temporal crime prediction” from 2013 to 2022.
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2.1.1. Publications Search

To begin with, we searched for publications using the keywords (crime prediction,
predict crime, crime forecasting, forecasting crime, spatio-temporal crime prediction, spatial
crime prediction, and temporal crime prediction) in the bibliographic databases “Web of
Science (WOS)”, “Institute of Electrical and Electronics Engineers (IEEE) Xplore”, “Associa-
tion for Computing Machinery (ACM)”, and “China National Knowledge Internet (CNKI)”.
A total of 12,579 publications were retrieved, including 7517 from the “WOS” database,
1087 from the “IEEE” database, 3723 from the “ACM” database, and 252 from the “CNKI”
database. The latest search was conducted on 28 April 2023.

2.1.2. Publications Screening

In the next step, we removed the publications that that were duplicated, outside the
scope of the publication types (conference, journal, and thesis), or without access and
downloading permission. We then screened the remaining literature by reading the titles,
abstracts, main bodies, and results to exclude those that were irrelevant to the topic, of poor
quality, or of limited reference value. After screening, 79 publications remained, including
63 English-language publications and 16 Chinese-language publications.

2.2. Research Overview

After reading, summarizing, and organizing the selected publications, we sorted
out the research on multiple spatio-temporal crime prediction methods according to four
aspects: research content, prediction methods, types of crimes involved, and evaluation
metrics. The overall profile of the crime prediction research is as follows.

2.2.1. Research Content

Among the 79 selected publications, there were 7 review publications, 28 publications
on temporal crime prediction, 8 publications on spatial crime prediction, and 36 publications
on spatio-temporal crime prediction, as shown in Figure 2. Temporal crime prediction
refers to predicting crime trends in a certain area over a future period, without considering
crime hotspots or spatial distribution. Relatively speaking, the number of spatial crime
prediction publications is small, which is due to the fact that most spatial crime prediction
research generally combines specific time and crime types for analysis and prediction,
which is then transformed into spatio-temporal crime prediction research.
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2.2.2. Prediction Methods

In terms of prediction methods, the most frequently used models and methods include
neural network models (26 publications), ensemble learning models (24 publications, except
for the random forest model), random forest models (19 publications), and various crime
prediction frameworks (15 publications), as shown in Figure 3. Among them, ensemble,
neural network, random forest, and autoregressive integrated moving average (ARIMA)
models are commonly used for temporal crime prediction. Clustering, kernel density
estimation (KDE), and risk terrain modeling (RTM) are commonly used for spatial crime
prediction, and neural network, ensemble, and random forest models and various predic-
tion frameworks are commonly used for spatio-temporal crime prediction. Additionally,
the commonly used models for short-term crime prediction include the RF and LR models,
as well as various crime prediction frameworks. Neural network models are often used
for medium-term prediction. For long-term prediction, ARIMA and ensemble models are
commonly used.

ISPRS Int. J. Geo‐Inf. 2023, 12, x FOR PEER REVIEW  4  of  30 
 

 

 

Figure 2. Distribution of crime prediction publications. 

2.2.2. Prediction Methods 

In terms of prediction methods, the most frequently used models and methods in‐

clude neural network models  (26 publications), ensemble  learning models  (24 publica‐

tions, except for the    random forest model), random forest models (19 publications), and 

various  crime prediction  frameworks  (15 publications),  as  shown  in Figure  3. Among 

them, ensemble, neural network, random forest, and autoregressive  integrated moving 

average (ARIMA) models are commonly used for temporal crime prediction. Clustering, 

kernel density estimation (KDE), and risk terrain modeling (RTM) are commonly used for 

spatial crime prediction, and neural network, ensemble, and random forest models and 

various prediction frameworks are commonly used for spatio‐temporal crime prediction. 

Additionally, the commonly used models for short‐term crime prediction include the RF 

and LR models, as well as various crime prediction frameworks. Neural network models 

are often used for medium‐term prediction. For long‐term prediction, ARIMA and ensem‐

ble models are commonly used. 

 

Figure 3. Distribution of crime prediction methods. Figure 3. Distribution of crime prediction methods.

2.2.3. Types of Crime Predicted

As for the types of crimes predicted, common types include burglary (34 publications),
theft (32 publications), assault (26 publications), robbery (23 publications), motor vehicle
theft (8 publications), and homicide (8 publications), among others, as shown in Figure 4.
On the one hand, there is a large quantity of crime data available for research purposes,
which makes it easier to conduct crime prediction research. On the other hand, these types
of crimes are closely related to daily life, making the related research more practical and
meaningful. In addition, neural networks, ensemble models, and various frameworks
are commonly used for assault and battery crime prediction. Neural networks, ensemble
models, various frameworks, and ARIMA models are commonly used for theft crime
prediction. Various frameworks, neural networks, ensemble learning, and RF models are
commonly used for burglary crime prediction.
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2.2.4. Evaluation Metrics

Evaluation metrics are the most important means of assessing model performance.
From the publications, we compiled the top 5 evaluation metrics used in crime prediction
research, including the root mean square error (RMSE, 19 publications), predictive accu-
racy index (PAI, 16 publications), mean absolute error (MAE, 9 publications), accuracy
(9 publications), and area under curve (AUC, 9 publications), as shown in Figure 5. Among
them, the RMSE, the mean square error (MSE) and accuracy are commonly used evaluation
metrics for temporal crime prediction research. The PAI is commonly used for spatial
crime prediction research, and RMSE and the PAI are commonly used for spatio-temporal
crime prediction research. Therefore, in future crime research, RMSE can be selected as the
main evaluation metric for temporal crime prediction, while the PAI can be selected as the
main evaluation metric for spatial crime prediction. This is significant for comparing the
prediction performance of various crime prediction methods.

In summary, we can describe the overall trend of existing crime prediction research
in terms of prediction content, crime types, methods, and evaluation. Regarding research
content, an increasing number of studies are focusing on spatio-temporal crime prediction.
The types of crime predicted are mostly property crime (theft, burglary, and robbery) and
violent crime (assault, battery, and homicide). As for prediction methods, increasingly
complex ensemble models or frameworks designed to capture spatio-temporal characteris-
tics of crime are being developed and used. In addition, while random forest models are
also used frequently, this is partly because the random forest model is one of the effective
machine learning models. With the development of machine learning, as many models and
frameworks with better performance are being developed, random forest models are now
more commonly used as baseline models. In terms of model evaluation, temporal crime
prediction research generally uses RMSE and MSE to evaluate the models, while spatial
crime prediction research commonly uses the PAI as an evaluation metric.
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3. Crime Prediction Methods and Evaluation Metrics
3.1. Crime Prediction Methods

The methods commonly used for crime prediction can be divided into three categories:
machine learning (ML), crime mapping, and other methods.

3.1.1. Machine Learning

In the past two decades, ML has made great strides in the fields of artificial intelligence
(AI), biology, chemistry, materials science, agriculture, architecture, meteorology, natural
language processing (NLP), and computer vision [10,11]. From face recognition, spam
classification, and predicting house prices to driverless vehicles, ML is closely related to our
daily lives. ML is a method of continuously training models with data so that the models
grasp the potential laws embedded in the data, and then, these trained models can be used
to classify, cluster, or predict new data, as shown in Figure 6. ML is broadly classified into
supervised learning, unsupervised learning, and semi-supervised learning [12]. Among
them, supervised learning mainly deals with classification and regression problems, while
unsupervised learning focuses on solving problems such as clustering and association
analysis. Semi-supervised learning is between supervised learning and unsupervised
learning, and various goals such as classification, regression, and dimensionality reduction
can be achieved through semi-supervised learning. Currently, the commonly used methods
for crime prediction include LR, RF, ensemble algorithms, and neural networks.
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(1) Logistic Regression

LR is a classic and widely used classification algorithm. When using LR to deal with
a binary classification problem, we can classify the dependent variable into positive and
negative classifications, which are represented by 1 and 0, respectively. When the predicted
value is higher than zero, the real value is taken as 1 and is judged to be a positive case.
Conversely, the real value is taken as 0 and is judged to be a negative case. Additionally, LR
needs to be classified by a sigmoid function. The function is used to map any independent
variable to {−1,+1}.
(2) Random Forest

RF is a model based on the bagging algorithm and is also one of the most used
ensemble algorithms for classification and regression. RF can be regarded as a collection of
multiple decision trees that eventually form a forest. RF uses this forest to make predictions
on new data and then calculates the number of votes for each prediction and uses the most
voted for category as the final decision. As a result, RF has a higher prediction accuracy
than individual decision tree models or other classification models. Moreover, RF can easily
handle large amounts of high-dimensional data and is resistant to interference and simple
to implement.

(3) Ensemble Model

Regarding the problem of the poor accuracy of the decision tree model in dealing with
complex data, ensemble algorithms can be adopted to improve the performance, such as
bagging [13], gradient boosting (GB) [14], eXtreme gradient boosting (XGBoost) [15], and
adaptive boost (AdaBoost).

(4) Neural Networks

Neural networks are computational models that imitate the human neural system and
are a crucial part of ML. They contain interconnected nodes mimicking human nerves that
process inputs, recognize patterns, and classify tasks. They have been increasingly applied
to crime prediction due to their high learning ability, good applicability and portability, and
more accurate prediction results [16]. The main neural networks commonly used for crime
prediction are the convolutional neural network (CNN), deep neural network (DNN) [17],
recurrent neural network (RNN), graph convolution network (GCN), and long short-term
memory (LSTM) [18].

3.1.2. Crime Mapping

Crime mapping has been widely used in police work for the past few decades. On
the basis of identifying crime patterns and hotspots, utilizing crime mapping technology
can predict potential locations for the occurrence of crime within a certain time and space
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range in the future and thus help police agencies to take preventive measures against crime
in advance. Commonly used crime hotspot mapping methods are KDE and RTM [19].

(1) KDE

KDE is a method used to visualize crime hotspots and predict crime. It works by
generating a continuous, smooth surface map on a grid, which shows how crime density
varies across the study area using all the crime data within the bandwidth (search radius).
KDE can also be used to measure building density, predict stock risk, and detect crime
hotspots [20]. Moreover, parameters such as grid cell size and bandwidth have a significant
impact on the accuracy of KDE [21].

(2) RTM

RTM is a geographic risk assessment method that is effective in identifying and
predicting potential risk factors and their spatial impacts based on the characteristics of
the landscape; it can then estimate the probability of crime occurring in the area at a micro-
level [22]. By identifying and predicting crime locations, RTM can assist police agencies in
developing targeted policing strategies and allocating limited policing resources to areas
with a relatively higher risk. This approach can help to reduce the risk and occurrence of
crime in the vicinity. RTM has been widely applied to a variety of crime types and has
consistently achieved good results [23].

The theoretical background of RTM is mainly derived from environmental criminol-
ogy [24]. Typically, there are many potential risk factors within an area, such as bars,
stations, and grocery stores. RTM identifies these potential risk factors and assesses the
crime risk in the area over a spatial and temporal scale, predicting where crime is likely
to occur. Multiple landscape risk map layers are created and overlaid in a geographic
information system (GIS) to generate a comprehensive risk terrain map. Rutgers University
has developed risk terrain modeling diagnostic (RTMDx) software that can be used to
diagnose and identify potential risk factors in high-crime areas [25]. In addition, RTM tech-
nology can be combined with KDE and combined analysis of case configurations (CACC)
to significantly improve the accuracy and interpretability of the prediction [26].

3.1.3. Other Prediction Methods

In addition to the methods mentioned above, there are many models and techniques
that have been utilized in crime prediction research and have achieved positive prediction
results, such as ARIMA [27], least absolute shrinkage and selection operator (LASSO) [28],
and agent-based modeling (ABM) [29].

(1) ARIMA

ARIMA is commonly used for time series prediction, such as predicting the spread of
COVID-19 on a global scale [30,31]. The ARIMA model consists of three components—auto
regressive (AR), I, and moving average (MA), which are expressed as ARIMA (p, d, q),
where p is the number of AR terms, d is the number of integrated terms, and q is the
number of MA terms. Therefore, the ARIMA model can be regarded as a combination of
the AR model and the MA model.

(2) LASSO

LASSO regression is based on the least squares method, with an L1 regularization to
prevent model overfitting and to improve generalization ability. LASSO regression has
some advantages in estimating sparse models, and by making some indicator coefficients
zero, the interpretability of the model can be improved. It is commonly used for screening
variables and for risk analysis.

(3) ABM

ABM is a modeling and simulation technique based on the simulation of individual
behaviors. In ABM, each individual (agent) in the system is considered an autonomous
entity with its own behavioral and decision-making rules which operates and interacts
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within its surrounding environment. By simulating each agent’s execution of these rules
and observing their resulting behavior, ABM can be used to study many real-world issues,
such as crime simulation. ABM can help us better understand and predict criminal behavior
and can assist police and policymakers in devising better strategies and tools to fight and
reduce crime.

3.2. Evaluation Metrics

Evaluating the effectiveness of the above models is a very important part of crime
prediction research, and several metrics are typically used to measure the performance of
different models.

3.2.1. Hit Rate

Hit rate is the simplest indicator to measure the performance of the crime predic-
tion model.

hit rate =
n
N

(1)

where n denotes the number of predicted crimes in the hotspot area, and N denotes the
total number of crimes in the prediction period.

3.2.2. PAI and PEI

The PAI is the hit rate of the predicted crime area relative to the whole study area [32].
The PAI is widely used to compare the accuracy and precision of KDE and RTM.

PAI =
( n

N

)
/
( a

A

)
(2)

where a denotes the predicted crime hotspot area, and A denotes the total area of the
study area.

The predictive efficiency index (PEI) is the ratio of the actual PAI to the assumed
maximum PAI for a specific application scene.

PEI =
PAI

PAImax
(3)

3.2.3. Accuracy and F1 Score

Accuracy and the F1 score are commonly used performance measures for classification
problems in machine learning. The confusion matrix consists of positive, negative, true,
and false. Generally, a prediction category of 1 is positive; a prediction category of 0 is
negative; a correct prediction is true; and an incorrect prediction is false.

There are four types of predicted outcomes for samples—true positive (TP), true
negative (TN), false positive (FP), and false negative (FN). TP means that the sample
is positive and is predicted to be positive. FP means that the sample is negative but is
predicted to be positive. TN indicates that the sample is negative and is predicted to be
negative. FN indicates that the sample is positive but is predicted to be negative.

Accuracy indicates the proportion of samples with the correct prediction results in the
whole sample.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

The F1 score is the harmonic average of precision and recall. Moreover, the larger the
F1 score value, the better the prediction performance.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)
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F1 score = 2· Precision·Recall
Recision + Recall

(7)

where Precision denotes the proportion of samples predicted to be positive relative to all
the positive samples, and Recall denotes the proportion of samples predicted to be positive
relative to all the positive cases.

3.2.4. ROC and AUC

In the confusion matrix, there exist two critical indicators—true positive rate (TPR)
and false positive rate (FPR). TPR measures the proportion of actual positives that are
correctly identified by the model, while FPR measures the proportion of actual negatives
that are incorrectly classified positive. They are a pair of contradictory performance metrics.
To create a receiver operating characteristic (ROC) curve for a given machine learning
model, one can plot the corresponding FPR and TPR at every possible threshold value on a
two-dimensional coordinate plane. Connecting these points with a line produces the ROC
curve, with FPR as the horizontal axis and TPR as the vertical axis. The ROC curve is a
valuable tool for evaluating and comparing the accuracy of different models.

TPR =
TP

TP + FN
(8)

FPR =
FN

TN + FP
(9)

The AUC is the area under the ROC curve enclosed by the coordinate axis. Similarly,
larger the AUC value, the better the prediction performance.

3.2.5. MSE and RMSE

The MSE and RMSE evaluate the performance of the model by measuring the degree
of difference between the predicted and true values. In addition, similar evaluation metrics
include MAE, mean relative error (MRE), and mean absolute percentage error (MAPE). The
smaller the value of these indicators, the more stable the output of the model and the better
its prediction performance.

MSE =
1
n ∑n

i=1 (ŷi − yi)
2 (10)

RMSE =

√
1
n ∑n

i=1 (ŷi − yi)
2 (11)

MAE =
1
n ∑n

i=1

∣∣∣∣ŷi − yi

∣∣∣∣ (12)

MAPE =
1
n ∑n

i=1
|ŷi − yi|

yi
(13)

where n is the number of samples, ŷi is the predicted target value, and yi is the true value.

3.2.6. R2 and Adjusted R2

The R2 is a simple, easy-to-calculate, and intuitive correlation metric, which is generally
used to evaluate the deviation between the predicted and true values of a regression model.
The value of R2 ranges from 0 to 1. The closer the value is to 1, the better the fit of the model.

R2 = 1− ∑ (ŷi − yi)
2

∑(yi − y)2 (14)
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where n denotes the number of samples, ŷi denotes the predicted value, yi denotes the true
value, and y denotes the mean value.

When the ratio of features number p to sample numbers n is more than 1:5, R2 will
overestimate the actual fit. In this case, the choice of adjusted R2 can overcome the effect of
the sample size on R2.

R2
adjsuted = 1−

(
1− R2)(n− 1)

n− p− 1
(15)

4. Temporal Crime Prediction

Temporal crime prediction can be classified into three categories based on different
time scales: short-term prediction, medium-term prediction, and long-term prediction.
Short-term prediction is based on hours, days, and weeks, while medium-term prediction
is based on months and quarters. Long-term prediction is typically based on years. Crime
prediction techniques can be further classified based on the elements used for prediction.
These methods may rely solely on crime data or may incorporate external data as well. A
diagram illustrating the temporal crime prediction process is shown in Figure 7.
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4.1. Temporal Crime Prediction Based on Crime Data Only

Police agencies have collected a large number of criminal records and stored them
in crime databases. These data serve as the foundation for crime prediction studies,
which typically include temporal information (time of crime, date of crime, etc.), spatial
information (geographic location of crime, longitude, and latitude), and crime information
(type of crime, number of crime incidents, etc.), as listed in Table 1. Analyzing these
data helps in understanding the current crime situation, identifying high crime areas and
patterns, and enabling targeted deployment of police resources. By adopting appropriate
strategies to prevent and combat crimes in the future, crime prediction methods based on
crime data can be used in short-term, medium-term, and long-term prediction analyses.
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Table 1. Details of the crime dataset.

Dataset Variable

Crime

Number of crime incidents
Number of primary crimes

Crime type
Criminal ID

Criminal acquaintances
Date
Time
Area

Geographical location (longitude and latitude)

4.1.1. Short-Term Prediction

The literature presented a method based on SEPP and Green’s function, known as the
data driven Green’s function (DDGF) model. This method can be used to predict the occur-
rence of ten different types of crime in Chicago for up to one week in advance [33]. In most
cases, the DDGF method provided better predictions than the expectation-maximization
(EM), prognostics and health management (PHM), and KDE methods.

4.1.2. Medium-Term and Long-Term Prediction

The main models for medium-term and long-term prediction are the STEP model,
ARIMA model, ST-AR model, contextually biased matrix factorization (CBMF) model, and
the spatial beta convergence model.

(1) STEP

The literature presented the genetic fuzzy system STEP model, which was used to
predict the crime rate in Tehran, Iran, over the following ten weeks [34]. The model
was evaluated using both the simulated and real data of four crime types in Tehran.
The method showed the best prediction performance when compared to four hotspot
mapping techniques.

(2) ARIMA

The literature used the ARIMA model to predict 14 categories of crime in England and
Wales during the COVID-19 pandemic [35]. The study showed that the 12 categories of
crime were lower than expected, except for anti-social behavior and drug offenses, which
had higher than predicted actual values. This is mainly because the COVID-19 pandemic
severely affected people’s mobility and social interactions, resulting in a dramatic change
in crime over time. However, as restrictions were eased the crime rates began to gradually
approach the expected levels. In another study, the literature utilized both a time series
model (ARIMA) and a machine learning model (ANN) to predict the number of crimes in
India over the following five years [36]. The modified ANN model had the best prediction
accuracy with sufficient data. Conversely, the modified ARIMA model was the best.

(3) ST-AR

The literature used the ST-AR model to predict violent crime and property crime rates
over 15 years (1955–2009) for many countries and regions [37]. The results showed that
the ST-AR model had the lowest RMSE compared to the other models, indicating that the
model had the best predictive performance. Moreover, the model had a better prediction
effect on property crime compared to violent crime.

(4) CBMF

The literature transformed crime prediction into a recommendation problem and used
the CBMF model to predict theft and assault in San Francisco [38]. The method was more
efficient than traditional crime prediction methods, with 90.7% of burglaries and 79.6% of
attacks captured using only 50% of the man-hours.
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(5) Spatial Beta Convergence

The literature presented a prediction model based on the beta convergence method [39].
The model was trained to predict homicide in 1120 inland cities of Colombia over the
following 4 years. The results showed that the MAE and RMSE of the model were 1.55 and
2.35, respectively. Compared with the other four models, the MAE and RMSE decreased by
an average of 0.33 and 0.56.

4.2. Temporal Crime Prediction Based on Crime and External Data

With the rapid development of the internet and smartphones, there are more and
more fine-grained multi-source heterogeneous data, such as census, land use, point of
interests (POIs), socio-economic, public service complaint, and meteorological data, as
listed in Table 2.

The data contain a wealth of information on the spatial and temporal dynamics of
crime and offer researchers the possibility to study the relationship between crime and
demographics [40], housing, income, unemployment [41], education [42], economy [43],
weather, climate [44], environment [45], social media [46], etc. For example, the litera-
ture studied the relationship between crime distribution and the land use data related to
Szczecin, Poland [47]. The research showed that different types of land use have different
effects on crime. Commercial buildings and dance halls tend to attract crime, while green
areas and warehouses can inhibit the occurrence of crime. The study found that violent and
property crime were strongly correlated with socio-economic factors and that racial het-
erogeneity was positively correlated with violent and property crime, while immigration,
residential stability, and higher education were inversely correlated [48]. Many studies have
shown that education level is negatively associated with crime, while unemployment has a
positive effect on crime [49]. In addition, some researchers have studied the association
of crime with social media [50], population mobility [51], air quality [52], green space [53],
temperature [55], and road and street light density [55,56]. These data have great potential
in crime analysis and prediction. Using data mining, data analytics, and other techniques,
the data can be classified, collated, and analyzed; from this analysis, key features are
extracted and input to various prediction models to determine the correlation between
these factors and crime. Compared to methods solely based on crime data, combining
crime and external data can significantly improve the accuracy of the predictions.
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Table 2. Details of the external datasets.

Dataset Variable

Demographic

Population
Age
Race

Gender
Family size

Socio-economic

Income
Education

Unemployment
Gross domestic product (GDP)

Number of rental and owned units
Number of occupied and vacant houses

Environmental

Number of bars
Number of shops
Number of hotels
Number of parks
Number of banks

Number of schools
Number of restaurants

Number of supermarkets
Number of police stations

Number of streetlight poles

Public transportation

Subway
Taxi
Bus

Train
Road

Bridge

Social media
Twitter data
News feed

Public service complaints

Noise
Heating

Illegal parking
Garbage and bulky items removal

Meteorological

Weather
Temperature
Air quality
Humidity

Wind strength
Barometric pressure

4.2.1. Short-Term Prediction

The models for short-term prediction include the localized kernel density estima-
tion (LKDE) model, neural network models, ensemble models, and the neural attentive
framework for hour-level crime prediction (NAHC).

(1) LKDE

The literature analyzed the crime distribution of two sporting events (basketball and
field hockey) and its correlation with Twitter data density [57]. They used historical crime
data as the primary variables and social media with geo-tagged information, demographics,
environment, and socio-economic data as covariates. These variables were selected as
features using an RF classifier and then input into the LKDE model to make predictions for
seven crime types on game days and non-game days, respectively. The study demonstrated
that the social media data significantly improved the performance of the model compared
with that based solely on crime data.
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(2) Neural Networks

The literature added census, weather, and public transportation data to the crime
data to predict crime counts for three crime types (violent, burglary, and drug crimes) in
Chicago and Portland using a combined CNN and RNN model [58]. In the model, the
CNN model processed spatial features, and the RNN model processed temporal features.
Firstly, Chicago and Portland were divided into multiple grid cells, each containing the
corresponding features. Secondly, the CNN model was used to process the spatial features.
Finally, the processing results and other features were input into the RNN model. On this
basis, the importance of various variables was also verified. Compared with other neural
network models, this model showed the best prediction performance, with an accuracy of
75.6% (Chicago) and 65.3% (Portland), respectively.

(3) Ensemble Model

Ensemble models have been developed in the literature to predict the number of
crimes and the level of crime risk, such the hybrid LSTM and GCN model, ST–GCN [59].
This framework consists of three modules: the spatio-temporal feature extraction, temporal
feature extraction, and attention mechanism modules. Among them, LSTM was used
for extracting temporal features; GCN was used for extracting spatial features; and self-
attention was used for integrating spatio-temporal features and increasing the weight
of important features. The model was used to predict the crime in Boston based on
crime and meteorological data. The results showed that the R2 and RMSE were 0.84 and
2.30, respectively, in predicting burglary crimes on the scale of days, and the prediction
performance was better than that of the LSTM and GCN models. The literature applied
the ST–GCN model to predict burglary [60]. Firstly, a community topology map was
constructed with each node containing crime, holiday, and weather data. Secondly, the
temporal and spatio-temporal features were extracted using the LSTM and GCN modules,
respectively. Crime change patterns and shift trends were captured using both modules.
Finally, the predicted values of the two modules were combined using the gradient boosted
decision tree (GBDT), from which the number of crimes in each community was predicted.
Using this model to predict burglary in Chicago neighborhoods, the RMSE, MAPE, and R2

were 1.03, 0.39, and 0.84, respectively; these were lower than those of the ridge regression,
LSTM, and RF models.

However, due to their “black-box” nature, ML-based crime prediction models are less
transparent and explanatory, leading to weak interpretability and reliability. To address
this limitation, an interpretable prediction model based on the XGBoost and SHAP was
proposed in the literature [61]. This model predicts public theft at the XT police station
with crime and environmental population data. The results showed that the accuracy of
the XGBoost model was 0.89 and the ROC was 0.586. Additionally, the SHAP method was
used to measure the contribution of each variable to the model to provide a reasonable
interpretation of the results. The SHAP values were positively correlated with the variable’s
contribution, indicating that non-local individuals aged 25 to 44 made a relatively large
contribution to the model.

(4) NAHC

Traditional models often struggle to capture spatio-temporal interactions between
crimes occurring at different times and places. However, using the NAHC framework can
effectively overcome this challenge and provide deeper insights into the spatio-temporal
correlation of crime, resulting in more accurate crime prediction. The literature imple-
mented hourly level crime prediction for Xiaogan City using the NAHC framework [62].
The crime situation at T + 1 can be predicted by the crime data at T and the external (POIs,
meteorology, and environment) data at T and T + 1. The results demonstrated that the MSE
of vehicle theft, assault, pickpocketing, and burglary were 0.0926, 0.0733, 0.0463, and 0.0246,
respectively, indicating the excellent performance of the method.
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4.2.2. Medium-Term Prediction

Medium-term prediction models usually include the latent Dirichlet allocation (LDA)
model, DeepCrime framework, attention-based interpretable spatio-temporal network
(AIST) framework, and integrated Laplace approximation (INLA) framework.

(1) LDA

The LDA model was used to predict crime trends in Chicago over the following
month [63]. The literature combined Twitter data and real data for 22 crime types to
validate the model. It was found that adding temporal thematic features significantly
contributed to improving the performance of the model, with an average improvement
of 15%.

(2) DeepCrime, AIST, and INLA

To better exploit crime-related spatio-temporal features, several studies presented
frameworks that aimed to improve the performance and interpretability of crime prediction
models. The literature developed DeepCrime, a deep neural network framework that
embedded a hierarchical progressive framework to automatically capture crime dynamics
over time and predict the monthly occurrence of four crime types (burglary, robbery, felony
assault, and grand larceny) [64]. The F1 score of the model was higher than many machine
learning algorithms. The literature proposed the AIST framework that captures the spatio-
temporal correlation of crime to achieve monthly or quarterly level crime prediction [65].
The model was evaluated on a real dataset of four crime types (theft, criminal damage,
battery, and narcotics) in Chicago, incorporating data such as public transportation and
POIs. The result showed that AIST outperformed half of the baseline models. The literature
designed an INLA framework for monthly level prediction of burglary in 20 neighborhoods
of Amsterdam city [66]. This was a Bayesian spatio-temporal prediction framework that
used burglary as the dependent variable of the study and land use, other crimes, and socio-
economics served as covariates. The study found that, on the one hand, the closeness of the
street network, the number of retail stores and street robberies were highly correlated with
burglary. On the other hand, the study also demonstrated that the spatial and temporal
distribution of burglary was concentrated.

4.2.3. Long-Term Prediction

Long-term prediction methods include the LASSO model, extremely randomized tree
(extra trees) model, and ensemble models.

(1) LASSO and Extra Trees

The literature explored the main factors influencing urban crime in China [67]. Homi-
cide rates and six categories of urban indicators were used as features to train the models.
Among them, the accuracy of the extra trees model (83%) was much higher than that of the
LASSO model (51%). In addition, the importance of the relevant indicators was ranked.
The results showed that the three most important factors influencing urban crime in China
were the area of living land, the number of cell phone users, and the employed population.

(2) Ensemble Model

The literature designed an instance-based transformer learning setup to address
the problem of sparse data in small cities from a cross-domain perspective [68]. They
incorporated 19 features from six different scenarios based on seasonal perspectives, such
as crime, population, socio-economics, geographic location, and street lighting; these were
used to train a GB classifier model to transform knowledge from different domains in
Toronto and Vancouver (source domain) to Halifax (target domain). On this basis, the
performance of the GB classifier, RF classifier, and other two transfer learning algorithms
(TrAdaBoost and TrReasmpling) were evaluated using the AUC. The results showed that
the GB classifier model had the best performance.

The literature utilized the RF, extra trees, and GB models for the long-term crime pre-
diction of five felony types in New York City [69]. Three models were trained with census
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features, spatial features, and temporal features extracted from geo-tagged human mobility
data. Among them, the extra trees model predicted the best performance. Furthermore,
the model using human mobility data generally made better predictions than the model
based on census data only. After introducing human mobility (socio-economics and public
transportation) data, the average MSE of the models decreased by 0.22 and the average R2

increased by 15%. The literature used an RF regression model to predict the number of
homicides in Brazil after 10 years, based on 13 indicators with 97% accuracy [70]. More-
over, the importance of urban indicators on homicide was identified, with unemployment,
illiteracy, and male population being the three most important characteristics affecting this
type of crime, while GDP was the least important one.

4.3. Limitations of Temporal Prediction Research

At present, the research on temporal crime prediction has a theoretical basis and a
wealth of methodological advancements. Methodologically, the research has progressed
from a single model to an integrated model and a deep learning framework, resulting
in significantly improved prediction performance. In terms of data, the research has
advanced from relying solely on crime data to using a combination of crime and external
data to capture crime-related spatio-temporal characteristics, thereby improving prediction
accuracy. However, current research still faces several deep-rooted problems that need to
be addressed, such as ensuring the interpretability of the models, handling imbalanced
data, and addressing ethical issues related to bias and privacy concerns.

1. Data sparsity. Despite the advancements in improving the accuracy of the models,
most prediction models are driven by data and still have difficulties in dealing with
data sparsity. Some study areas have limited crime data, making it challenging to
support crime prediction. Furthermore, as the granularity of time and space becomes
finer, the data become sparser and the amount of irrelevant information gradually
increases, leading to difficulties in modeling crime. It also exposes issues regarding
the difficulty involved in using data-driven models to accurately identify and extract
crime-related features. Adding external features may result in reduced correlation
between data and crime or even the phenomenon of the “Curse of Dimensionality”,
where the model cannot converge quickly in a short time.

2. Insufficient practicality, interpretability, and transparency of the model. ML-based
prediction models often lack interpretability due to their “black-box” nature. The
improved performance of the model comes at the cost of interpretability. As the
complexity of the model increases, its performance becomes stronger, but its inter-
pretability becomes worse. It is not enough to evaluate a model based on accuracy
alone; understanding the mechanics behind how the model works is crucial. It is
important to know how prediction results are given and which features are crucial for
the model, among other considerations. Otherwise, full trust in the prediction results
cannot be established. Thus, there is a strong need to introduce model interpretability
methods to improve the understanding of how the models function. Additionally,
since the crime situation varies between regions, models trained in one region may
not necessarily transfer well to other regions.

3. Single evaluation system. The evaluation metrics and data used in the above studies
vary, making it impossible to judge the merits of the models accurately. Some studies
rely solely on historical crime data, while others use a combination of crime and
external data, such as demographic, socio-economic, and environmental factors.
Moreover, the evaluation metrics are often too narrow, making it challenging to
compare the performance of the models accurately. Thus, there is a need to establish a
comprehensive evaluation system that considers various data types and evaluation
metrics to truly judge the merit of the models.

4. Limited studies on short-term crime prediction. Most of the studies discussed above
focus primarily on medium- and long-term crime prediction (monthly, quarterly,
and annual), which has a positive impact on macro-level policy making. However,
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few studies concentrate on short-term prediction at the hourly, daily, and weekly
levels. Short-term prediction better serves the needs of most police departments
since crimes such as burglary and robbery are typically short-lived, and they require
rapid action to prevent and combat the crimes effectively. The lack of research in
short-term prediction models makes it difficult to prevent crime from happening, such
as by deploying officers and planning patrol routes aimed at targeted areas. When an
offense occurs, the perpetrators cannot be caught in time, resulting in a significant
blow to law enforcement.

5. Spatial Crime Prediction

In spatial crime prediction, the predicted area is often divided into several grid units
of different sizes, such as 150 m × 150 m or 200 m × 200 m. Typically, the larger the spatial
unit, the higher the prediction accuracy [71]. However, grid cells that are too large are
not aligned with the actual patrol range of police officers. Therefore, according to the
analytic hierarchy process (AHP) method, crime spatial prediction can be divided into
three levels: macro-, meso-, and micro-level predictions. Micro-level prediction mainly
focuses on areas smaller than the existing functional zoning. Meso-level prediction mainly
covers existing functional zoning, such as neighborhoods, communities, police districts,
and census tracts. Macro-level prediction mainly involves predictions at the county, city,
state, and national levels.

5.1. Micro- and Meso-Level Prediction

The micro- and meso-level spatial crime prediction pertains to community, campus,
street, and rural area prediction, such as street robbery and community burglary. Crime
patterns and crime levels in these areas vary significantly from those of other locations, and
therefore, researchers have studied prediction in these geographical areas.

(1) GLDNet

To address the problem of sparse urban street crime events, a graph-based deep
learning framework—the grated localized diffusion network (GLDNet)—was proposed in
the literature, and empirical research was conducted on three types of crimes in southern
Chicago (assault, burglary, and theft) [72]. The results showed that, compared to the
network-time kernel density estimation (NTKDE) method, GLDNet significantly improved
the average hit rate, particularly in terms of 10% and 20% street length coverage rate;
GLDNet improved by 12% and 25%, respectively.

(2) Clustering

The literature utilized cluster analysis methods to detect hotspots of wildlife poaching
in the Tsavo ecosystem (Kenya) [73]. Firstly, the study area was divided into 34 blocks.
Then, spatio-temporal and spatial clustering methods were used to predict hotspots, and
the PAI and the modified predictive index (MPAI) were introduced as evaluation metrics.
The study showed that the predictive performances of spatial scan statistics (PAI = 2.39)
and spatio-temporal scan statistics were better (MPAI = 1.46).

(3) ANROC

The literature proposed an aggregated neighborhood risk of crime (ANROC) measure
to enable a neighborhood-level prediction of violent crime rates [74]. They first used
RTMDx to determine the best model and the community violent crime risk factors. Next,
they constructed an ANROC to calculate the average risk value for each community unit.
An ordinary least squares (OLS) regression model was used to predict violence in Little
Rock, Arkansas, while controlling for centralized disadvantage and housing stability. The
ANROC measure was significantly and positively correlated with community violent crime,
suggesting that it helped to enhance the ability to understand changes in neighborhood
violent crime and to achieve neighborhood-level violent crime predictions.

(4) KDE and RTM



ISPRS Int. J. Geo-Inf. 2023, 12, 209 19 of 29

Using the street robbery data from Little Rock, Arkansas, the predictions were con-
ducted, and the PAI and recapture index (RRI) were used to assess the techniques [75]. The
study showed that the average PAI was highest for KDE (77.473), and the average RRI
was highest for RTM (1.113) at all time scales. In other words, KDE had better prediction
accuracy, while RTM had higher prediction precision.

5.2. Macro-Level Prediction

Accelerated urbanization has led to an influx of people, businesses, and industries
into cities, which has increased the burden on urban areas and resulted in an upsurge in
crime. Due to limited security resources, it is challenging for the police to respond to such
a high volume of crime in a timely and effective manner. Hence, predicting urban crime
has become critical to combatting the issue.

(1) STDC Detector

To explore whether spatio-temporal crime geographical displacement (STCD) exists in
China and whether utilizing the STCD detector can improve crime prediction accuracy [76],
the literature studied burglary in a large Chinese city using the STCD detector and identified
two important findings. Firstly, the existence of crime geographic displacement in China
was confirmed, and the distances between displacements were not extensive. Secondly,
utilizing an STCD detector increased the prediction accuracy, with improvements of 3.1%
and 7.25% in the PAI and the capture rate, respectively. These results suggest the feasibility
of the STCD detector in improving crime prediction.

(2) RTM

Considering that the RTM technique ignores the dependence on successive events,
the literature has generated four models (the random model, RTM-only model, event-
dependent-only model, and integrated model) to predict the changes in crime distribution
in large cities based on robbery data and land use data in Newark [77]. In all the models,
the stochastic model showed the worst performance, while the integrated model had the
best prediction. This suggests that combining event dependence and spatial influences can
effectively improve the prediction of dynamic crime distributions.

(3) ABM

The literature applied ABM to analyze crime patterns and prediction in a simulated
environment [78]. ABM enabled agents to perceive their surroundings through the spatial,
interactive, and temporal layers, helping them decide whether to engage in criminal
activities. This integration of spatial, temporal, and interactive elements allowed the
calculation of the probability of agents committing crimes and the prediction the next
crime occurrence. Furthermore, the study conducted simulation experiments using data on
robberies, points of interest (POIs), and weather in New York City. The results showed that
the ABM model could accurately simulate crime patterns under varying environmental
factors while providing valuable implications for the improvement of crime prediction.

This literature applied the agent-based model to simulate the behavior and interactions
of criminals and police officers, with the aim of reducing crime rates through this model [29].
The agents in the model simulated the behavior of criminals and police officers, and the
researchers investigated changes in different factors to understand the variation in crime
rates. They also tested the effectiveness of the current policing strategies and adjusted
their simulations according to the results obtained from the model. The study found that
agent-based models could effectively evaluate and predict criminal behavior and provide
valuable recommendations for anti-crime policies. Improving community development and
implementing safety measures could reduce the likelihood of crime, while increasing the
police presence or strengthening the surveillance of criminals could enhance the probability
of apprehending them.

(4) DNN Framework
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Deep learning frameworks have demonstrated promising results in the prediction of
crime hotspots. The literature [79] proposed three different configurations of deep learning
frameworks in the literature; these are spatial features first then the temporal (SFTT); tem-
poral features first then the spatial (TFTS); and spatial and temporal features in two parallel
branches (ParB). Based on heterogeneous urban data sources (POIs, weather, demographics,
etc.), ten advanced models and three configurations of deep learning models were trained.
The results indicate that the SFTT model outperformed the other two configurations in
terms of prediction performance. Additionally, the study identified the effectiveness of
different parameters to facilitate the prediction of crime hotspots in urban areas. The
study utilized machine learning, topic modeling, and sentiment analysis to identify and
predict crime patterns and hotspots in Porto, Portugal [80]. Firstly, clustering analysis using
the density-based spatial clustering of applications with noise (DBSCAN) algorithm was
performed on the crime and census data. Then, machine learning methods were used to
reveal feature correlations with crime. The study area was divided into multiple grid cells
with a side length of 500 m to identify crime hotspots over the following year. Finally, LDA
modeling and sentiment analysis were used to analyze Twitter data within a radius of 1 km
from crime sites. The study showed that crime in Porto exhibited significant statistical,
temporal, and spatial patterns, and the random forest algorithm had the best prediction
performance. The emotional state reflected in tweets was closely related to crime locations.

The literature applied a data-driven approach to predict crime levels in the Greater
London area [81]. By analyzing multiple heterogeneous datasets (crime, demographics,
POIs, photographs, and land use data), more than 3000 features and 14 different crime types
were selected. To enhance the robustness of the model, three regression algorithms (ridge
regression, RF, and SVR) were selected as training models. Moreover, feature selection
techniques were used to eliminate noise and improve the interpretability and accuracy of
the model.

5.3. Limitations of Spatial Crime Prediction Research

1. Research on spatial crime prediction has made significant strides in identifying poten-
tial risk factors and crime hotspots, while also validating relevant criminology theories.
However, despite the progress made thus far, this field still faces numerous challenges.
For instance, the accuracy of crime prediction models heavily relies on the quality
of crime data and the availability of relevant urban features. Moreover, the effective
integration of various data sources remains a significant challenge in the development
of reliable crime prediction models. There are fewer studies at the micro-level. While
most studies in the spatial crime prediction field focus on macro-level predictions
due to the availability of city-related data, they often overlook the importance of
micro-level predictions. Conducting micro-level research would prove invaluable as
it could assist the police in achieving scientific resource allocation and dispatch for
specific areas and roads. Moreover, such research could enable enterprises to choose
suitable business locations and to help citizens select safe travel routes and times, thus
mitigating crime opportunities and promoting crime deterrence. The incorporation
of micro-level predictions could provide more nuanced and context-specific insights
and recommendations to a diverse group of stakeholders, thereby improving the
effectiveness and efficiency of crime prevention strategies.

2. Lack of research on decision-making applications. Some studies lack practical support
for assisted decision making, which impedes their practical applications. Going for-
ward, there should be a stronger emphasis on the implementation of research results
in assisting the development of scientific police decisions. For instance, integrating
patrol route planning research and other decision-making tools would be valuable
in optimizing crime prevention efforts. By bridging the gap between research and
practice, stakeholders can more effectively employ spatial crime prediction models
for actionable insights and evidence-based decision making.
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3. Insufficient research on crime mechanisms. Although most spatial crime prediction
studies successfully validate criminology-related theories and achieve the task of
crime prediction to some extent, the directionality of some studies neglects the theo-
retical level. Consequently, these studies tend to only verify existing criminological
theories, without sufficiently enriching or expanding the research on crime mech-
anisms. Additionally, the current research fails to consider the impact of criminal
behavior patterns on crime prediction results. For instance, the presence of police on
an offender’s travel route could deter the offender from committing the crime, which
would subsequently affect the crime prediction accuracy. Therefore, future studies on
spatial crime prediction should consider these contextual factors and aim to expand
and advance crime mechanism research to improve the accuracy and applicability of
crime prediction models.

4. Unreasonable grid cell size. Most spatial crime prediction studies employ grid cells
with side lengths of 100 m, 150 m, and 200 m. The research indicates that larger grid
sizes generally result in better prediction performance. However, the theoretical limit
range of a police patrol is 150 m, which should be considered when considering the
relationship between grid size and police patrol range in practical crime prediction
and police work. Flexibly adjusting grid size according to actual conditions and
police patrol frequencies is essential. For areas with frequent police patrol, smaller
grid cells should be used for prediction and analysis to improve prediction accuracy,
while for areas with insufficient police patrol, larger grid cells should be employed
to maximize the use of limited police resources and ensure comprehensive coverage.
Striking a balance between prediction performance and practical application is key in
optimizing the implementation of spatial crime prediction models.

6. Spatio-Temporal Crime Prediction

The integration of temporal, spatial, and crime data not only helps to improve the
accuracy of the predictions, it can also make the deployed prevention and control strategies
more realistic. Due to the many possible permutations of temporal and spatial crime
predictions, we provide a summary of the major spatio-temporal scales studied.

6.1. Short-Term and Micro-Level Prediction

The literature presented an improved deep spatio-temporal 3D convolutional neural
network (ST3DNet) framework—ST3DNetCrime—for fine-scale (hourly and spatially
small) crime prediction [82]. Using real data from Los Angeles for evaluation, the results
showed that ST3DNetCrime had better prediction performance and robustness than the
baseline models, especially ST3DNetCrime-f. This indicates that only by extracting all the
spatio-temporal features from recent and near-historical crime data, as well as far-historical
crime data, can the best prediction performance be achieved.

6.2. Short-Term and Meso-Level Prediction

The literature used the RF model to predict short-term (biweekly) crimes against
property (robbery, snatching, and public theft) in public places to explore the influence of
spatial variations and environmental variables on prediction results [83]. The study area
(XT Street) was divided into 369 grids, each with a size of 150 m × 150 m, and the grids
were clustered into four groups: stable high-incidence, high-incidence, occasional, and non-
hotspot, based on their historical crime rates. Then, the RF model was constructed using
only historical crime data or with the addition of environmental covariates (POIs, road
network density, and urban villages), and control experiments were conducted. The results
showed that spatial variations and environmental variables can improve the precision of
prediction, especially in the stable high-incidence grids.
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6.3. Short-Term and Macro-Level Prediction

The literature constructed different regression models based on crime data alone and
combined crime and environmental data, respectively [84]. These models were used to
predict residential and commercial break and entries (BNE) crimes in Vancouver, Canada.
The prediction period was 1–30 days, the frequency was six times per day, and the distances
were 500 m, 850 m, and 1 km. By visualizing the crime trends and spatial and temporal
distributions of BNEs, the literature explored the relevant variables affecting such crimes.
It was found that there was a spatial and temporal correlation between BNEs. Residential
BNEs had higher recidivism rates within 850 m and 1 day from the last crime location, and
commercial BNEs had higher recidivism rates beyond 500 m and within 2 days from the
last crime location.

An “online” integrated graphical model based on attentional mechanisms was de-
veloped in the literature; it could extract and integrate spatio-temporal features, external
features, and topological maps from crime data and achieve day-level urban crime predic-
tion [85]. An empirical study using Chicago burglary and assault data found that the model
was able to predict the spatio-temporal distribution of daily urban crime more accurately
than the other models.

The study utilized the ST-Corking algorithm to detect the impact of potential of-
fender activity on crime prediction [86]. Firstly, the study area was divided into 2604 grids
(50 m × 50 m); then, a weekly, biweekly, and four-weekly crime prediction was made using
historical crime data (theft and robbery) as the main variables and potential offender move-
ment data as the covariates. The results showed that incorporating offender movement
data could improve the prediction performance of the model, and the longer the duration
of the prediction, the better the prediction performance.

The literature extracted temporal, spatial, and repeated crime features from various
open-source data [87]. Then, a spatio-temporal crime model was constructed using a
collaborative training model and a CoBayes model to infer road-level crime risk. The results
demonstrated that the MAE of the model was 0.767, which was an average improvement
of about 14.5% over the LASSO, LSTM, and SVR methods. Finally, an application capable
of recommending the best risk-aware route was developed. This method was used to make
an empirical study of New York City, and good results were achieved.

Based on the news feed data from Bangalore and India, the literature used the ARIMA
and KDE models to predict the spatial and temporal distribution of crime over the following
15 days [88]. Firstly, the data related to crime were extracted from the news feeds using
data mining techniques. Secondly, 68 crime types were classified into six categories based
on keywords for identification and visualization of the crime distribution. Finally, the
ARIMA model was used to predict the time series of crimes, and the KDE model was
used to identify the hotspots. The results showed that the accuracy of the model was 75%,
and most of the crimes were concentrated around the main places in the city. Among
them, commercial crimes mostly occurred in Bangalore, and violent crimes were mostly
concentrated in other parts of India.

Based on the data of public security, POIs, 311 public service complaints, meteorology,
and population movement, the literature constructed a TCP framework, which could
accurately capture the spatio-temporal correlation of urban data to predict the crimes in
New York City over the following day and week [89]. Furthermore, the study identified the
spatial distribution of crime over a week. In particular, the spatial distribution of crime was
similar from Monday to Thursday, while Friday to Sunday had a similar spatial distribution
of crime. Moreover, the crime distribution fluctuated the most on Friday, which meant that
this day was the most unsafe.

6.4. Medium-Term and Macro-Level Prediction

The literature built models from different quarterly dimensions to predict four types
of crime events in Salzburg, Austria [90]. Firstly, the risk factors associated with each type
of crime event were identified with the help of RTMDx. Then, the results were entered into
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ArcGIS for testing. The study showed that the prediction results differed between crime
events. Among them, assault had the highest prediction accuracy, and theft was predicted
less well. Moreover, the possible reasons for these results were explained. The literature
focused on the prediction of property crime (residential and vehicle theft) risk areas in
economically developed cities. The impact of relevant risk factors on property crime in the
city of Coral Gables was verified using the time dimensions of the day, week, month, and
year, and its high-risk areas and relative-risk areas were explored and identified. The study
found that the factors associated with auto and housing theft differed. Taken together,
restaurants and grocery stores were common high-risk areas for both crimes.

The literature used an ensemble model based on logistic regression and neural net-
works to predict urban crime (home burglary, street robbery, and battery) trends over the
following two weeks and one month [91]. It was shown that the monthly level prediction
performance was significantly improved compared to the bi-weekly prediction, especially
in predicting home burglary.

The literature developed a spatio-temporal kernel density estimation (STKDE) frame-
work to predict crime hotspots by incorporating time components into the kernel density
estimation (KDE) and conducted an empirical study on residential burglary in Baton
Rouge [92]. The study used 100 m × 100 m grid cells as spatial units and predicted crime
hotspots for the upcoming month, with a 1-week time-sliding window. The results showed
that compared to spatial kernel density estimation (SKDE) and prospective hotspot map-
ping (ProMap), STKDE identified the most hotspots with the highest average PAI value.
Furthermore, the method was capable of visualizing crime risks spatio-temporally.

Given the DNN models’ ability to automatically extract features, the literature utilized
it to predict vehicle theft [93]. Vehicle theft data and 84 types of geographic data were used
to train the DNN tuning model. The results showed that the DNN tuning model performed
better than the RF, SVM, and KNN models.

The literature developed a deep learning framework—DeepPrison—which enabled
burglary prediction at different granular levels [94]. The framework consisted of embedding
and dense layers and a gated recurrent unit (GRU). It could extract burglary features
and spatial and temporal features from historical crime data, socio-demographic data,
and weather data and capture the potential correlations between various factors. By
transforming burglary prediction into a binomial task, the model could achieve crime
prediction within a specific region and time. On this basis, the model was evaluated
using real datasets from Israel and New York City. The results demonstrated that the
performance of DeepPrison was superior to the baseline models such as DeepCrime at all
granularity levels.

6.5. Long-Term and Meso-Level Prediction

The paper validated the effectiveness of the Bayesian spatio-temporal modeling in
analyzing crime trends and risks in small areas through the study of property crimes in
the York region of Ontario, Canada in 2006 and 2007 [95]. The results demonstrated that
the Bayesian spatio-temporal model can effectively predict property crime trends in small
areas and identify crime hotspots and cold spots; this has practical implications for the
deployment of law enforcement resources and the establishing of law enforcement plans.

6.6. Long-Term and Macro-Level Prediction

To solve the problem of crime data sparsity, the literature studied the influence of dif-
ferent population densities on crime prediction using hyper-ensemble models [96]. Taking
burglary as an example, spatio-temporal features were assembled into 200 m × 200 m grid
cells, and crime and weather features were also introduced. The prediction results exceeded
the best baseline for each of the three different population density areas (low, medium, and
high) tested. It was shown that the hyper-ensemble model had a very positive effect on
offsetting the effect of crime sparsity. Based on this, combining the crime, location, and time
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features for the spatio-temporal prediction of low-density population areas can provide
support for public decision making in low-population, imbalanced areas with sparse data.

The literature analyzed and predicted the spatio-temporal distribution and trends of
urban crime by constructing a spatio-temporal Bayesian model and conducted an empirical
study on residential burglary in Wuhan, China [97]. The results showed that residential
burglary was positively correlated with the number of internet cafes and residential prop-
erties, as well as the unemployment rate, and residential burglary was mostly concentrated
in the southern part of the Jianghan district. Therefore, internet cafes near these hotspots
would be the focus of police patrols and inspections.

The literature used an ensemble model (GB) to predict the total number of crimes in
11 urban census tracts of the US, and the accuracy for violent and property crimes was 77%
and 73%, respectively [98]. Based on criminology theory and crime correlation analysis,
118 predictive characteristics were selected from various data to predict the total number of
crimes in urban and suburban areas over the following 5 years. Compared with the Poisson
regression and deep learning models, the MAE of the GB model was reduced by 58.7 and
7.45, and R2 was improved by 45.8% and 4.1%.

6.7. Limitations of Spatio-Temporal Crime Prediction Research

On the one hand, spatio-temporal crime prediction effectively combines various time
and space scales, making the research results more relevant to practical needs. On the other
hand, this method of combination also exposes more complex problems related to time and
space scales in research.

1. Spatio-temporal correlation. Crime is influenced by various factors, such as time,
environment, weather, and networks, resulting in strong spatio-temporal correlations
that make it difficult for traditional machine learning and time series analysis models
to fully capture local or global spatio-temporal correlations. Blindly adding spatio-
temporal crime data to some studies may lead to the overfitting of the model.

2. Spatio-temporal heterogeneity. The spatial and temporal distribution of crime is not
uniform. Crime data in different times and regions often show differences, mak-
ing it difficult for the same model to capture crime patterns in different times and
regions simultaneously.

To address the spatio-temporal correlation and heterogeneity of crime, it is necessary
to jointly model time and space, introduce self-supervised learning mechanisms, and
design multi-task learning modules to achieve the functions of prediction, capturing spatio-
temporal correlation and heterogeneity separately.

7. Conclusions and Future Perspectives

1. The continuous development of big data technology has enabled the use of advanced
machine learning, hotspot mapping, and other methods for precise spatio-temporal
crime prediction, resulting in significant progress and breakthroughs in this field.
However, it is important to acknowledge that some prediction methods and tech-
niques may not be able to fully address the complex and dynamic nature of contem-
porary crime. Thus, based on the literature review and analysis, this paper proposes
reasonable and practical solutions to address the pressing issues and challenges in the
research on spatial crime prediction. By addressing these challenges, we can further
optimize and improve the efficiency and applicability of spatial crime prediction
models in real-world settings. Data sparsity can be dealt with using transfer learning
technologies. Data sparsity is a common challenge in the crime prediction field; it
can limit the accuracy and generalizability of prediction models. The use of transfer
learning techniques, a novel machine learning approach, offers a viable solution to
this problem. Transfer learning allows the application of information and knowledge
from existing domains to related domains, thereby enabling the training of deep
learning models to capture connections between data and avoid overfitting, even with
limited crime data. Additionally, when dealing with more data features and larger
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dimensions, feature selection, feature extraction, and cross-validation methods can
be employed to optimize the performance and efficiency of spatial crime prediction
models. By incorporating these techniques, researchers can more effectively address
data sparsity issues and enhance the ability of spatial crime prediction models to
capture and extrapolate meaningful patterns and trends.

2. Introducing model interpretability methods to improve the interpretability of models.
Model interpretability is essential in enhancing the understanding and trustworthi-
ness of prediction models. The issue of “black-box” models that produce predictions
that are difficult to comprehend can be partially addressed by utilizing model inter-
pretability methods, such as the LIME and SHAP models. LIME is a widely applicable
model that facilitates both global and local interpretation of prediction results. On
the other hand, the SHAP model considers all features as “contributors” and assigns
SHAP values to each feature that are positively correlated with the contribution made
by the variable. This approach enables the ranking of variables according to the SHAP
value, thereby improving the interpretability of the model while retaining a high
predictive performance. Incorporating model interpretability methods enhances our
understanding of crime patterns and levels and enables the development of more
scientific, accurate, timely, and effective prevention and control measures.

3. Establishing a set of data use and evaluation systems for multiple scales. A standard
dataset usage and model evaluation system is crucial for crime prediction studies to
promote accuracy, consistency, and interoperability. To this end, it is recommended
to establish a set of data use and evaluation systems at each scale. Firstly, the stan-
dardization of the data use is essential to facilitate model comparison and ensure
that models with the same prediction objectives and requirements employ the same
type of dataset. Secondly, developing a comprehensive evaluation system is vital
to facilitate the accurate performance measurement of such models. Using consis-
tent evaluation metrics for models with the same prediction objectives is critical in
gauging the efficacy of different models and developing a cross-comparable model
evaluation framework. By incorporating these measures, we can establish a standard
data usage and model evaluation system that promotes the accuracy, validity, and
practical viability of crime prediction models at multiple scales.

4. Integrating other technologies to promote research in decision making. To address the
current issues of low correlation between spatio-temporal crime prediction models
and lack of targeted prevention and control strategies, innovative technologies such
as crime simulation and reinforcement learning can be incorporated to enhance
decision-making applications. With further advancements in crime simulation and
reinforcement learning technologies, we can enhance the decision-making applications
in the spatial crime prediction field and develop effective prevention and control
strategies to combat crime more efficiently. Integrating spatio-temporal elements
into a crime simulation model can provide a comprehensive approach to spatial
crime prediction. Through crime simulation, the potential time and place of crime
occurrences can be predicted, and the process of crime can be visually presented.
Such information can be input into a deep reinforcement learning framework to
optimize crime prevention and control strategies through a continuous learning
process. The deep reinforcement learning (DRL) crime prevention and control strategy
optimization model continuously learns and evaluates strategies for a wide range of
crime scenarios, while selecting the optimal strategy for resource allocation in specific
spatio-temporal environments [99,100]. Police agencies can utilize the reinforcement
learning strategy selection mechanism to deploy police resources, develop patrol
plans, and implement arrest operations effectively. In addition, this approach can also
enable prompt apprehension of perpetrators and can minimize losses in the event of a
crime occurrence. By combining simulation modeling, deep reinforcement learning,
and crime prevention strategies, we can enhance the implementation and effectiveness
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of spatial crime prediction models, contributing to more efficient and targeted crime
prevention and control measures.
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