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Abstract: Spatio-temporal association analysis has attracted attention in various fields, such as
urban computing and crime analysis. The proliferation of positioning technology and location-based
services has facilitated the expansion of association analysis across spatio-temporal scales. However,
existing methods inadequately consider the scale differences among spatio-temporal objects during
analysis, leading to suboptimal precision in association analysis results. To remedy this issue, we
propose a multiscale spatio-temporal object representation method, STO2Vec, for association analysis.
This method comprises of two parts: graph construction and embedding. For graph construction,
we introduce an adaptive hierarchical discretization method to distinguish the varying scales of
local features. Then, we merge the embedding method for spatio-temporal objects with that for
discrete units, establishing a heterogeneous graph. For embedding, to enhance embedding quality
for homogeneous and heterogeneous data, we use biased sampling and unsupervised models to
capture the association strengths between spatio-temporal objects. Empirical results using real-world
open-source datasets show that STO2Vec outperforms other models, improving accuracy by 16.25%
on average across diverse applications. Further case studies indicate STO2Vec effectively detects
association relationships between spatio-temporal objects in a range of scenarios and is applicable to
tasks such as moving object behavior pattern mining and trajectory semantic annotation.

Keywords: multiscale spatio-temporal objects; association analysis; adaptive discretization; embedding

1. Introduction

Location-based sharing applications and modern location-aware devices, such as
smart wearables and unmanned mobile platforms, have generated and accumulated vast
amounts of spatio-temporal data. Spatio-temporal data mining (STDM) research aims to
extract valuable information from these data [1]. Spatio-temporal association analysis is a
commonly used method to identify groups of entities that exhibit specific spatio-temporal
association relationships, such as co-occurrence, in spatio-temporal datasets [2].

Associations are universal [3], making association analysis applicable to various
fields with different relationship types. Sharma et al. [2] grouped spatio-temporal
associations into three types based on whether a temporal sequence was considered:
sequential (e.g., analyzing event-oriented spatio-temporal association in video surveil-
lance [4]), cascading (e.g., studying relationships between events, locations, and criminal
activities in criminal geography [5]), and co-occurrences (e.g., similar associations be-
tween trajectories [6], co-location patterns between geographic entities [7], semantic
annotation of trajectories [8–22], and location embedding [23–33], etc.). By comparing
their frequency of co-occurrence, spatio-temporal co-occurrence-based association anal-
ysis can reveal implicit associations between entities. This facilitates spatio-temporal
semantic understanding, such as urban regional functions, moving object location
preferences and behavior patterns [34]. It holds important research value by being an
association analysis type that this paper focuses on, and has a positive impact on city
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planning, emergency management, and resource allocation. Therefore, in this paper, “as-
sociation” refers to the interaction between spatio-temporal objects due to the presence
of local or global spatio-temporal co-occurrence relationships.

Relationships between spatio-temporal objects are complex and implicit [1], espe-
cially in contexts involving a large number of spatio-temporal objects with different
scales. For example, as shown in Figure 1, we need to measure and discover direct or
indirect associations between aircraft A and aircraft B, farmland M, lake L, airport P,
and airport Q from a large number of spatio-temporal objects. These spatio-temporal
objects exist in different scales in space and time. The traditional semantic trajectory
achieves the matching of moving objects and geographic entities through the stops
detection algorithm while ignoring the semantic information of the moving objects
during the move process. As a result, they can only obtain the association information
between aircraft A and the airport. Location embedding maps the spatio-temporal
objects into a unified vector space. The degree of quantitative association between any
spatio-temporal objects can be obtained by measuring distances in the vector space.
This allows for the discovery of a richer association of relationships.

Figure 1. Illustration of Spatio-Temporal Association. Aircraft A takes off from airport Q to farmland
M on a pesticide-spraying mission and then lands at airport P. There is an association between A
and B due to similar local trajectories; aircraft A hovers repeatedly over farmland M, so there is a
strong association between A and M. There is also an association between A and L as creek C passes
through farmland M to deliver pesticides to lake L.

Most studies in location embedding research concentrate on small-scale regions, such
as cities [5,10,29,30,35,36], where spatio-temporal objects typically have a uniform scale. As
a result, there is a lack of attention paid to the diversity of spatio-temporal object scales.
However, the scale attributes of spatio-temporal objects are varied in large geographic re-
gions. Here, “scale” refers to the actual range over which an object exists spatio-temporally,
while “multiscale” describes the diversity of scales resulting from differences in the spatio-
temporal presence range of the object. As depicted in Figure 1, the scale of the trajectory of
aircraft A during its flight to and from farmland M is much larger than the scale over the
farmland M. Moreover, there are geographic entities such as creeks, streets, and houses
at different scales at M. Existing spatio-temporal object-oriented [23–26] or discrete unit-
oriented [27–33] embedding algorithms lose many spatial features during the computation
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resulting in inaccurate association analysis results: the former may obtain stronger associa-
tions between aircraft and point of interests(POI) such as houses (rather than farmland M);
meanwhile, the latter may ignore the association between A and M due to the large scale
of the predefined grid and the small scale of the local trajectory in M.

It can be seen that the diverse scale characteristics of spatio-temporal objects are an
important factor affecting the results of association analysis. While location embedding
studies utilizing fine-grained grids have been shown to preserve more spatio-temporal
features [31], sparse data present a challenge whereby computational resources are not
efficiently utilized [5]. Multilevel discretization techniques can overcome this limitation by
retaining association information at multiple scales. However, implementing such methods
requires prior knowledge to set fixed multiple levels [32,33]. Our research addresses these
shortcomings by adaptively selecting different resolution grid units for discretization based
on the scale size of spatio-temporal objects. This preserves feature information across
diverse scales. To describe associations between spatio-temporal objects with varying
structures and grids at different levels, we integrate the approaches for spatio-temporal
objects and discretized grids using heterogeneous graphs. Association information for
spatio-temporal objects is obtained through node embedding. Specifically, the contributions
of this paper are as follows:

• We propose an adaptive discretization method based on hexagons, which can de-
compose spatio-temporal objects of different scale sizes into a collection of grids with
different resolutions, thereby conserving more of the original spatio-temporal features.

• We designed an associated heterogeneous graph model that can describe the geo-
graphic scope and frequency of co-occurrence between spatio-temporal objects based
on scale differences. This model enables object embedding for association analysis.

• To improve the scalability of representation methods and the quality of representation
results, we designed a biased sampling strategy that can provide richer, application-
specific associative information for object representation.

• We constructed a multiscale spatio-temporal object representation method called
STO2Vec, which is oriented towards association analysis. We performed accuracy tests
on association analysis using the representation results of STO2Vec on real datasets.

The remainder of this paper is organized as follows. Section 2 introduces the re-
lated work. Section 3 presents the relevant underlying concepts and problem definitions.
Section 4 describes the STO2Vec framework specifics. Section 5 presents quantitative exper-
iments and case studies of the proposed framework, while Section 6 presents the discussion
and conclusion.

2. Related Work

There are currently numerous studies analyzing the association relationships based
on spatio-temporal co-occurrence from different perspectives. These studies can be clas-
sified into semantic trajectory-based approaches [8–22] and location embedding-based
approaches [23–33] according to the analysis methods.

2.1. Semantic Trajectory

From the perspective of moving objects, the current main research focus is on con-
structing semantic trajectories by combining trajectory data with geographic information.
These trajectories are analyzed to explore spatio-temporal object associations, essentially
discovering the relationships between stopping points of moving objects and geographic
entities from a spatio-temporal viewpoint. This approach enables a better understanding
of spatio-temporal semantics of moving object trajectories.

Alvares et al. proposed the stop-move model, which converts trajectories into se-
quences with labels through semantic annotation, thereby mining and analyzing the inter-
action and association of moving objects in geographic space [11]. Based on the stop-move
model, some of the research work has focused on how to better geographically associate this
semantic annotation of trajectories [9,12–14]; meanwhile, many studies have constructed
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semantic trajectory models and designed corresponding association analysis algorithms
for different application domains. For instance, Ying et al. used the frequent pattern of
geography-time-semantics in semantic trajectories for location prediction of moving ob-
jects [15]. Kontarinis et al. designed an indoor semantic trajectory model to support the
mining and analysis of indoor moving-object trajectories, which was used to test existing
analysis algorithms and the proposed algorithm in conjunction with trajectory data inside
the Louvre [10]. Noureddine et al. put forward a semantic trajectory model that covers
both indoor and outdoor spaces, along with an organizational management method. This
model enables associative semantic queries to comprehend people’s flow patterns in urban
spaces [16]. Based on this model, a graph-based semantic trajectory model was constructed
by utilizing open source crowdsourcing data [8] and employing graph analysis algorithms
for association analysis among objects. Choi et al. used a semantic trajectory model to mine
the movement behavior pattern of pedestrians in the local area [17]. To mine the travel
purpose of urban moving objects, Wan et al. developed the SMOPAT algorithm which
analyzes frequent patterns in private car trajectories [18]. There are also many studies
that focus on association analysis between moving objects such as the similarity metric
calculation of trajectories [19,20].

Due to the aggregation of sampled features of trajectories at stopping points that can
be explicitly associated with geographic entities, most semantic trajectory studies tend
to focus only on the semantic information of the STOP phase. Lehmann observed that
current semantic trajectory similarity analysis algorithms neglect the semantic information
of moving objects during the MOVE phase [21], particularly during continuous movement
scenarios in free space (e.g., drones and fishing boats), where the association semantics
between the MOVE phase and geographic entities are abundant. Obviously, the trajectory
characteristics of the MOVE phase are more complex and variable compared to the STOP
phase, and this difference in semantic distribution makes the analysis of spatio-temporal
object associations in free space more difficult. Xiang et al. [22] described the basic spatial
associations by deriving topological, orientation, and distance relationships between the
move objects and geographic entities. However, this method involves complex modeling,
matching, and inference processes. It is better for analyzing topological movement in
specific scenarios than it is for discovering association sin general scenarios.

2.2. Location Embedding

In some studies, geographic entities or regions are embedded using representation
learning models that integrate road networks, POI, geotags, origin destination(OD) streams,
and trajectory data. This approach facilitates discovering associations between spatio-
temporal objects and performing tasks such as regional functional analysis and classification
of POI. Based on the embedding object structure, it can be categorized into two types:
spatio-temporal object-oriented embedding and discrete unit-oriented embedding.

In a spatio-temporal object-oriented approach, the embedding representation of
the object itself can be obtained directly. Due to the advantages of POI data such as
strong presentational and large data volume, most studies abstract geographic entities
into POIs and identify urban functional areas by mining potential associations between
POIs and regions [23]. Zhang et al. proposed a global vector-based POI embedding
model GPTEM to mine the implicit semantic associations between POIs and urban
functional types by integrating the co-occurrence information and spatial contexts
of POIs [24]. Zhang et al. proposed Traj2Vec based on Word2Vec to find pedestrian–
location associations in trajectory data and obtain mixed land use characteristics of
urban areas [25]. Zhu et al. designed a spatial embedding algorithm Location2vec that
combines the interrelated effects between urban locations and moving objects [26]. To
address the problem that spatial association between regions is ignored, Sun proposed
the Block2vec model, which integrates the information of association between regions
based on Skip-gram [23]. In reality, geographic entities do not exist in the form of point
elements, and thus these approaches lose most of the spatial information.
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Discrete unit-oriented embedding offers the advantage of a consistent method for
describing diverse spatio-temporal objects through cell aggregation. Different techniques
can be used to discretize spatio-temporal objects, such as Zone2Vec by Du et al., which
partitions a city into different regions based on its road network and applies the Skip-gram
model to obtain region embedding representations from Beijing taxi trajectories. This
approach supports applications such as urban region classification and region cluster-
ing [27]. In contrast to the discrete approach of Zone2Vec, Crivellari et al. proposed the
Mot2Vec, which segments trajectories at equal time intervals. Trajectories are converted to
ID sequences by selecting valuable points for nearest neighbor matching with trajectory
segments, preserving more semantic information [28]. To obtain richer semantic infor-
mation from multiple sources, Jenkins et al. divided the study area into rectangular cells
according to a predetermined scale and combined multimodal data such as OD stream data,
POI, and remote sensing images to construct regional embeddings [29]. This discretization
method highlights background semantic information but only for specific topics. It has
poor scalability and cannot handle large-scale datasets for discrete tasks. Spatial indexes
based on global discrete grids, such as Geohash encoding [37], Google S2 [38], and Uber
H3 [39], can be used to solve these problems, where the grid encoding has a hierarchical
structure and is capable of uniquely encoding regions. Woźniak et al. used the open source
platform OpenStreetMap tagging data combined with Uber H3 grid division to discover
the regional functionality of cities [30].

The above studies are all oriented to local areas, which involve spatio-temporal objects
at a relatively uniform scale. Some recent studies have started to focus on location embed-
ding at large scales. Tian et al. proposed the GCN-L2V model. It constructs flow graphs
based on trajectory and spatial graphs based on spatial relationships. This helps create
fine-grained location embedding at large scales for fixed-level Google S2 grids [31]. In
response to the difficulty of a fixed-level grid to solve the data sparsity problem caused
by fine-grained embedding in a large-scale context, Shimizu et al. proposed a multilevel
grid embedding model. This model obtains fine-grained grid embedding representation
with proximity information by discretizing a target region with predefined grids of varied
resolutions. However, this technique demands predetermined resolution for each level
based on prior knowledge, making it incapable of adjusting to multiscale spatio-temporal
objects with scale differences [32]. The above studies are still limited to city-wide analysis,
and the extension to larger areas will involve challenges related to balancing accuracy
and complexity. Yin et al. implemented a global-scale global positioning system (GPS)
coding embedding based on Universal Transverse Mercator (UTM). They did not consider
associations between locations based on moving objects. Instead, they emphasized the
multimodal semantic information of the locations themselves. Relationships between
locations according to movements of objects were not explored [33]. Furthermore, these
experiments failed to consider the scale differences of spatio-temporal objects during the
embedding process. As a result, their representation in vector space is relatively crude.

3. Preliminary
3.1. Spatio-Temporal Object

Entities in geographic space can be abstracted as different spatio-temporal ob-
jects [40]. Due to the complexity of the real world, there often exist significant scale
differences between such objects. Therefore, we refer to spatio-temporal objects with a
notable scale variance as multi-scale spatio-temporal objects.

Moving objects and geographic entities are two types of spatio-temporal objects that
are closely related but different in structure. We refer to objects with different structures as
heterogeneous spatio-temporal objects and those with the same structure as homogeneous spatio-
temporal objects. For example, moving objects and geographic entities are heterogeneous
spatio-temporal objects, while moving objects belong to homogeneous spatio-temporal
objects among themselves.



ISPRS Int. J. Geo-Inf. 2023, 12, 207 6 of 26

Geographic entities are the fundamental units of human cognition of the geographic
world. These objects can be either natural or artificial. They have a basic stable spatial
position in the world that exists independently. We use a vector data model to describe
geographic entities by abstracting them into point, line, and polygon elements:

Definition 1. Geographic Entity Eg = {T, (a1, a2, . . . , ai, . . . , an)|ai = (loni, lati), T = (ts, te)},
where T is the time period, and (a1, a2, . . . , ai, . . . , an) are the coordinates of Eg’s spatial position
in that time period. When Eg is a point element, n = 1, and when it is a polygon element, an = a1,
and n > 3.

When the geographic entity Eg can be divided into smaller geographic units, called
subgeographic entities Egsub, that have independent characteristics within Eg—for example,
tributaries of a river or cities within a country—we refer to them as the subgeographic
entities of Eg. There is a containment relationship between Eg and Egsub, where Egsub is
contained within Eg.

The trajectories generated by moving objects are called spatio-temporal trajectories.
Spatio-temporal trajectory data are the raw data collected by the position sensors. In this
paper, spatio-temporal trajectories are defined as follows:

Definition 2. Spatio-Temporal Trajectory Tr = {a1, a2, . . . , ai, . . . , an|ai = (pi, ti)}, where n is
the number of sample points in the trajectory; ai is a multidimensional sample point in the trajectory,
also called a trajectory point; and pi = (xi, yi), xi, and yi are the spatial latitude and longitude
coordinates of ai, respectively, while ti is the sampling time stamp.

Spatio-temporal trajectory segmentation involves dividing a trajectory into segments
using various methods. These trajectory segments have similar internal structural features.
The trajectory segments are defined as follows:

Definition 3. Given a spatio-temporal trajectory Tr = {a1, a2, . . . , ai, . . . , an|ai = (pi, ti)}, we
define the segmentation of Tr as Tre = {e1, e2, . . . , eu, . . . , em}, such that
(i) ∀u s.t. 1 ≤ u ≤ m, eu is a trajectory segment, which is a subsequence {al , al+1, . . . , al+k} of Tr.
(ii)

⋃m
u=1 eu = Tr and eu ∩ ev = ∅, (u 6= v).

The association between spatio-temporal objects often occurs locally rather than glob-
ally, and thus dividing spatio-temporal trajectories into segments with complete semantic
features can better support the detection of local association relations. There is a contain-
ment relationship between Tr and eu, where eu is contained within Tr.

3.2. Space Discretization

There are many ways to divide space into units, which can be done manually or
according to fixed methods such as administrative divisions. However, these methods
cannot flexibly deal with spatio-temporal objects of different scales. Global grid encoding
systems such as Google S2, Geohash, and Uber H3 can decompose spatio-temporal objects
at different resolutions without being constrained by the background. S2 and Geohash
use quadrilaterals for division, while Uber H3 uses hexagons for division. We compared
these three grid encoding systems based on projection method, isotropy, and hierarchical
coverage. The results are shown in Table 1.

In this study, the isotropy of a grid refers to the consistency of its weights with adjacent
grids. As shown in Figure 2, quadrilateral grids have two types of neighboring grids,
copoint and colinear neighbors, while hexagonal grids have only colinear neighbors. The
isotropy of hexagonal grids is superior to that of quadrilateral grids. Since moving objects
in the real world is unlikely to involve movement in a way that aligns with the grid, using
Google S2 can complicate the analysis because the analyst needs to consider more different
types of neighbors than Uber H3 does [39]. In terms of hierarchical coverage, quadrilateral
grids can achieve precise coverage between levels, while hexagonal grids cannot. The Uber
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H3 grid system uses a seven-aperture hierarchical division method, and the approximate
coverage between adjacent levels is achieved by rotating the angle.

Table 1. Global grid encoding systems comparison.

Grid Systems Projection Isotropy Hierarchical
Coverage

Google S2 Regular hexahedron Copoint, Colinear Accurate

Geohash
Orthoaxial

equiangular
cylindrical

Copoint, Colinear Accurate

Uber H3 Regular icosahedron Colinear Approximate

We chose to use Uber H3 for the discretization of spatio-temporal objects, mainly for
the following three reasons: First, the smaller projection error of Uber H3 grids can more
accurately achieve the discretization of spatio-temporal objects [39]. Second, the isotropy
of hexagons simplifies the construction of spatial neighbor relationships in association
analysis: in the calculation process, grid distance can be used instead of geographic distance.
Third, although the hierarchical coverage of hexagonal grids is inferior, the aggregation
range of different level neighborhood information matches the resolution of that level. As
such, the precise coverage between levels is not required.

(a) Quadrilateral isotropy (b) Hexagon isotropy

Figure 2. The difference between quadrilateral and hexagonal grids in terms of isotropy.

Definition 4. Structural relationships among geographic grids. There are structural relationships
between multilevel geographic grids, including adjacency relationships between grids at the same
level, and hierarchical relationships between adjacent-level grids.

As shown in Figure 3a, the grids that have adjacency relationships with the red grid
on the L-level are the blue grids of the same level. The yellow grids at level L− 1 and L + 1
have hierarchical relationships with the red grid. Among them, the yellow grids at level
L− 1 are the parent grids of the red grid and its neighboring grids, while the yellow grids
at L + 1 are the child grids of the red grid.

Definition 5. Mapping relationship between spatio-temporal objects and grids. There is a mapping
relationship between spatio-temporal objects and their discretized grids, i.e., a spatio-temporal object
can be mapped to a set of geographic grids.
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As shown in Figure 3b, the blue line represents the trajectory, and the red grids
represent the discretization result of the trajectory at a certain level. There exists a mapping
relationship between the trajectory and the grids in the figure.

(a) Structural relationship (b) Mapping relationship

Figure 3. Structural relationship and mapping relationship.

3.3. Heterogeneous Graph

Heterogeneous graphs are capable of expressing associations between different types
of spatio-temporal objects by utilizing node types. This feature enables researchers to design
custom sampling schemes that suit their specific requirements, making it an effective tool
for fusing multiple types of nodes with association information. Some important concepts
related to heterogeneous graphs and their embedding are as follows:

Definition 6. Heterogeneous Graph. The heterogeneous graph GH can be expressed as GH = {V, E, T},
where V is the set of all nodes in GH, E is the set of all edges in GH, φ is the node v-type mapping
φ(v) : V → TV , ψ is the edge e-type mapping ψ(e) : E→ TE, TV and TE are the sets of node type and
edge type, respectively, while |TV |+ |TE| > 2.

Definition 7. Heterogeneous Graph Embedding. For a heterogeneous graph GH = {V, E, T}
with its node attribute matrix XTVi ∈ R|VTVi |×dTVi , the goal of heterogeneous graph embedding
is to obtain the node embedding representation hv ∈ Rd for all v ∈ V by learning so that hv can
reflect the structural and semantic information of the graph G, where d � |V|, Rd denotes the
d-dimensional Euclidean space.

Definition 8. Association Strength. For spatio-temporal objects Oa and Ob, whose embedding
representations are hOa and hOb , respectively, the association strength I(hOa , hOb) between Oa and
Ob can be expressed as Equation (1).

I
(
hOa , hOb

)
=

hOa
ThOb

‖hOa‖ ·
∥∥hOb

∥∥ , I ∈ [−1, 1] (1)

According to Equation (1), we define the spatio-temporal object association analysis
problem as follows:

Definition 9. Spatio-Temporal Object Association Analysis. Given the set of spatio-temporal ob-
jects Os = {O1, O2, . . . , Oi, . . . , Ok}, ∀Oi ∈ Os, the purpose of spatio-temporal object association
analysis is to find the set of spatio-temporal objects Ossub = {Osub1 , Osub2 , . . . , Osubj

, . . . , Osubl
},
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Ossub ⊂ Os, and Oi /∈ Ossub, such that ∀Osubm ∈ Ossub, Osubn ∈ Ossub, n > m; we can thus
obtain Equation (2):

I
(

hOi , hOsubm

)
> I
(

hOi , hOsubn

)
> χ (2)

where h is the embedding representation, and χ is the association strength threshold, 0 ≤ χ < 1.

4. Method

In this section, we propose a new multiscale spatial-temporal object representation
method, named STO2Vec, for association analysis. The overall structure of the method will
be introduced in Section 4.1. The process of data preprocessing is described in Section 4.2
while the construction method of the spatio-temporal association heterogeneous graph is
presented in Section 4.3. Finally, we introduce the heterogeneous graph node embedding
algorithm for spatio-temporal association in Section 4.4.

4.1. Overall Framework

To address the problem of multiscale spatial-temporal object association measurement
and discovery, as shown in Figure 4, we propose a multiscale spatial-temporal object repre-
sentation method named STO2Vec for association analysis. The method is divided into two
stages: graph construction and embedding. In the graph construction stage, we decompose
spatial-temporal objects into grids at multiple levels using adaptive discretization and
describe their associated relationships using a heterogeneous graph that includes discrete
spatio-temporal co-occurrence and grid structural relationships. In the embedding stage,
biased second-order sampling is performed to obtain node sequences based on the associa-
tion between homogeneous or heterogeneous spatial-temporal objects. These sequences
are combined with an embedding model to generate vector representations of the nodes,
facilitating association discovery and measurement between objects.

Figure 4. Overall Framework of STO2Vec.

4.2. Data Preprocessing

We first remove the redundant values from the trajectories in the preprocessing stage.
Additionally, we apply the well-established Kalman filtering algorithm to suppress noise.
Given that interactions mainly occur locally and the full trajectory can potentially dilute the
association information of moving objects at specific points in time, the cleaned trajectory
needs to be segmented to describe the association between spatio-temporal objects in as a
precise way as possible, which is a common preprocessing operation for most trajectory
analysis algorithms [41].

Traditional stopping point segmentation methods are not applicable to the association
analysis of moving objects such as aircraft and ships. Due to cost saving or route planning,
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the movement characteristics such as heading, speed, and altitude of such moving objects
tend to be kept stable in the process of transferring and cruising. Nevertheless, their
movement characteristics occasionally fluctuate rapidly while interacting with geographic
entities. To capture associations more precisely, we extract trajectory segments that exhibit
frequent variations in movement features. Joint information entropy is a reliable metric
that measures the uncertainty of multiple random events. By considering changes in
mobile traits as a sequence of random events, we segment trajectories using a unified joint
information entropy metric of mobile features. The algorithmic procedure is as follows.

For each point ai in the trajectory Tr = {(a1, a2, . . . , ai, . . . , an) | ai = (pi, ti)}, the
motion features of fdi

(heading) and fvi (instantaneous velocity) are first calculated. Other
features such as geographic altitude, barometric altitude, and attitude parameters can also
be added according to the data situation and background.

Then, the motion features of Tr are clustered by numerical distribution. We use
the widely-used DBSCAN algorithm to perform clustering. We obtain the set Cd of
heading feature clusters consisting of k clusters and the set Cv of instantaneous velocity
clusters consisting of l clusters, where Cd =

{
cd1 , cd2 , . . . , cdi

, . . . , cdk
| cdi
⊂ Tr, 0 < k < n

}
,

Cv =
{

cv1 , cv2 , . . . , cvi , . . . , cvk | cvi ⊂ Tr, 0 < l < n
}

. The motion feature label of each point
is Lai = (cdi

, cvi ) | cdi
∈ Cd, cvi ∈ Cv.

To obtain the joint information entropy of motion characteristics for trajectory
points within each window, for a sliding window W with window size sw (0 < sw < n)
and sliding step ew (0 < ew < n), Equation (3) is sequentially applied in order of
trajectory sequence.

Hw
(
cdi

, cvi

)
= − ∑

cdi
∈Cd

∑
cvi∈Cv

P
(
cdi

, cvi

)
log2 P

(
cdi

, cvi

)
(3)

where P
(
cdi

, cvi

)
is the joint probability of cdi

, and cvi is within the window W. We then
extract the set WT =

{
w1, w2, . . . , wj, . . . , wm | wj ⊂ Tr, 0 < m < n

}
of windows whose

entropy values exceed the threshold hw.
Finally, the consecutive adjacent windows in WT are merged to obtain the set STreita

of trajectory segments which has potential interaction semantics. The remaining trajec-
tory segments in the original trajectory are composed into the set STremov so that the final
trajectory segmentation results are obtained.

4.3. Graph Construction
4.3.1. Adaptive Discretization

Previous uniform grid division methods discretize all spatio-temporal objects with the
same resolution. When the grid resolution is low, this leads to the loss of a large number
of geometric features and association details. This can result in a decrease in embedding
quality. Using higher-level grids to process spatio-temporal objects incurs significant
computational costs [42]. Discretization methods at the same level are limited in their
ability to describe features of spatio-temporal objects at multiple scales, whereas multilevel
partitioning methods require prior knowledge to set the level parameters. To this end,
we propose an adaptive discretization approach to differentially dissect spatio-temporal
objects at different scales based on H3, preserving more detailed features while taking into
account computational overhead.

For the spatio-temporal object Oi, let its discretization level be r. We examine the
variables that affect the accuracy and computational cost during the discretization process.

• The number of grids NOi (r): NOi (r) is the total number of grids after discretization
of the spatio-temporal object Oi at level r. Obviously, the accuracy of the discretiza-
tion Oi increases as r increases, which also leads to an increase in NOi (r) and the
computational overhead.

• Discretization error ErrOi (r): We use ErrOi (r) to measure the information loss brought
by discretization to the spatio-temporal object description, which is calculated as in
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Equation (4). For polygon elements, inspired by the error analysis method of ras-
terization of vector elements [43], we choose to use the area relative error Errpoly

Oi
(r)

to calculate (Equation (5)), where SOi
orig is the area before discretization and SOi

disc(r)
is the area after discretization. For line elements, we generate the buffer Bbl

(Oi)
of line elements with radius bl and then use the area relative error for calculation
(Equation (6)). For point elements, a uniform grid resolution rp is used for discretization.

ErrOi (r) =


Errpoly

Oi
(r), if Oi is Polygon

Errline
Oi

(r), if Oi is Line String

0, if Oi is Point

(4)

Errpoly
Oi

(r) =

∣∣∣∣∣∣
SOi

orig − SOi
disc(r)

SOi
orig

∣∣∣∣∣∣, (Sorig 6= 0
)

(5)

Errline
Oi

(r) =

∣∣∣∣∣∣∣
S

Bbl
(Oi)

orig − SOi
disc(r)

S
Bbl

(Oi)

orig

∣∣∣∣∣∣∣,
(

S
Bbl

(Oi)

orig 6= 0
)

(6)

Algorithm 1: Adaptive Discretization Algorithm
Input : Spatio-Temporal Object Set Os, Level Parameter hrs, Buffer Radius bl
Output : Discretization Level Set R

1 /*Initialization*/
2 R[n][m]← ∅;
3 /*Discretization*/
4 foreach Oi of Os do
5 rm ← <Level upper limit>;
6 foreach rj ∈ (rm, rm + hrs) do
7 countDict[j][c]← <The number of discretized cells under rj>;
8 if type of Oi is Line then
9 errDict[j][e]← <Get the error according to Equation (6)>;

10 else
11 errDict[j][e]← <Get the error according to Equation (5)>;
12 end
13 end
14 normMergeSet← <Combine countDict and errDict by normalization>;
15 Ri ← <Key of the minimum value in normMergeSet>;
16 R[i][r]← Ri
17 end
18 return R

Thus, the adaptive discretization problem of multiscale spatio-temporal objects can
be transformed into an optimization problem with constraints of the form shown in
Equation (7).

arg min
r

(
Nnorm

Oi
(r) + Errnorm

Oi
(r)
)

(7)

where Nnorm
Oi

(r) and Errnorm
Oi

(r) are the normalized NOi (r) and ErrOi (r), respectively. For
the spatio-temporal object Oi, we only need to consider the level of the grids that are close
in scale to it. Therefore, we first obtain the approximate scale range of the spatio-temporal
object by calculating the convex area of the spatio-temporal object Sconv

Oi
. We choose the

level rmax(Oi)
with the smallest difference between the average area of the grid [39] and

Sconv
Oi

as the upper limit of the search. Search down according to the parameter hrs and
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let D be the feasible domain of Equation (7); as shown in Equation (8), there exists such
a constraint.

D =
{

r | r ∈
[
rmax(Oi)

, rmax(Oi)
+ hrs

]}
(8)

As the discretization level for points is the default, we only give the pseudo-code of
the discretization algorithm for lines and polygons as Algorithm 1.

4.3.2. Heterogeneous Graph Model

To describe the associations between multiscale spatio-temporal objects, we map
geographic entities and trajectories into a heterogeneous graph. Unlike previous studies,
we use heterogeneous rather than homogeneous graphs for the following reasons: Rather
than embedding towards the grid, we embed different spatio-temporal objects. We describe
the spatio-temporal co-occurrence between spatio-temporal objects through the grid and
use the structural relationships of the grid to associate different levels. The nodes in the
heterogeneous graph have different categories, which can describe the interaction and
association between different spatio-temporal objects. The association semantics between
different types of nodes can be explored according to specific requirements. This enhances
the generality and scalability of the method and allows for designing sampling algorithms
tailored to different applications.

As shown in Figure 5, there are 5 kinds of nodes in the heterogeneous graph
Gr = {V, E, T}, namely TV = {M, S, H, P, G}, where M is the moving object node, S
is the trajectory segment node, H is the grid node, P is the subgeographic entity node, and
G is the geographic entity node. M and G are collectively referred to as spatio-temporal
object nodes, while S and P are collectively referred to as subobject nodes. Since we are
not concerned about the association of moving objects with geographic entities other than
spatio-temporal interactions, we describe moving objects by their trajectories. When the tra-
jectory or geographic entity does not exist for a subobject, it is represented by itself instead.

Figure 5. Illustration of the Association Heterogeneous Graph Model.

Since spatio-temporal objects are discretized into different levels of the grid, we have
to consider the structural relations of the grid itself. Additionally, we need to consider the
spatio-temporal co-occurrence-based associations between the spatio-temporal objects. The
edge TE = {RMS, RSH , RPH , RGP, RHn , RHl , } in the graph consists of two parts. One part
is the containment relationship of spatio-temporal objects and their mapping relationship
with the geographic grid, including the edge RMS between moving objects and trajectory
segments, the edge RSH between the trajectory segments and geographic grid, the edge
RPH between the subgeographic entities and geographic grid, and the edge RGP between
geographic entities and subgeographic entities. There is a weight λ between the edges,
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where λSH ≥ 1 and λPH ≥ 1, indicating the number of times this grid appears in the
discretization result of the subobject. This value can reflect the association strength of
spatio-temporal objects about a certain grid region. The weights λ = 1 for all edges
except RSH , RPH , as shown in Figure 6. The other part is the structural relationship of the
geographic grid itself, as shown in the dashed box of Figure 6, including the adjacency
relationship RHn between the grid and its surrounding grids (indicated by red lines) as
well as the hierarchical relationship RHl between the grid and its neighboring hierarchical
grids (indicated by blue lines). For example, for grid H2, owing to the excellent isotropy of
the hexagonal grid, the adjacency relation RHn with H1 and H3, and the hierarchy relation
RHl with the upper grid H7 and the lower grid H10 can be obtained quickly.

Figure 6. Example of Association Heterogeneous Graph. The moving object Ma has trajectory
segments Sa1 and Sa2 , where Sa1 is discretized with grids H1, H2, H3. The geographic entity Ga has
subgeographic entities Pa1 and Pa2 , where Pa1 is discretized with grids are H7, H8.

4.4. Embedding

Unlike the previous approach of using feature engineering based on expert knowledge,
we obtain the vector representation of each spatio-temporal object by node embedding. This
not only captures the interaction information between different spatio-temporal objects in
the embedding process but also preserves the spatial proximity information of these objects.
We introduce the objective function of embedding learning in Section 4.4.1. A heterogeneous
graph sampling algorithm based on biased wandering is proposed in Section 4.4.2. This
algorithm is used to implement node embedding for different application contexts.

4.4.1. Objective Function

Our objective is to obtain an embedding representation for objects in a finite spatio-
temporal range. The strength of association among these objects is reflected by the cosine
similarity of their embedding vectors: the stronger the association is, the higher the cosine
similarity. The strength of spatio-temporal association can be reflected by the spatio-
temporal co-occurrence frequency [7], which is similar to the learning of word vector
representation obtained by word co-occurrence laws in natural language processing. There-
fore, we introduce the Skip-gram [44] model in conjunction with the heterogeneous graph
constructed in Section 4.3. Given the heterogeneous graph GHr = {V, E, T}, the objective
function of Skip-gram can be expressed as Equation (9):

arg max
θ

∑
v∈V

∑
t∈TV

∑
ct∈Nt(v)

log p(ct | v; θ) (9)

where N(v) denotes the set of neighborhood nodes of node v, and Nt(v) denotes the set of
type t neighborhood nodes of node v. For example, the set of type P nodes of H4 in Figure 6
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is {Pa2}. p(ct | v; θ) denotes the probability of occurrence of node ct given node v. For

p(ct | v; θ), a softmax function is usually used to define [45]: p(ct | v; θ) = eXct ·Xv

∑u∈V eXu ·Xv , where
Xv is the v-th row of the matrix X, namely the embedding vector of node v. To improve the
computational efficiency, we adopt the negative sampling strategy for optimization and
set the number of negative samples as K. In this case, Equation (9) can be converted into
Equation (10):

log σ(Xct · Xv) +
K

∑
k=1

Euk∼P(u) log σ(−Xuk · Xv) (10)

where σ(x) = 1
1+e−x , P(u) is a predefined probability distribution, and uk is the kth

negative sample.

4.4.2. Biased Sampling

Since random walks in heterogeneous graphs tend to capture highly visible nodes [46], a
meta-path-based algorithm is usually used to constrain sampling in heterogeneous graph
embeddings. This can result in sequences of nodes that more accurately reflect information
about the structure of the graph. Some scenarios focus more on associations between homo-
geneous spatio-temporal objects, such as similarity analysis of trajectories and functional
analysis of urban areas. In contrast, in environmental management and crime investiga-
tion, more attention is paid to associations between heterogeneous spatio-temporal objects.
However, realistic data are usually a mixture of several different associations. Similar to
the concept of structural equivalence and homogeneous community semantic embedding
in node2vec [47], we propose a second-order biased sampling algorithm that uses hyper-
parameters and multiple meta-paths to generate corresponding sampling strategies for
different spatio-temporal associations, enabling diverse association analysis.

Figure 7. Illustration of Biased Sampling.

The relationship between trajectories and trajectory segments, as well as between geo-
graphic entities and subgeographic entities, is a straightforward containment relationship.
This allows us to acquire the embedded representations of moving objects and geographic
entities by merging their respective subobjects. Therefore, it is only necessary to ana-
lyze within the subgraph GHrsub = {Vsub, Esub, Tsub} of GHr, where TsubV = {S, H, P} and
TsubE = {RSH , RPH , RHn , RHl}. For GHrsub , given a starting node v and a sampling sequence
length lw, the sampling algorithm will generate a sequence starting with v and containing
lw nodes, where the i-th step transfer probability can be expressed as Equation (11).

p
(

vi+1 | vi
t

)
=


πvi

tvi+1

Z
,
(

vi+1, vi
t

)
∈ Esub

0, otherwise
(11)
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where vi
t ∈ Vt, πvi

tvi+1 is the non-normalized transfer probability, and Z is the
normalization constant.

Given that the connection among spatio-temporal objects is wide-ranging and nonex-
clusive, a singular meta-path may skew the embedding reflection of the actual association
status. Therefore, we do not adopt predefined meta-paths directly. Instead, we utilize
hyperparameters to manage sampling bias and augment the association information cap-
tured between homogeneous or heterogeneous objects within a confined range. As shown
in Figure 7, assuming that the current node sampled is vs

ts
(i.e., node s in the figure),

φ(vs
ts
) = ts, whose last visited node is vb

tb
(i.e., node b in the figure), the next visited node is

vx
tx

. The transfer probability of visiting vx
tx

from vs
ts

is defined as πx
vs

tt
vx

tx
= ξ

(
vb

tb
, vx

tx

)
·λvs

ts vx
tx

,

where λvs
ts vx

tx
is the weight and ξ

(
vb

tb
, vx

tx

)
is the sampling probability. When ts 6= H,

∀vn ∈ N(vs
ts
), φ(vn) = H, where πx

vs
tt

vx
tx
= λvs

ts vx
tx

. In contrast, when ts = H, as shown in

Equation (12), we use the homogeneous parameter m, the heterogeneous parameter n, and
the spatial parameter k to control the sampling probability.

ξ
(

vb
tb

, vx
tx | φ

(
vs

ts

)
= H

)
=


1
m , if tb = tx and tx 6= H
1
n , if tb 6= tx and tx 6= H
1
k , if tb 6= tx and tx = H
0, if tb = tx and tx = H

(12)

where (vs
ts

, vx
tx
) ∈ Esub, and the sampling probability is 1/m when vb

tb
and vx

tx
are homo-

geneous spatio-temporal object nodes. The sampling probability is 1/n when vb
tb

and
vx

tx
are heterogeneous spatio-temporal object nodes; in order to obtain the neighborhood

information and hierarchical information of the multilevel grid, we control the sampling of
the wandering algorithm among the grid nodes by the spatial parameter k. When vb

tb
is a

spatio-temporal object node and vx
tx

is a grid node, the sampling probability is 1/k. When
vb

tb
is a grid node, we no longer perform the sampling of the neighboring grid so that the

association aggregation around the sparse region can be controlled within a reasonable
range. In addition, since we are oriented toward spatio-temporal object embedding rather
than grid embedding, the grid nodes will be filtered out in the final node sequence so that
only spatio-temporal object nodes are retained.

5. Experiment

We tested the effectiveness of our proposed method in discovering and measuring asso-
ciations between spatio-temporal objects, both homogeneous and heterogeneous, through
two quantitative experiments. To visualize the results of the association analysis, we present
a case study of it in a visual way.

5.1. Experiment Setup
5.1.1. Data Preparation

We generated a 60 km buffer radius for the US mainland region as a test area for the
experiment, with an area size of 9.705 × 106 km2, which contains a large number of spatio-
temporal objects at different scales. For the geographic entity data, we used the Natural
Earth dataset [48] by selecting a part of the data as geographic entity objects, supplemented
with OurAirports dataset [49] as airport data. The details are summarized in Table 2.
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Table 2. Statistics of the Geographic Entity Dataset.

Geographic Entity Count

Airport 27,675
Coastline 192

Lakes 418
Parks and protected lands 148

Railroad 873
Rivers 1391

River and lake center lines 314
Roads 39,918
State 254

Urban 1120

For moving object data, we used the open source ADS-B dataset provided by Open-
skyNetwork [50], a crowdsourcing-based nonprofit receiving network that has been con-
tinuously collecting air traffic monitoring data since 2013. We selected four days of flight
trajectory data in June 2022. Since trajectories with lower flight altitudes have a higher
probability of being interactively associated with geographic entities, we randomly selected
some of the flight trajectories with flight altitudes below 1500 m. After preprocessing
according to Section 4.2, we divided the trajectories into datasets A, B, and C. Among these,
the International Civil Aviation Organization (ICAO) 24-bit aircraft address in dataset B
and C are the same, among which each aircraft has flight records in these 4 days. The
preprocessed moving object dataset summary characteristics are shown in Table 3.

Table 3. Preprocessed moving object dataset summary characteristics.

Dataset A B C

Date 20-06 06-06, 13-06, 20-06 27-06
Num.Aircraft 5661 900 900
Num.Traces 5661 2753 919

Num.Traces Seg 50,321 41,846 13,166
Avg Num.Points 330.757 519 522.534

Avg Trace Length 1 276.504 464.043 482.19
1 Data in minutes.

5.1.2. Parameter Setting

In the association graph construction stage, we set the adaptive discrete hierarchical
parameter hrs to 3 so that for each spatio-temporal object, only 3 calculations are needed to
obtain a relatively appropriate discretization level. As the point elements are all airports
and aprons, whose areas ranges between approximately 0.001 km2 and 10 km2, we set the
default level rp for the point elements to 9, which has a mean grid area of 0.1053 km2. We
set the buffer radius bl to 5 m to preserve as much of the line element geometry as possible.

In the embedding phase, we set the vector dimension d of the embedding to 256 in
order to retain more association information. Other hyperparameters were set as follows:
learning rate lr = 2.5× 10−3, window size span = 5, number of sampled sequences of
a single node 100, length of sampled sequences lw = 100, and the number of negative
samples K = 5.

5.1.3. Evaluation Metrics

We tested the association analysis in terms of both association discovery and asso-
ciation metrics. There was no sequential relationship between the results of association
discovery. We used Hitting Ratio in Top K list (HR@K) [51] to evaluate the results. HR@K
was defined as shown in Equation (13):

HR@K =
1
|Ste| ∑

κ∈Ste

∣∣LS
κ @K ∩ LR

κ

∣∣
|LR

κ |
(13)
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where κ refers to the spatio-temporal object under the test, Ste is the set of spatio-temporal
objects under the test, LR

κ is the list of spatio-temporal objects in the ground truth that have
an association with κ, and LS

κ @K is the list of the top K spatio-temporal objects with the
strongest association to κ output by the model.

The list of results of association metric tests can be sorted according to the strength
of association. We used normalized discounted cumulative gain at a particular rank
K(NDCG@K) [35] to evaluate the association metric results, which was defined as shown
in Equation (14):

NDCG@K =
DCG@K
IDCG@K

(14)

where IDCG@K is the ideal DCG@K value, which is the DCG@K value of the ground truth
list, and DCG@K is defined as shown in Equation (15).

DCG@K =
K

∑
i=1

2reli − 1
log2(i + 1)

(15)

where reli is the order association of test results at i. For this experiment, reli takes 0 and 1.
For the ground truth, we will illustrate its generation in the specific experiments.

5.1.4. Baseline

To assess the validity of STO2Vec, the following three models with similar research
questions were used as baseline for comparison with STO2Vec.

• Mot2vec [28]: The algorithm is based on the Word2vec model, which uses the trajec-
tories of pedestrians moving between geographic entities to construct a behavioral
representation of locations. The algorithm does not use grid partitioning but rather
generates IDs of geographic entities based on point clustering and then converts the
trajectories into ID sequences for embedding. According to the data characteristics,
we use a time window of timestep = 5 min in the preprocessing stage to label the
trajectories with geographic entities, with the minimum spatial resolution being 5 km.

• Hier [32]: This similar algorithm uses a multilevel embedding grid, which aggregates
rectangular grid vectors of different levels into fine-grained grids during embedding.
Due to the large study area in this paper, we used 100 km and 10 km grid cells in the
first and second level, respectively. The fine-grained level uses 1 km grid cells. The
embedding dimension is the same as STO2Vec, the first 48 dimensions correspond
to 100 km grid, the last 80 dimensions correspond to a 10 km grid, the remaining
128 dimensions correspond to a 1 km grid.

• GCN-L2V [31]: To generate fine-grained grid embeddings, the GCN and Skip-gram
models were used to construct spatial graphs and flow graphs to account for both
spatial proximity and the movement patterns of moving objects. The algorithm uses
a single-level Google S2 grid system. According to the scale of the study area, we
mapped trajectories and geographic entities to the 11-level (the average area of each
grid area is about 20.2682 km2) of Google S2 to generate edges between grids in spatial
graphs with a distance threshold of 1 km.

5.2. Homogeneous Association Analysis

To evaluate the effectiveness of association analysis between homogeneous spatio-
temporal objects, we examined the effect of the algorithm on the association analysis
between moving objects and geographic entities. This evaluation was conducted through
two applications: Trajectory Similarity Analysis and Region Association Analysis. We
constructed the association heterogeneous graph based on dataset A and geographic entity
dataset, in which there are 1, 854, 380 nodes and 4, 986, 765 edges. We then performed
homogeneous biased sampling in the heterogeneous graph and set the homogeneous
parameter to m = 2, the heterogeneous parameter to n = 4, and the spatial parameter to
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k = 4. Finally, we realized the embedding representation of nodes by embedding the model
and calculated the association strength between homogeneous spatio-temporal objects.

5.2.1. Trajectory Similarity Analysis

Ground Truth Generation. For moving objects, the similar association of their trajec-
tories is a typical spatio-temporal association. By comparing the similarity analysis results
of trajectories, we could verify the effect of the algorithm in association metrics and dis-
covery between moving objects. There are many existing mature algorithms for trajectory
similarity metrics based on geometric features, which accurately calculate the similarity
between trajectories by matching point by point.Therefore, we used the dynamic time
warping algorithm [52] to generate the similarity matrix between trajectories on the dataset
A. We then created the experimental ground truth according to the order of similarity,
ensuring that all trajectories had a similarity greater than 0.7.

Result for Trajectory Similarity Analysis. We randomly selected 1000 trajectories
from the dataset A, using different models to generate a list of similar trajectories for
comparison with the ground truth. Since the results of the trajectory similarity metric are
order sensitive, we used NDCG@K to evaluate the experimental results. The results are
shown in Table 4.

Table 4. Results of Trajectory Similarity Analysis.

Method NDCG@10 NDCG@20 NDCG@30 NDCG@40 NDCG@50

Mot2Vec 0.3325 0.3741 0.4021 0.4416 0.4592
Hier 0.265 0.3327 0.3987 0.4122 0.4157

GCN-L2V 0.3755 0.4312 0.498 0.5152 0.516
STO2Vec 0.5468 0.6205 0.6562 0.671 0.6752

The best results are shown in bold and the second best results are underlined.

The experimental results show that STO2Vec achieves the best performance. This is be-
cause STO2Vec segments trajectories based on the joint information entropy and discretizes
trajectory segments according to different spatial resolutions, addressing the problem of
uneven spatio-temporal semantic distribution and discovering local similar associations
among trajectories better. Mot2Vec converts trajectories into geographic entity sequences at
equal time intervals, losing some geometric feature information of the trajectories. Hier
also uses a multilevel discretization strategy but needs to set a fixed hierarchical structure
based on prior knowledge, without considering the scale of specific spatio-temporal objects.
GCN-L2V divides the study area into uniform fine-grained grids but still cannot adaptively
discretize the trajectories when facing spatio-temporal objects of multiple scales, result-
ing in some degree of information loss. In addition, Hier and GCN-L2V do not segment
trajectories but convert them into grid sequences using stop detection algorithms. These
approaches are more suitable for mining trajectories with obvious stop semantics, such as
pedestrian trajectories, while ignoring the association information during the MOVE phase
for objects such as aircraft.

5.2.2. Region Association Analysis

Ground Truth Generation. According to the first law of geography [3] and the semantic
characteristics of geographic entities, it is known that geographic entities with spatial
proximity and semantic similarity are more strongly associated [30]. Region association
analysis is often used to discover the functional structure of cities to help in transportation
and urban planning. Due to the large-scale of the study area, we consider geospatial entities
within the same region as clusters that have associations. We generate a ground truth by
sorting these clusters according to their distance from each other. The region range was
generated by the Urban dataset.

Results for Trajectory Similarity Analysis. There are a total of 16,073 other geo-
graphic entities with containment relationship with the Urban dataset, from which we
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randomly selected 2000 for testing. Ideally, the K geographic entities with the greatest
association strength with the sample still belong to the region where the sample is located.
Moreover, the closer the entities are, the higher the association strength. For this reason, we
chose NDCG@K for evaluation. The experimental results are shown in Table 5.

From the experimental results, GCN-L2V has the best performance for NDCG@10
and NDCG@20, while STO2Vec has the best performance for NDCG@30, NDCG@40, and
NDCG@50. This is due to the fact that GCN-L2V constructs spatial graphs by performing
a large number of distance calculations to accurately describe the distance relationships
between the grids. The larger the distance threshold parameter is, the higher the computa-
tional cost. The distance threshold parameter used in this experiment was 1 km. Therefore,
in NDCG@10 and NDCG@20, the geographic entities with greater association strength
could be accurately captured by GCN-L2V. However, as the value of K value increases and
exceeds the distance threshold, grid association information beyond the threshold becomes
difficult to capture, which affects the association accuracy of GCN-L2V. STO2Vec adopts a
multilevel discretization strategy, which fully utilizes the structural relationships between
grids and obtains more accurate association results over larger ranges. Although Hier also
uses a multilevel approach for fine-grained grid embedding, the preset grid resolution
cannot match the scale of spatio-temporal objects in the study area accurately, leading to
the ignoring of spatial proximity between some geographic entities. Mot2Vec focuses on
the association created by human movements between different geographic entities rather
than on the spatial association of the entities themselves.

Table 5. Results of Region Association Analysis.

Method NDCG@10 NDCG@20 NDCG@30 NDCG@40 NDCG@50

Mot2Vec 0.3125 0.3853 0.4152 0.428 0.4394
Hier 0.3875 0.4521 0.4817 0.4946 0.5084

GCN-L2V 0.4133 0.497 0.5156 0.5227 0.5291
STO2Vec 0.4096 0.4918 0.5262 0.5356 0.5434

The best results are shown in bold and the second best results are underlined.

5.3. Heterogeneous Association Analysis

The stronger the association between heterogeneous spatio-temporal objects, the
higher the probability of their spatio-temporal co-occurrence. The relationship between
moving objects and geographic entities can be used to predict object access patterns.
Geographic entities that have a strong association with moving objects are more likely
to be accessed by them. Therefore, we use Visit Prediction to test heterogeneous spatio-
temporal objects. In practical applications, Visit Prediction can help people to dispatch and
control based on the prediction results, which is important for public security management,
airspace control, etc.

Ground Truth Generation. In our experiments, we used different models to output
the K geographic entities most associated with moving objects, to test the effectiveness of
the algorithm predictions by comparing the actual visit results. The actual access results,
namely ground truth, are generated by extracting the geographic entities visited by each
moving object from the dataset C.

Result for Trajectory Similarity Analysis. To obtain more information on historical
visits, we construct a heterogeneous graph oriented to spatio-temporal association based on
the B dataset and the geographic entity dataset, containing 1, 676, 516 nodes and 4, 206, 884
edges, setting the homogeneous parameter k = 1, the heterogeneous parameter m = 2 and
the spatial parameter l = 0. Since the real visited list is not order sensitive, we used the
hit rate HR@K as the evaluation metric for this experiment. The experimental results are
shown in Table 6.
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Table 6. Results of Heterogeneous Association Analysis.

Method HR@10 HR@30 HR@40 HR@50

Mot2Vec 12.63% 28.7% 33.57% 39.68%
Hier 16.76% 35.66% 42.57% 46.9%

GCN-L2V 17.15% 34.93% 41.39% 47.23%
STO2Vec 18.08% 40.71% 47.06% 51.42%

The best results are shown in bold and the second best results are underlined.

As shown in Table 6, STO2Vec achieved the best results, while the experimental results
of GCN-L2V and Hier were not significantly different, but the results of Mot2Vec were
general. STO2Vec can regulate the random walk tendency based on task requirements by
adjusting sampling parameters. In this way, it obtains more association information be-
tween heterogeneous spatio-temporal objects. This helps to prevent insufficient association
information from being present in the embedding results due to differences in structure
between those objects. The spatial parameters can aggregate the information around the
grid, thus better solving the data sparsity problem. In addition, according to the scale of
spatio-temporal objects, the multilevel discretization strategy can describe the geometric
features of geographic entities and trajectories more accurately. It provides a more accurate
corpus for training models aimed at “spatio-temporal co-occurrence” among heterogeneous
objects. Compared with STO2Vec, the discretization method used by GCN-L2V and Hier
cannot accurately describe trajectories and geographic entities of different scales. As a
result, much local access information is ignored. During clustering, Mot2Vec loses some
historical access information of geographic entities, resulting in less information obtained
during the embedding process than STO2Vec.

5.4. Case Study

We used a case study to visualize the results of the association analysis in order to
better verify the effectiveness of the algorithm. We still used the spatio-temporal association
graph constructed in Section 5.2 for embedding learning. To verify the effect of the sampling
algorithm on the association results, we modified the sampling hyperparameters by setting
the homogeneous parameter to m = 4, the heterogeneous parameter to n = 2, and the
spatial parameter to k = 4, thus generating embedding representation results oriented to
heterogeneous spatio-temporal object associations. We chose to visualize the results of the
association analysis in two areas with significant differences in scale. First, we queried
and analyzed the geographic entities associated with the moving objects in the urban area
where the geographic entities were dense with a smaller scale. Then, we queried and
analyzed the moving objects associated with the geographic entities in the area around the
coastline where the moving objects were dense with a larger scale.

5.4.1. Urban Association Analysis

Urban security management often requires the assistance of drones and helicopters,
as shown in Figure 8 where the yellow dashed line shows the trajectory of a helicopter
conducting security patrols in the urban area of Los Angeles. Los Angeles is the second
largest city in the United States, and geographic entities in the urban area mainly include
streets, railways, and airports. We selected the 150 geographic entities most strongly
associated with the helicopter for visualization. Streets and railways are marked with
red lines, and airports are marked with green dots. Moreover, a darker color indicates a
stronger association.

Figure 8a shows the output of STO2Vec; the comparison shows that the associated
geographic entities output by STO2Vec are more concentrated in spatial distribution. The
strength of association basically matches the spatial characteristics of the trajectory, which
can reflect the interaction between this helicopter and various types of geographic entities
in urban areas more accurately. Owing to the fact that STO2Vec discretizes the trajectories
by segmenting them to different spatial resolutions, it is able to adaptively match the scale
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size of the trajectories and geographic entities. In data-intensive areas such as urban areas,
fine-grained geographic entities are described by a high-level grid that retains most of
the spatial characteristics of urban streets, railways, airports, and helicopter trajectories.
Furthermore, as can be seen from the color shades of the elements and their corresponding
association strength values, STO2Vec has a more dispersed distribution of association
strength values than does GCN-L2V and Hier (e.g., 0.758–0.845 for airports and 0.711–0.889
for roads and railroads in Figure 8a); this indicates that the objects are more significantly
different in STO2Vec embedding space. Without changing the association structure, the
parameters can be set to adjust the sampling trend to the application requirements, which
allows the model to learn more information about the interaction between the helicopter
and the geographic entities.

(a) STO2Vec (b) GCN-L2V

(c) Hier (d) Mot2Vec

Figure 8. Results of Urban Association Analysis.

As shown in Figure 8b,c, the output of GCN-L2V and Hier can reflect the association
between moving objects and geographic entities to some extent. Both models take into
account the context of surrounding neighboring areas. However, compared with those of
STO2Vec, their associated geographic entities are spatially more dispersed. Since the scale
of the upper grid in the Hier model is too large for spatio-temporal objects in the region,
the model aggregates information from a large area around the trajectory during training.
This can solve the problem of data sparsity but also affects the accuracy of local association
analysis. GCN-L2V has difficulty associating smaller-scale objects such as airports. The
11-level grid of Google S2 (with an average grid area of approximately 20.2682 km2) is
still relatively coarse for a geographic entity in an urban area. The fixed grid resolution
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makes it difficult to take into account different scales of geographic entities such as railways
and airports; therefore, the model learns less variation in features, and the distribution of
association strength values is more concentrated. As shown in Figure 8d, the output of
Mot2Vec is more dispersed, as most of the spatial proximity information of geographic
entities is lost in the process of converting trajectories into ID sequences. For helicopters
with strong mobility, the time window size of trajectory segmentation also affects the
embedding accuracy.

For the area around the coastline, such as the Martha’s Vineyard coastline area shown
by the yellow line in Figure 9a, the island is approximately 32 km long and 3–16 km
wide. Summer is the peak tourist season for the area. Therefore, the dataset contains a
large number of flight trajectories for tourists traveling to the area and helicopter flight
trajectories for sightseeing around the island. The red lines in Figure 9 show the trajectories
of the associated moving objects. The top 40 trajectories with the strongest association to
the island’s coastline were selected for visualization. As shown in Figure 9a, since STO2Vec
segments the trajectory based on joint information entropy, the model can output more
accurate results in the form of trajectory segments. Trajectory segments of the moving
object during the move phase around the island are most strongly associated with the
coastline.This is due to the ability of STO2Vec to use a multilevel grid to portray the
geometry of the coastline relatively accurately during the discretization of geographic
entities. Moreover, the geographic entities in the area around the coastline are more sparse.
The biased sampling algorithm allows the embedding results to be unaffected by the large
number of intertrajectory associations.Segments of trajectories that fly around islands and
hover near coastlines are able to generate rich co-occurrence contexts with coastline entities.
Other trajectory segments that have basic topological associations, such as those adjacent
or crossing, exhibited a weaker association strength due to the sparse structure of the
association graph.

5.4.2. Coastline Association Analysis

The output of other models can only be visualized as trajectories, as shown in
Figure 9b–d. Since geographic entities are sparse and trajectories are richer, a large number
of association interactions are covered by similar or topological associations between tra-
jectories. Therefore, the three models tend to discover flying trajectory-based associations
between the island, the mainland, and adjacent islands. However, due to the uneven
semantic distribution of trajectories, some of the stronger local associations (e.g., local
flight around the island, local hovering) are diluted by the full trajectories. As a result,
the trajectory segments that are strongly associated with the coastline in STO2Vec do not
fully manifest in the output results of the three comparison models. Furthermore, con-
sidering spatio-temporal objects of different scales during selection of grid resolution is
challenging for Hier and GCN-L2V. Consequently, their analysis may not be accurate or
complete. Mot2Vec does not use a discretization approach to consider spatial associations
between geographic entities. Accordingly, when data is sparse in specific regions such as
the coastline, it relies on the IDs of distributed geographic entities along the continental
coast for context rather than grid cells near the coastline.
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(a) STO2Vec (b) GCN-L2V

(c) Hier (d) Mot2Vec

Figure 9. Results of Coastline Association Analysis

6. Discussion and Conclusions

In this paper, we proposed a multiscale spatio-temporal object representation method,
named STO2Vec, for association analysis. The method aims to address the issue of scale
differences among spatio-temporal objects affecting the accuracy of analysis in the associ-
ation analysis. To this end, we decompose spatio-temporal objects of varying scales into
grids of different resolutions and obtain their representations by node embedding of an
associated heterogeneous graph. During the embedding process, we enhance its scalability
through biased sampling. Quantitative experiments demonstrated that STO2Vec could
outperform other methods in various spatio-temporal association analysis applications,
such as trajectory similarity analysis, regional association analysis, and visit prediction.
This confirms that the resulting representation of STO2Vec retains more spatio-temporal
association information by reflecting the scale differences. Additionally, the case analysis
results demonstrated the effectiveness of STO2Vec in accurately measuring and discovering
associations. These associations occur between spatio-temporal objects that differ in scale,
highlighting the ability of STO2Vec to solve problems related to multiscale spatio-temporal
object association analysis.

Representing geographic entities as point features can simplify computation but loses
their spatial characteristics and most association information. Dividing spatio-temporal
objects into fixed grids retains some of the features but struggles to consider scale differences
or nonuniform regions. Presetting multilevel grids with prior knowledge partly alleviates
scale difference impacts, but discerning suitable levels is difficult. Compared to other
methods, STO2Vec provides better representation of various scales of spatio-temporal
objects, enabling more accurate measurement and discovery of complex spatio-temporal
association relationships. However, STO2Vec has limitations: representing object results in
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vector form—not grids—sacrifices flexibility, hindering incremental updates or aggregation
while placing timeliness demands on data.

In the next step of our research, the focus will be on combining the behavior patterns
of moving objects. The aim is to identify specific association semantics that exist between
spatio-temporal objects. This will involve constructing a fine-grained association graph
enabling deeper association analysis applications.
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