
Citation: Chen, B.Y.; Huang, H.;

Chen, H.-P.; Liu, W.; Chen, X.-Y.; Jia,

T. Efficient Algorithm for

Constructing Order K Voronoi

Diagrams in Road Networks. ISPRS

Int. J. Geo-Inf. 2023, 12, 172. https://

doi.org/10.3390/ijgi12040172

Academic Editors: Wolfgang Kainz

and Sisi Zlatanova

Received: 4 February 2023

Revised: 4 April 2023

Accepted: 6 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Efficient Algorithm for Constructing Order K Voronoi Diagrams
in Road Networks
Bi Yu Chen 1,2,3,4 , Huihuang Huang 1, Hui-Ping Chen 1,3,5,*, Wenxuan Liu 1, Xuan-Yan Chen 1 and Tao Jia 4,6

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; chen.biyu@whu.edu.cn (B.Y.C.)

2 Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
3 Hubei Luojia Laboratory, Wuhan 430079, China
4 Geocomputation Center for Social Sciences, Wuhan University, Wuhan 430079, China
5 School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
6 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
* Correspondence: chenhuiping@hust.edu.cn

Abstract: The order k Voronoi diagram (OkVD) is an effective geometric construction to partition
the geographical space into a set of Voronoi regions such that all locations within a Voronoi region
share the same k nearest points of interest (POIs). Despite the broad applications of OkVD in various
geographical analysis, few efficient algorithms have been proposed to construct OkVD in real road
networks. This study proposes a novel algorithm consisting of two stages. In the first stage, a new
one-to-all k shortest path finding procedure is proposed to efficiently determine the shortest paths to k
nearest POIs for each node. In the second stage, a new recursive procedure is introduced to effectively
divide boundary links within different Voronoi regions using the hierarchical tessellation property of
the OkVD. To demonstrate the applicability of the proposed OkVD construction algorithm, a case
study of place-based accessibility evaluation is carried out. Computational experiments are also
conducted on five real road networks with different sizes, and results show that the proposed OkVD
algorithm performed significantly better than state-of-the-art algorithms.

Keywords: order k Voronoi diagrams; network Voronoi diagrams; network analysis; place-based
accessibility; transport informatics; socio-spatial computing

1. Introduction

The Voronoi diagram (VD) is one of the fundamental geographical constructions for
partitioning a geographical space through a competitive means [1–4]. Specifically, the
VD partitions the geographic space into a set of Voronoi regions based on a given set of
points of interest, also known as generators. Each Voronoi region contains all the locations
that share the same nearest generator, allowing for space tessellation and providing an
adjacency structure for topology generation [5]. In addition, a Voronoi region can be used as
container for geographical entities, making it an effective indexing structure for organizing
spatial data. Due to these unique characteristics, the VD has been widely used in various
geographical applications, such as mobile phone data analysis [6], facility service area
delimitations [7], spatial data mining [8,9], and etc.

The order k Voronoi diagram (OkVD) is a generalization of the VD that has also
received significant attention in the literature [1,10,11]. Given a set of generators, the OkVD
is meant to partition the geographical space into a set of order k Voronoi regions (OkVR),
where all locations within an OkVR share the same k nearest generators. These generators
are determined by their order of proximity to the location, i.e., the first nearest generator,
the second nearest generator, and so on until the kth nearest generator. This OkVD provides
an effective tool to determine k nearest generators for any location, which is a critical
step for numerous spatial analysis tasks, such as spatial interpolations [12], accessibility

ISPRS Int. J. Geo-Inf. 2023, 12, 172. https://doi.org/10.3390/ijgi12040172 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12040172
https://doi.org/10.3390/ijgi12040172
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0003-3591-9968
https://doi.org/10.3390/ijgi12040172
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12040172?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2023, 12, 172 2 of 23

evaluations [13], and k nearest neighbor queries [14–16]. Given the broad applications
of the OkVD in the geographical analysis, it is therefore necessary to develop efficient
algorithms for constructing OkVDs in real-world geographical spaces.

In the literature, efficient algorithms for constructing Voronoi diagrams (VDs) have
been the subject of much research. Early studies focused on the construction of VDs in
homogeneous and isotropic planar spaces, where the distance between any two locations is
measured by Euclidean distance [3,17]. However, recognizing that movements in urban
areas is generally constrained by road networks, Erwig [18] first proposed a network
Voronoi diagram (NVD) model for partitioning the urban geographical space. The NVD
model quantifies distances between any two locations in the road network explicitly by
using shortest path algorithms to compute the network distance [19]. Building on this
work, Okabe et al. [1] developed an efficient algorithm for constructing NVDs by modifying
conventional shortest path algorithms. Ohsawa [20] applied the concept of Order k Voronoi
region for solving the problem of k nearest neighbor queries. As an alternative approach,
Ai et al. [2] proposed an NVD construction algorithm by discretizing each road link into
a set of linear units of equal length and using the stream flowing approach to construct
NVDs. Chen et al. [21] proposed several new NVD models for partitioning the urban
geographic space constrained by multi-mode public transport networks and developed
effective algorithms for constructing NVDs in public transport networks.

To the best of our knowledge, there are few algorithms in the literature have been
developed to construct order k NVD (OkNVD) in real road networks, with the notable
exception of Okabe et al. [1]. For convenience, this algorithm is hereafter referred to
as Okabe’s algorithm. This algorithm consists of two stages. In the first stage, the k
nearest generators for each node are determined by performing the one-to-all shortest
path algorithm (e.g., Dijkstra’s algorithm) |F| times to construct completed one-to-all
shortest path trees rooted at all generators, where |F| is the number of generators. The k
nearest generators for each node can be determined by sorting |F| shortest paths from all
generators to the node. In the second stage, the OkNVD is constructed by determining all
nodes and links belonging to each order k network Voronoi region (OkNVR). The idea of a
lower-bound envelope is introduced to divide boundary links that belongs to at least two
OkNVRs. Although Okabe’s algorithm is straightforward and easy to implement, the first
stage of Okabe’s algorithm tends to have computational overheads, because it calculates
too many unnecessary shortest paths, given that |F| is generally much larger than the k
value. Furthermore, no detailed procedure was provided for implementing the idea of a
lower-bound envelope method in the second stage.

Along the line of previous work [1], this study proposes an effective and efficient
algorithm for constructing OkNVD in road networks. The proposed algorithm also consists
of two stages, which extends the previous algorithm in the following aspects.

1. A new one-to-all k shortest path procedure is proposed in the first stage to efficiently
determine the k nearest generators at each node. As an extension of Okabe’s algorithm,
the proposed procedure simultaneously constructs |F| shortest path trees in a single
path searching process, sharing the same priority queue to coordinate the construction
of shortest path trees from different generators. Unlike Dijkstra’s algorithm [22],
the proposed procedure closes a node after it has been selected from the priority
queue k times from different generators, allowing it to exactly determine the shortest
paths from the k nearest generators. This results in partial shortest path trees being
constructed, improving Okabe’s algorithm. Furthermore, the proposed procedure
can directly determine the order of k nearest generators according to their order
of selection from the priority queue without the need for shortest path sorting at
each node.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 3 of 23

2. A new recursive procedure is introduced in the second stage to effectively divide
boundary links into different OkNVRs. This study rigidly proves the hierarchical
tessellation property of OkNVD. Specifically, each order j NVR is covered by a set
of order j + 1 NVRs, and these order j + 1 NVRs are mutually exclusive except at the
boundary points (j = 0, 1, . . . , k − 1). Using this hierarchical tessellation property, the
introduced procedure, therefore, can recursively divide every boundary link into the
order first, second, . . . , until the kth NVRs.

3. To demonstrate the applicability of the proposed OkNVD construction algorithm, a
comprehensive case study of evaluating place-based accessibility is carried out in
Shenzhen, a mega-city in China. Computational experiments are also conducted
using five real road networks with various settings of k and |F| values. Results show
that the proposed OkVD algorithm performed significantly better than state-of-the-
art algorithms.

The remainder of this article is organized as follows. Section 2 gives the model
formulation of OkNVD and proves its hierarchical tessellation property. Section 3 describes
the proposed OkNVD construction algorithm. Section 4 reports the numerical example of
OkNVD application in place-based accessibility, and computational experiments using five
real road networks. Section 5 presents the conclusions together with recommendations for
future research in the area.

2. Model Formulation of Order k Network Voronoi Diagrams

The list of notations used in this article is summarized in Abbrevations. A road
network can be represented by a directed graph, G(N, A), consisting of a set of nodes
N, and a set of links A. Each link aijεA has a tail node niεN and a head node njεN, and
a positive link cost tij (length or travel time). Each node nj has a set of successor nodes
SUCC

(
nj
)

and a set of predecessor nodes PRED
(
nj
)
. Any location q in the road network

can be represented as
(
aij, θq

)
using the linear reference technique [23], where θq ∈ [0, 1]

is the relative position on the link aij. The values of θq = 0 and θq = 1 refer to the tail
and head nodes of the link respectively. With location q, the link aij can be divided into
two partial links aiq and aqj, and their link costs are assumed to be proportional to relative
positions as:

tiq = tij ∗ θq (1)

tqj = tij ∗
(
1− θq

)
(2)

Let poq be the shortest path from origin o to destination q. The path cost, denoted by
toq, can be calculated by the summation of corresponding link costs along the path:

toq = ∑
∀lij

tijδ
oq
ij (3)

where δ
oq
ij is the binary variable of link-path incidence relationship, δ

oq
ij = 1 indicates link

aij on the path poq and otherwise δ
oq
ij = 0.

Let F =
{

f1, . . . , fi, . . . , f|F|
}

be a set of generators located in the road network, where
|F| is the number of generators in F. Generators are typically a certain type of service
facility. Given any location q in the network, its first outward nearest generator, denoted by
f q,1
out ∈ F, satisfies:

t f q
1 ≤ t f q

i , ∀ fi ∈ F−
{

f q,1
out

}
(4)

ISPRS Int. J. Geo-Inf. 2023, 12, 172 4 of 23

where t f q
1 is the cost of the shortest path from generator f q,1

out to location q and t f q
i is the cost

of the shortest path from any other generator fi 6= f q,1
out (i.e., ∀ fi ∈ F−

{
f q,1
out

}
) to location q.

Subsequently, its kth outward nearest generator, denoted by f q,K
out ∈ F, can be identified as

that satisfying:
t f q
K−1 ≤ t f q

K ≤ t f q
i , ∀ fi ∈ F−

{
f q,1
out, . . . , f q,K−1

out

}
(5)

Then, the set of k outward nearest generators can be determined and denoted by
Fq,K

out =
{

f q,1
out, . . . , f q,K

out

}
. Therefore, the outward OkNVD (order k network Voronoi dia-

gram), denoted by VDK
out, is to partition the road network into a set of sub-networks, called

outward OkNVRs (order k network Voronoi regions), denoted by
{

. . . , vrK,i
Out, . . .

}
, such

that all locations within any vrK,i
Out share the same set of k nearest generators, Fq,K

out . The
outward OkNVR, vrK,i

Out, can be expressed as

vrK,i
Out =

{
∀q
∣∣∣(t f q

1 ≤ t f q
i , ∀ fi ∈ F− Fq,1

out

)
∧ . . . ∧

(
t f q
K ≤ t f q

i , ∀ fi ∈ F− Fq,K−1
out

)}
(6)

where ∧ represents that all conditions are satisfied simultaneously.
Because the road network is directed, the inward OkNVD can also be defined by using

the shortest path in a reverse direction from location q to the corresponding generator. Let
Fq,K

in =
{

f q,1
in , . . . , f q,K

in

}
be the set of k inward nearest generators. The jth inward nearest

generator satisfies following condition:

tq f
j ≤ tq f

i , ∀ fi ∈ F− Fq,j−1
in (7)

where tq f
j is the cost of the shortest path from location q to the jth inward nearest generator

f q,j
in . Then, the inward OkNVD, denoted by VDK

in, consists of a set of inward OkNVRs,

VDK
in =

{
. . . , vrK,i

in , . . .
}

. Each inward OkNVR, vrK,i
in , delimits all locations sharing the same

set of k inward nearest generators, Fq,K
in , and it can be mathematically expressed as

vrK,i
in =

{
∀q|
(

tq f
1 ≤ tq f

i , ∀ fi ∈ F− Fq,1
in

)
∧ . . . ∧

(
tq f
K ≤ tq f

i , ∀ fi ∈ F− Fq,K−1
in

)}
(8)

The outward and inward OkNVDs are applicable for different types of generators and
different applications. The outward OkNVDs are commonly for emergency facilities (e.g.,
fire stations) and applications whose outward travel cost t f q

i is critical; while the inward
OkNVDs are usually for service facilities (e.g., supermarkets and shopping malls) and
applications whose inward travel cost tq f

i is critical.
Figures 1 and 2 illustrate the outward and inward OkNVDs in a well-known small

road network, namely the Sioux Falls network. Figure 1a,b respectively give the outward
and inward OkNVDs when k = 1, in which OkNVDs degrade to the classical outward
and inward NVDs. In both two figures, generators are given in star shapes, and their
Voronoi regions are shown in the same color. As can be seen, the outward NVDs are not
identical to the inward counterparts, since the road network is directed. It can also be seen
that both outward and inward NVDs form a tessellation on the road network with two
observations: (1) All NVDs cover the whole network (i.e., collectively exhaustive); and
(2) Voronoi regions are mutually exclusive except at the boundary points. This is because
the Sioux Falls network (as most real road networks) is fully connected, i.e., there exists at
least one path between any two locations in the road network.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 5 of 23ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 23

Figure 1. Illustrative example of OkNVDs when k = 1 in Sioux Falls network: (a) Outward OkNVD;
(b) Inward OkNVD.

Figure 2a,b respectively shows the outward and inward OkNVDs when 𝑘 = 2 in the
same Sioux Falls network. In these two OkNVDs, six OkNVRs are given in different col-
ors. Each OkNVR delimits all locations sharing the same 𝑘 nearest generators. For exam-
ple, all locations within in 𝑣𝑟 , have the same first and second nearest generators, 𝑓
and 𝑓 . As can be seen, the outward (or inward) order second NVDs not only form a tes-
sellation on the whole network but also on each outward (or inward) order first NVR.
Thereby, the order-second NVD together with the order first NVD form a hierarchical
tessellation on the road network. This hierarchical tessellation can also be represented by
the tree structure shown in Figure 3a,b, in which the Voronoi regions were kept the same
color as Figure 2a,b. The original road network is represented as a single root node at level
0 of the tree. The order first NVD is to partition the original network into a set of order
first NVRs, which are represented as child nodes of nodes at level 1. Each order first NVR
is further divided into a set of order second NVRs representing as its child nodes, i.e.,
nodes at level 2.

Figure 1. Illustrative example of OkNVDs when k = 1 in Sioux Falls network: (a) Outward OkNVD;
(b) Inward OkNVD.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 23

Figure 1. Illustrative example of OkNVDs when k = 1 in Sioux Falls network: (a) Outward OkNVD;
(b) Inward OkNVD.

Figure 2a,b respectively shows the outward and inward OkNVDs when 𝑘 = 2 in the
same Sioux Falls network. In these two OkNVDs, six OkNVRs are given in different col-
ors. Each OkNVR delimits all locations sharing the same 𝑘 nearest generators. For exam-
ple, all locations within in 𝑣𝑟 , have the same first and second nearest generators, 𝑓
and 𝑓 . As can be seen, the outward (or inward) order second NVDs not only form a tes-
sellation on the whole network but also on each outward (or inward) order first NVR.
Thereby, the order-second NVD together with the order first NVD form a hierarchical
tessellation on the road network. This hierarchical tessellation can also be represented by
the tree structure shown in Figure 3a,b, in which the Voronoi regions were kept the same
color as Figure 2a,b. The original road network is represented as a single root node at level
0 of the tree. The order first NVD is to partition the original network into a set of order
first NVRs, which are represented as child nodes of nodes at level 1. Each order first NVR
is further divided into a set of order second NVRs representing as its child nodes, i.e.,
nodes at level 2.

Figure 2. Illustrative example of OkNVDs when k = 2 in Sioux Falls network: (a) outward OkNVDs;
(b) inward OkNVDs.

Figure 2a,b respectively shows the outward and inward OkNVDs when k = 2 in the
same Sioux Falls network. In these two OkNVDs, six OkNVRs are given in different colors.
Each OkNVR delimits all locations sharing the same k nearest generators. For example,
all locations within in vr2,1

out have the same first and second nearest generators, f1 and f2.
As can be seen, the outward (or inward) order second NVDs not only form a tessellation
on the whole network but also on each outward (or inward) order first NVR. Thereby, the
order-second NVD together with the order first NVD form a hierarchical tessellation on the
road network. This hierarchical tessellation can also be represented by the tree structure
shown in Figure 3a,b, in which the Voronoi regions were kept the same color as Figure 2a,b.
The original road network is represented as a single root node at level 0 of the tree. The
order first NVD is to partition the original network into a set of order first NVRs, which are

ISPRS Int. J. Geo-Inf. 2023, 12, 172 6 of 23

represented as child nodes of nodes at level 1. Each order first NVR is further divided into
a set of order second NVRs representing as its child nodes, i.e., nodes at level 2.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 23

Figure 2. Illustrative example of OkNVDs when k = 2 in Sioux Falls network: (a) outward OkNVDs;
(b) inward OkNVDs.

Figure 3. Tree structure representation of hierarchical OkNVDs when k = 2 in Sioux Falls network:
(a) Outward hierarchical OkNVDs; (b) inward hierarchical OkNVDs.

Since both outward and inward OkNVDs have an identical tessellation property, we
only present the outward case for simplicity. Given a OkNVR, 𝑣𝑟 , , it is said to be a child
region of order 𝑘 − 1 NVR, 𝑣𝑟 , , if 𝐹 , = 𝐹 , ∪ {𝑓 , } holds. All child NVRs of 𝑣𝑟 , form the child region set, denoted by CRS , = … , 𝑣𝑟 , , … ⊂ 𝑉𝑅 . Con-
versely, this 𝑣𝑟 , is said to be the parent region of any 𝑣𝑟 , ∈ CRS , . The tessellation
property of OkNVD can be proved rigidly as below.

Proposition 1. If the road network is fully connected, the outward order first NVD forms a tessel-
lation on the road network.

Proof. See Proposition A1 in the Appendix B. □

Proposition 2. If the road network is fully connected, 𝐶𝑅𝑆 , forms a tessellation on 𝑣𝑟 , .

Proof. See Proposition A2 in the Appendix B. □

According to Propositions 1 and 2, OkNVRs are stacked under their parent NVRs
(i.e., order 𝑘 − 1 NVRs, …, until the order first NVRs), forming a 𝑘 level hierarchical tes-
sellation on the road network. This hierarchical tessellation property of OkNVDs can be
useful for many applications to organize spatial data. Such a property is fully utilized in
the next section to construct OkNVDs.

3. Proposed Algorithm for Constructing OkNVDs
This section presents the proposed algorithms for constructing outward and inward

OkNVDs in the road network. We first describe the algorithm for constructing outward
OkNVD, called ConstructOutwardOkNVD. As shown in Algorithm 1, this ConstructOut-
wardOkNVD algorithm consists of two stages. The first stage is to efficiently determine the
shortest paths to 𝐹 , at each node 𝑛 . To this end, a new one-to-all k shortest path find-
ing procedure, called FindKNearestPOIs, is proposed. The second stage is to construct the
outward OkNVD. Each node 𝑛 only belongs to a OkNVR and can be easily determined
using the calculated 𝐹 , . However, a link 𝑎 may belong to multiple OkNVRs. In the
second stage, a recursive procedure, called AddLinkToOkNVRs, is introduced to effectively
divide the link into corresponding OkNVRs using the above hierarchical tessellation
property. The detailed steps of FindKNearestPOIs and AddLinkToOkNVRs procedures are
described in the following sections.

Figure 3. Tree structure representation of hierarchical OkNVDs when k = 2 in Sioux Falls network:
(a) Outward hierarchical OkNVDs; (b) inward hierarchical OkNVDs.

Since both outward and inward OkNVDs have an identical tessellation property,
we only present the outward case for simplicity. Given a OkNVR, vrK,i

out, it is said to be

a child region of order k − 1 NVR, vrK−1,i
out , if Fq,K

out = Fw,K−1
out ∪

{
f q,K
out

}
holds. All child

NVRs of vrK−1,i
out form the child region set, denoted by CRSK−1,i

out =
{

. . . , vrK,i
out, . . .

}
⊂ VRK

out.

Conversely, this vrK−1,i
out is said to be the parent region of any vrK,i

out ∈ CRSK−1,i
out . The

tessellation property of OkNVD can be proved rigidly as below.

Proposition 1. If the road network is fully connected, the outward order first NVD forms a
tessellation on the road network.

Proof. See Proposition A1 in the Appendix A. �

Proposition 2. If the road network is fully connected, CRSK−1,i
out forms a tessellation on vrK−1,i

out .

Proof. See Proposition A2 in the Appendix A. �

According to Propositions 1 and 2, OkNVRs are stacked under their parent NVRs (i.e.,
order k− 1 NVRs, . . . , until the order first NVRs), forming a k level hierarchical tessellation
on the road network. This hierarchical tessellation property of OkNVDs can be useful for
many applications to organize spatial data. Such a property is fully utilized in the next
section to construct OkNVDs.

3. Proposed Algorithm for Constructing OkNVDs

This section presents the proposed algorithms for constructing outward and inward
OkNVDs in the road network. We first describe the algorithm for constructing outward
OkNVD, called ConstructOutwardOkNVD. As shown in Algorithm 1, this ConstructOutwar-
dOkNVD algorithm consists of two stages. The first stage is to efficiently determine the
shortest paths to Fj,K

out at each node nj. To this end, a new one-to-all k shortest path finding
procedure, called FindKNearestPOIs, is proposed. The second stage is to construct the out-
ward OkNVD. Each node nj only belongs to a OkNVR and can be easily determined using

the calculated Fj,K
out . However, a link aij may belong to multiple OkNVRs. In the second

stage, a recursive procedure, called AddLinkToOkNVRs, is introduced to effectively divide
the link into corresponding OkNVRs using the above hierarchical tessellation property.
The detailed steps of FindKNearestPOIs and AddLinkToOkNVRs procedures are described in
the following sections.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 7 of 23

Algorithm 1: Detailed steps of the proposed algorithm.

Procedure: ConstructOutwardOkNVD

Inputs: Road network G, Generator set F, and k value
Returns: Outward OkNVD
Stage 1. K nearest generators search:
01: Call procedure FindKNearestPOIs to calculate Fj,K

out for each node nj.
Stage 2. The OkNVD construction:
02: For each node nj ∈ N

03: Retrieve the node’s vrK,i
out using Fj,K

out , and add nj into vrK,i
out.

04: End For
05: For each link pair of aij and aji
06: Call procedure AddLinkToOkNVRs(aij, aji) to divide the link into corresponding OkNVRs.
07: End For
06: Return OkNVD.

3.1. The FindKNearestPOIs Procedure

To calculate shortest paths from Fj,K
out at each node nj, a straightforward approach [1]

consists of two steps. The first step is to perform the classical one-to-all Dijkstra’s al-
gorithm by |F| times to construct the completed one-to-all shortest path trees rooted at
all generators. Accordingly, |F| shortest paths from all generators at each node nj are
calculated. The second step is to sort the calculated |F| shortest paths at each node to
determine Fj,K

out . Using the F-Heap data structure [24], Dijkstra’s algorithm runs in the
worst-case complexity of O(|N|Log(|N|) + |A|), where |N| is the number of nodes and
|A| is the number of links. Therefore, the step requires O(|F||N|Log(|N|) + |F||A|). Since
the second step requires O(|N||F|2), this approach runs in the worst-case complexity of
O(|F||N|Log(|N|) + |F||A|+ |N||F|2). Such an approach is easy for implementation. How-
ever, its computational performance significantly degrades with |F|, i.e., the number of
generators. It tends to have computational overheads by calculating too many unnecessary
shortest paths, given that |F| is generally much larger than the k value in practice.

In this study, a new one-to-all k shortest path procedure, i.e., FindKNearestPOIs, is
proposed to efficiently determine only k shortest paths from Fj,K

out rather than |F| shortest
paths from all generators. The proposed procedure modifies the Dijkstra’s algorithm in
three aspects. Firstly, the proposed procedure simultaneously constructs |F| shortest path
trees in a single path searching process. The Dijkstra’s algorithm maintains only one label
at each node. The proposed procedure, however, maintains a label list with |F| size at
each node to record the shortest paths from different generators. Secondly, the proposed
procedure makes use of only one priority queue for constructing all |F| shortest path trees.
By sharing a single priority queue, shortest path trees from all generators can be coordinated
during the path-searching process. Thirdly, the proposed procedure closes a node when
it was selected from the priority queue by k times instead of a single selection used in
Dijkstra’s algorithm. After the node was closed, k shortest paths from Fj,K

out were exactly
determined at the node according to the monotonic increasing property of the priority
queue. In addition, the ascending order of shortest paths from different generators can
be directly obtained according to their selection order from the priority queue. Therefore,
the proposed procedure can efficiently determine k shortest paths from Fj,K

out without the
requirement of constructing |F| completed shortest path trees from all generators and
sorting the shortest paths at each node.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 8 of 23

Algorithm 2 gives the detailed steps of the proposed FindKNearestPOIs procedure.
Unlike Dijkstra’s algorithm, each node nj in the proposed procedure maintains three objects,
including a label set LSj, a selected generator set SGj and an open status osj. The label set
LSj employs an array list structure with the size of |F|. The ith location of the label set,
denoted by LSj[i], records the shortest path from the ith generator fi. This way efficiently
retrieves the shortest path from a specific generator. Note that it is not necessary to generate
|F| labels at each node; and a null object is used if the shortest path from a certain generator
has not been generated. The selected generator set, SGj, employs a linked list structure for
recording the order of generators whose shortest paths to node nj were selected from the
priority queue. Finally, the open status osj is a binary indicator, and osj = true indicates
that nj is open.

In the initialization step, LSj and SGj of all nodes are set to be empty, and osj of all
nodes are set to be true. A path (or called label) from each generator fi to itself, denoted by
p f f , is created and set its path cost t f f as zero. An additional property, denoted by g f f , is
introduced at the label to store the generator order i. This created path is added into the
priority queue, denoted by SE.

At each iteration, a path p f j at the top of the priority queue SE is selected. Its generator
order, g f j, is then added into the selected generator set SGj. Once the number of generators
in SGj reached the k value, the node nj is closed by setting the osj attribute to be false. In

this case, k shortest paths from Fj,K
out have been determined at node nj, and thus all paths

of LSj still in the priority queue are eliminated without considerations. Subsequently, the
selected path p f j is extended to its successor nodes, which are not closed. Through an
open successor node nw, a temporal path p̃ f w is created by p f j ⊕ ajw, where ⊕ is a path
concatenation operator. The newly created path p̃ f w compares to the existing path p f w

as LSw

[
g̃ f w
]

from the same generator. If the existing path p f w = ∅ or t̃ f w < t f w holds,
the newly created path is kept and inserted into the priority queue; and it is discarded
otherwise. The procedure continues the path selection and extension process until SE is
empty. When the procedure terminates, it can determine the k nearest generators of each
node nj (i.e., Fj,K

out) at the selected generator set SGj and k shortest paths from Fj,K
out of each

node nj at the label set LSj.
We can prove the optimality of the proposed FindKNearestPOIs procedure as below.

Proposition 3. When the proposed FindKNearestPOIs procedure terminates, it can determine
shortest paths from K nearest generators Fj,K

out for all nodes.

Proof. See Proposition A3 in the Appendix A. �

The worst-case complexity of the proposed FindKNearestPOIs procedure is analyzed.
Using the F-Heap data structure [24], the selection of the minimum cost path from the prior-
ity queue requires O(Log(|F||N|)), and both remove and add path into the priority queue re-
quires O(1), where |F||N| is the maximum paths in the priority queue. Since k|N| is the max-
imum number of path selection from the priority queue, the proposed procedure thus runs
in the worst-case complexity of O(k|N|Log(|F||N|) + k|A|). This complexity is significantly
better than the previous Okabe’s algorithm, i.e., O(|F||N|Log(|N|) + |F||A|+ |N||F|2).

3.2. The AddLinkToOkNVRs Procedure

In Okabe’s algorithm [1], a complicated idea of a lower-bound envelope was intro-
duced to divide boundary links which belong to at least two distinctive OkNVRs. However,
no detailed procedure was given to implement such an idea.

In this study, a new recursive procedure, AddLinkToOkNVRs, is introduced to effec-
tively divide boundary links into different OkNVRs using the hierarchical tessellation
property, i.e., Propositions 1 and 2. The detailed steps of the introduced procedure is given
in Algorithm 3. Figure 4 illustrates this procedure using a simple example of two directed

ISPRS Int. J. Geo-Inf. 2023, 12, 172 9 of 23

links ajw and awj. Two end nodes, nj and nw, are given in the figure with the selected
generator sets, SGj = {1, 2, 3} and SGw = {4, 5, 1}. Because SGj 6= SGw holds, these two
links are not in the same OkNVR, so called boundary links (their end nodes are shown
in different colors). This AddLinkToOkNVRs procedure divides boundary links into a set
of partial links through the hierarchical tessellation from the first level until the kth level.
When dividing links at the first level, we focus on only SGj[1] (i.e., Generator 1) and SGw[1]

(i.e., Generator 4) and their shortest paths, p f j
1 = LSj

[
SGj[1]

]
and p f w

1 = LSw[SGw[1]].

Algorithm 2: Detailed steps of the FindKNearestPOIs procedure.

Procedure: FindKNearestPOIs

Inputs: Road network G, Generator set F, and k value
Step 1. Initialization:
01: For each node nj ∈ N
02: Set label set LSj as an empty array list with |F| size.
03: Set selected generator set SGj := ∅, and Set open status osj := true.
04: End For
05: Initialize the priority queue SE := ∅.
06: For each generator fi ∈ F
07: Create path p f f from fi to itself, and Set cost as t f f := 0 and generator as g f f := i.
08: Set LSi

[
g f f
]

:= p f f and add the path into SE := SE ∪
{

p f f
}

.
09: End For
Step 2. Path selection:
10: If SE = ∅, Then Stop.

11: Select the path p f j at the top of SE and remove it from SE := SE−
{

p f j
}

.

12: Add the path’s generator into SGj := SGj ∪
{

g f j
}

.
13: If the size of SGj equals to K Then
14: Set osj := f alse.
15: For each pej in LSj

16: If pej ∈ SE, Then remove it from SE := SE−
{

pej
}

.
17: End For
18: End If
Step 3. Path extension:
19: For each successor node nw ∈ SUCC

(
nj

)
20: If osw = true Then
21: Create path p̃ f w := p f j ⊕ ajw, and Set t̃ f w := t f j + tjw and g̃ f w := g f j.

22: Retrieve existing path p f w := LSw

[
g̃ f w

]
.

23: If p f w = ∅ or t̃ f w < t f w Then

24: If p f w ∈ SE, Then remove it from SE := SE−
{

p f w
}

.

25: Set p f w := p̃ f w, t f w := t̃ f w, g f w := g̃ f w and LSw

[
g̃ f w

]
:= p f w.

26: Add p f w into SE := SE ∪
{

p f w
}

.
27: End If
28: End If
29: End For
30: Go back to Step 2.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 10 of 23ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 23

Figure 4. Illustrative example of the AddLinkToOkNVRs procedure.

The procedure consists of three steps. The first step (i.e., Step 2.1) is to divide links 𝑎 and 𝑎 into four partial links. Using the equal travel times between left-bound route 𝑝 = 𝑝 ⨁ 𝑎 and right-bound route 𝑝 : = 𝑝 ⨁ 𝑎 , we can determine break point 𝜃 on link 𝑎 (or 𝜃 on link 𝑎) as 𝜃 = 𝑓 − 𝑡 +𝑡 / 𝑡 + 𝑡 (9) 𝜃 = 1 − 𝜃 (10)

Then, the path cost for 𝑝 is calculated as 𝑡 ≔ 𝑡 + 𝑡 𝜃 and its generator is set
as 𝑔 ≔ 𝑔 . Similar, the path cost for 𝑝 is determined as 𝑡 ≔ 𝑡 + 𝑡 𝜃 and 𝑔 ≔ 𝑔 . On the same break point, we create two new nodes, namely a left-bound node 𝑛 and right-bound node 𝑛 . Then, we divide two links 𝑎 and 𝑎 into four newly
partial links, including two left-bound partial links, 𝑎 and 𝑎 , and two right-bound
partial links, 𝑎 and 𝑎 . For example, partial link 𝑎 = (𝑎 , 0, 𝜃) represents part of
link 𝑎 from 0 to 𝜃 using the linear reference.

The second step (i.e., Step 2.2) is to determine the selected generator sets (𝑆𝐺 and 𝑆𝐺) and label sets (𝐿𝑆 and 𝐿𝑆) for newly created nodes 𝑛 and 𝑛 . It is easy to deter-
mine 𝑆𝐺 [1] (e.g., Generator 1) and 𝑆𝐺 [1] (e.g., Generator 4) as the first and second gen-
erators of the left-bound node 𝑛 , e.g., 𝑆𝐺 = {1,4}. A reverse order is used for the right-
bound node 𝑛 , i.e., 𝑆𝐺 = {4,1}. Since 𝐿𝑆 and 𝐿𝑆 have identical path sets, we use 𝐿𝑆
to represent them, i.e., 𝐿𝑆[1] = 𝑝 and 𝐿𝑆[4] = 𝑝 . Subsequently, we construct candi-
date paths to determine other 𝑘 − 2 nearest generators in addition to 𝑆𝐺 [1] and 𝑆𝐺 [1].
Because candidate paths should pass through two end nodes, 𝑛 and 𝑛 , we construct 𝑝 ⨁ 𝑎 and 𝑝 : = 𝑝 ⨁ 𝑎 for any path 𝑝 and 𝑝 maintained at 𝑛 and 𝑛 re-
spectively. All constructed candidate paths are inserted into the priority queue, denoted
by 𝐶𝑆𝐸. Then, the top 𝑘 − 2 paths from 𝐶𝑆𝐸 are identified and stored at 𝐿𝑆, and their
generators are inserted into 𝑆𝐺 and 𝑆𝐺 , e.g., 𝑆𝐺 = {1,4,2} and 𝑆𝐺 = {4,1,2} . After
this step was performed, we divided two input links into four partial links within two
NVRs, e.g., 𝑣𝑟 , and 𝑣𝑟 , , at the first level.

The last step (i.e., Step 2.3) is to recursively call the AddLinkToOkNVRs procedure for
the link division at the next level by using the newly created left-bound links (𝑎 and 𝑎) and right-bound links (𝑎 and 𝑎) as two input links respectively.

For the link division at the ith level, this procedure focuses on only Scenario 2 of 𝑆𝐺 [𝑖] ≠ 𝑆𝐺 [𝑖]. This is because we have Scenario 1 of 𝑆𝐺 [𝑙] = 𝑆𝐺 [𝑙] for ∀𝑙 = 1, … , 𝑖, in
which 𝑆𝐺 [𝑙] and 𝐿𝑆 𝑆𝐺 [𝑙] are kept for the setting (𝑆𝐺 and 𝑆𝐺) and label sets (𝐿𝑆

Figure 4. Illustrative example of the AddLinkToOkNVRs procedure.

The procedure consists of three steps. The first step (i.e., Step 2.1) is to divide links
ajw and awj into four partial links. Using the equal travel times between left-bound route

p f u
1 = p f j

1 ⊕ aju and right-bound route p f v
1 := p f w

1 ⊕ awv, we can determine break point θu
on link ajw (or θv on link awj) as

θu = (f f w
1 − t f j

1 + twj)/
(
twj + tjw

)
(9)

θv = 1− θu (10)

Then, the path cost for p f u
1 is calculated as t f u

1 := t f j
1 + tjwθu and its generator is set as

g f u
1 := g f j

1 . Similar, the path cost for p f v
1 is determined as t f v

1 := t f w
1 + twvθv and g f v

1 := g f w
1 .

On the same break point, we create two new nodes, namely a left-bound node nu and
right-bound node nv. Then, we divide two links ajw and awj into four newly partial links,
including two left-bound partial links, aju and auj, and two right-bound partial links, avw
and awv. For example, partial link aju =

(
ajw, 0, θu

)
represents part of link ajw from 0 to θu

using the linear reference.
The second step (i.e., Step 2.2) is to determine the selected generator sets (SGu and

SGv) and label sets (LSu and LSv) for newly created nodes nu and nv. It is easy to determine
SGj[1] (e.g., Generator 1) and SGw[1] (e.g., Generator 4) as the first and second generators
of the left-bound node nu, e.g., SGu = {1, 4}. A reverse order is used for the right-bound
node nv, i.e., SGv = {4, 1}. Since LSu and LSv have identical path sets, we use LS to
represent them, i.e., LS[1] = p f u

1 and LS[4] = p f v
1 . Subsequently, we construct candidate

paths to determine other k− 2 nearest generators in addition to SGj[1] and SGw[1]. Because

candidate paths should pass through two end nodes, nj and nw, we construct p f j
l ⊕ aju

and p f v
l := p f w

l ⊕ awv for any path p f j
l and p f w

l maintained at nj and nw respectively. All
constructed candidate paths are inserted into the priority queue, denoted by CSE. Then, the
top k− 2 paths from CSE are identified and stored at LS, and their generators are inserted
into SGu and SGv, e.g., SGu = {1, 4, 2} and SGv = {4, 1, 2}. After this step was performed,
we divided two input links into four partial links within two NVRs, e.g., vr1,1

out and vr1,2
out, at

the first level.
The last step (i.e., Step 2.3) is to recursively call the AddLinkToOkNVRs procedure for

the link division at the next level by using the newly created left-bound links (aju and auj)
and right-bound links (avw and awv) as two input links respectively.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 11 of 23

For the link division at the ith level, this procedure focuses on only Scenario 2 of
SGj[i] 6= SGw[i]. This is because we have Scenario 1 of SGj[l] = SGw[l] for ∀l = 1, . . . , i, in
which SGj[l] and LSj

[
SGj[l]

]
are kept for the setting (SGu and SGv) and label sets (LSu and

LSu) at the ith level. The link division of the ith level has the similar three steps as that of
the first level. This procedure recursively performed until Scenario 3 of SGu[l] = SGv[l] for
∀l = 1, . . . , k holds. After the procedure terminated, input links were divided into a set of
partial links belonging to different OkNVRs, e.g., vr3,1

out, . . . , vr3,6
out in the illustrative example.

Algorithm 3: Detailed steps of the AddLinkToOkNVRs procedure.

Procedure: AddLinkToOkNVRs

Inputs: Links ajw and awj
01: Set SG := ∅ and Set LS as empty array lists with |F| size.
02: For i := 1 to k
03: If SGj[i] = SGw[i] Then (Scenario 1)
04: Set SG := SG∪ SGj[i] and LS

[
SGj[i]

]
:= LSj

[
SGj[i]

]
.

05: Else (Scenario 2)
Step 2.1. Divide two links into four partial links:
06: Retrieve pfj

i := LSj
[
SGj[i]

]
and pfw

i := LSw[SGw[i]].

07: Calculate θu :=
(

tfw
i − tfj

i + twj

)
/
(
twj + tjw

)
and θv := 1− θu.

08: Create left-bound path pfu
i := pfj

i ⊕ aju and Set tfu
i := tfj

i + tjwθu and gfu
i := gfj

i .
09: Create right-bound path pfv

i := pfw
i ⊕ awv and Set tfv

i := tfw
i + twvθv and gfv

i := gfw
i .

10: Create left-bound node nu and partial links aju :=
(
ajw, 0, θu

)
and auj :=

(
awj, θv, 1

)
.

11: Create right-bound node nv and partial links avw :=
(
awj, θu, 1

)
and awv :=

(
ajw, 0, θv

)
.

Step 2.2. Set the selected generator set and the label set for two newly created nodes:
12: Set LS

[
SGj[i]

]
:= pfu

i and LS[SGw[i]] := pfv
i .

13: Set SGu := SG∪
{

SGj[i]
}

and SGv := SG∪ {SGw[i]}.
14: If Size(SGu) < k Then
15: Set SGu := SGu ∪ {SGw[i]} and SGv := SGv ∪

{
SGj[i]

}
.

16: Set priority queue CSE := ∅.
17: For l := i + 1 to k
18: Retrieve pfj

l := LSj
[
SGj[l]

]
and pfw

l := LSw[SGw[l]].

19: Create candidate path pfu
l := pfj

l ⊕ aju and Set tfu
l := tfj

l + tjwθu and gfu
l := gfj

l .
20: Create candidate path pfv

l := pfw
l ⊕ awv and Set tfv

l := tfw
l + twvθv and gfv

l := gfw
l .

21: Add them into CSE := CSE∪
{

pfu
l

}
∪
{

pfv
l

}
.

22: End For
23: For m := Size(SGu) to k
24: Select the path pfm

l at the top of CSE and remove it from CSE := CSE−
{

pfm
l

}
.

25: Set SGu := SGu ∪
{

gfm
l

}
and SGv := SGv ∪

{
gfm

l

}
.

26: Set LS
[
gfm

l

]
:= pfm

l .
27: End For
28: End If
29: Set LSu := LS and LSv := LS.
Step 2.3. Recursively divide four newly created partial links:
30: Call AddLinkToOkNVRs

(
aju, auj

)
and AddLinkToOkNVRs(avw, awv).

31: Return.
32: End If
33: End For
34: Add ajw and awj into vrK,i

out using SGj as the k nearest generators. (Scenario 3)

We can prove the optimality of the introduced AddLinkToOkNVRs procedure below.

Proposition 4. When the introduced AddLinkToOkNVRs procedure terminates, it can correctly
divide two input links into a set of OkNVRs.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 12 of 23

Proof. See Proposition A4 in Appendix A. �

The worst-case complexity of the introduced AddLinkToOkNVRs procedure is also
analyzed. In the procedure, Step 2.1 runs in O(1); and Step 2.2 runs in O(kLog(k)) using
the F-heap data structure. Because the procedure recursively divides input links from the
first level until the k level, it runs in the complexity of O

(
k2Log(k)

)
.

3.3. Complexity Analysis of the Proposed OkNVD Construction Algorithms

With Propositions 3 and 4, we can easily prove the optimality of the proposed Con-
structOutwardOkNVD algorithm as follows.

Proposition 5. When the ConstructOutwardOkNVD algorithm terminates, it can correctly
construct outward OkNVDs in the road network.

Proof. It can be easily followed by Propositions 3 and 4. �

Based on the worst-case complexity of AddLinkToOkNVRs procedure (see Section 3.2),
we can determine that the second stage of the ConstructOutwardOkNVD algorithm runs
in O

(
|A|k2Log(k)

)
. Since its first stage runs in O(k|N|Log(|F||N|) + k|A|) (see Section 3.1),

the ConstructOutwardOkNVD algorithm therefore runs in O
(
k|N|Log(|F||N|) + |A|k2Log(k)

)
.

The proposed ConstructOutwardOkNVD algorithm can be modified easily to construct
inward OkNVDs, namely the ConstructInwardOkNVD algorithm. Both FindKNearestPOIs
and AddLinkToOkNVRs procedures should be modified by using the backward search (i.e.,
path extension to predecessor nodes) instead of the forward search (i.e., path extension to
successor nodes). For example, the modified FindKNearestPOIs procedure should create
a new path p̃w f := ajw ⊕ p f j from each predecessor node nw ∈ PRED

(
nj
)

(see Lines 19
and 22). The ConstructInwardOkNVD algorithm has the same worst-case complexity as the
ConstructOutwardOkNVD algorithm.

4. Numerical Experiments

This section reports the numerical experiments using real road networks. The pro-
posed algorithm was implemented using the C# programming language. Section 4.1 reports
their applications in place-based accessibility to supermarkets in Shenzhen, China; and
Section 4.2 investigates their computational performance in several real road networks
with different sizes.

4.1. Place-Based Accessibility to Supermarkets

In this study, Shenzhen, one of the most developed mega-cities in China, was selected
as the study area. As shown in Figure 5a, Shenzhen is located in southern China, bordering
Hong Kong to the south. It is the first Chinese special economic zone and experienced rapid
socioeconomic development during the past decades. By the end of 2013, Shenzhen covered
an area of approximately 1996 km2 and had a total population of approximately 10.5 million,
of which more than 70% were immigrants. Shenzhen has ten administrative districts with
diverse land-use patterns. Among these districts, Nanshan, Futian and Luohu are core
urban regions with dense residential and commercial areas; Bao’an, Longhua, Longgang,
and Yantian are suburban regions with several new towns and industrial areas; and other
three districts (Guangming, Pingshan, and Dapeng) are rural regions with large-scale
agriculture and hilly lands as well as industrial areas.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 13 of 23ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 13 of 23

Figure 5. Geographical location of Shenzhen: (a) spatial distribution of large supermarkets; (b) traf-
fic conditions on a typical work day during 18:00–19:00.

Three datasets were collected for the case study. The first dataset was 39 large super-
markets in Shenzhen shown by star symbols in Figure 5a. The second dataset was the road
network of Shenzhen city. As shown in Figure 5b, it consisted of 32,065 nodes and 81,618
directed links. The third dataset was trajectories of 17,406 taxis collected on a typical work-
day, i.e., 23 September 2014. These trajectories were matched onto the road network using
a map matching algorithm [17], and then used to estimate and link travel time information
during the evening peak hour (18:00–19:00) by using the method of Shi et al. [25].

Using supermarkets as generators, Figure 6a shows the constructed inward OkNVD
when 𝑘 = 1. The generators are shown in star shape. The proposed algorithm constructed
39 inward OkNVRs, i.e., 𝑣𝑟 , , for all generators. Each OkNVR, shown by a distinctive
color, delimits a spatial region in which all locations share the same nearest generator. As
can be seen, the sizes of OkNVRs are spatially heterogeneous in Shenzhen city with dif-
ferent supermarket densities, i.e., smaller at core urban and suburban regions (e.g., Nos.
1–5, 9–17 and 18–22) while larger at rural regions (e.g., Nos. 38 and 39). It can also be seen
that all OkNVRs formed a tessellation on the Shenzhen network. They covered the whole
network and they were mutually exclusive except at the boundary points.

Figure 6b shows OkNVD for large supermarkets in Shenzhen when 𝑘 = 2. As can be
seen, the proposed algorithm constructed 149 inward OkNVRs, i.e., 𝑣𝑟 , , in the study
area. In this case, each constructed OkNVR delimits a spatial region in which all locations
share the same set of the first and second nearest generators, 𝐹 , . Compared to the case
of 𝑘 = 1, the sizes of 𝑣𝑟 , are smaller, especially for those areas with dense supermar-
kets. This result is obvious because all inward OkNVRs in the case of 𝑘 = 2 form a tessel-
lation in the case of 𝑘 = 1. Each 𝑣𝑟 , is covered by one or more 𝑣𝑟 , , which are mutually
exclusive except at the boundary points. Figure 6c shows the corresponding OkNVD
when 𝑘 = 3. In this case, the whole study area was partitioned into 320 inward OkNVRs,
i.e., 𝑣𝑟 , . The constructed OkNVRs when 𝑘 = 3 further form a tessellation when 𝑘 = 2.

Figure 5. Geographical location of Shenzhen: (a) spatial distribution of large supermarkets; (b) traffic
conditions on a typical work day during 18:00–19:00.

Three datasets were collected for the case study. The first dataset was 39 large super-
markets in Shenzhen shown by star symbols in Figure 5a. The second dataset was the road
network of Shenzhen city. As shown in Figure 5b, it consisted of 32,065 nodes and 81,618 di-
rected links. The third dataset was trajectories of 17,406 taxis collected on a typical workday,
i.e., 23 September 2014. These trajectories were matched onto the road network using a
map matching algorithm [17], and then used to estimate and link travel time information
during the evening peak hour (18:00–19:00) by using the method of Shi et al. [25].

Using supermarkets as generators, Figure 6a shows the constructed inward OkNVD
when k = 1. The generators are shown in star shape. The proposed algorithm constructed
39 inward OkNVRs, i.e., vr1,i

in , for all generators. Each OkNVR, shown by a distinctive color,
delimits a spatial region in which all locations share the same nearest generator. As can
be seen, the sizes of OkNVRs are spatially heterogeneous in Shenzhen city with different
supermarket densities, i.e., smaller at core urban and suburban regions (e.g., Nos. 1–5, 9–17
and 18–22) while larger at rural regions (e.g., Nos. 38 and 39). It can also be seen that all
OkNVRs formed a tessellation on the Shenzhen network. They covered the whole network
and they were mutually exclusive except at the boundary points.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 14 of 23

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 14 of 23

Table 1 summarizes the characteristics of OkNVRs under different 𝑘 values. As can
be seen, the average size of OkNVRs (in terms of cumulative link lengths) was reduced
with the increase of 𝑘 values. The total size of all OkNVRs under different 𝑘 values keep
constant, i.e., 5530 km. This is because all OkNVRs at three levels (𝑘 = 1 to 3) are stacked,
forming a three-level hierarchical tessellation on the whole road network.

Table 1. Characteristics of constructed OkNVRs under different k values.

k Value Number of OkNVRs Average Size of OkNVRs (km) Total Network Size (km)
1 39 141.8 5530
2 149 37.1 5530
3 320 17.3 5530

Figure 6. OkNVDs for large supermarkets under different k values: (a) k = 1 scenario; (b) k = 2 sce-
nario; (c) k = 3 scenario.

When constructing the inward OkNVD, the least travel times {𝑡 , … , 𝑓 } to 𝑘
nearest generators, 𝐹 , = {𝑓 , , … , 𝑓 , }, for any location 𝑞 in the road network were cal-
culated. These calculated travel times were employed to quantify the place-based accessi-
bility to large supermarkets in Shenzhen and shown in Figure 7.

Figure 6. OkNVDs for large supermarkets under different k values: (a) k = 1 scenario;
(b) k = 2 scenario; (c) k = 3 scenario.

Figure 6b shows OkNVD for large supermarkets in Shenzhen when k = 2. As can be
seen, the proposed algorithm constructed 149 inward OkNVRs, i.e., vr2,i

in , in the study area.
In this case, each constructed OkNVR delimits a spatial region in which all locations share
the same set of the first and second nearest generators, Fq,2

in . Compared to the case of k = 1,
the sizes of vr2,i

in are smaller, especially for those areas with dense supermarkets. This result
is obvious because all inward OkNVRs in the case of k = 2 form a tessellation in the case of
k = 1. Each vr1,i

in is covered by one or more vr2,i
in , which are mutually exclusive except at

the boundary points. Figure 6c shows the corresponding OkNVD when k = 3. In this case,
the whole study area was partitioned into 320 inward OkNVRs, i.e., vr3,i

in . The constructed
OkNVRs when k = 3 further form a tessellation when k = 2.

Table 1 summarizes the characteristics of OkNVRs under different k values. As can
be seen, the average size of OkNVRs (in terms of cumulative link lengths) was reduced
with the increase of k values. The total size of all OkNVRs under different k values keep
constant, i.e., 5530 km. This is because all OkNVRs at three levels (k = 1 to 3) are stacked,
forming a three-level hierarchical tessellation on the whole road network.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 15 of 23

Table 1. Characteristics of constructed OkNVRs under different k values.

k Value Number of OkNVRs Average Size of OkNVRs (km) Total Network Size (km)

1 39 141.8 5530
2 149 37.1 5530
3 320 17.3 5530

When constructing the inward OkNVD, the least travel times
{

tq f
1 , . . . , f q f

k

}
to k

nearest generators, Fq,K
in =

{
f q,1
in , . . . , f q,K

in

}
, for any location q in the road network were

calculated. These calculated travel times were employed to quantify the place-based
accessibility to large supermarkets in Shenzhen and shown in Figure 7.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 15 of 23

Figure 7. Place-based accessibility to large supermarkets using average travel times to the k nearest
supermarkets: (a) k = 1 scenario; (b) k = 2 scenario; (c) k = 3 scenario.

Figure 7a shows the accessibility pattern using the least travel time to the nearest
supermarket, i.e., 𝑡 calculated in the order first NVD. This is a classical indicator for
measuring place-based accessibility in the literature [26]. As can be observed, the level of
accessibility to large supermarkets is high for areas surrounded by at least one supermar-
ket but low for those areas far from supermarkets. This indicator assumes that residents
always go to the nearest supermarket for food purchases. However, several empirical
studies have found that the most frequently used supermarkets by most residents are not
the nearest supermarket to home [27]. As an extension to this classical indicator, Chen et
al. [28] recently suggested using the average travel time (denoted by 𝑡̅) of the 𝑘 nearest

Figure 7. Place-based accessibility to large supermarkets using average travel times to the k nearest
supermarkets: (a) k = 1 scenario; (b) k = 2 scenario; (c) k = 3 scenario.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 16 of 23

Figure 7a shows the accessibility pattern using the least travel time to the nearest
supermarket, i.e., tq f

1 calculated in the order first NVD. This is a classical indicator for
measuring place-based accessibility in the literature [26]. As can be observed, the level of
accessibility to large supermarkets is high for areas surrounded by at least one supermarket
but low for those areas far from supermarkets. This indicator assumes that residents
always go to the nearest supermarket for food purchases. However, several empirical
studies have found that the most frequently used supermarkets by most residents are not
the nearest supermarket to home [27]. As an extension to this classical indicator, Chen
et al. [28] recently suggested using the average travel time (denoted by tq f

k) of the k nearest
supermarkets to better quantify accessibility to food retailers. Specifically, the accessibility
level at location q is calculated as follows:

tq f
k =

(
tq f
1 + . . . + tq f

k

)
/k (11)

A smaller tq f
k value implies the easer of a location for accessing supermarkets. This

indicator can be directly obtained by using the results of OkNVD. Figure 7b shows the
accessibility result using the indicator of tq f

k when k = 2. Compared to the classical

indicator of tq f
1 , this indicator can well reveal the rural–urban disparity of accessibility to

supermarkets caused by heterogeneous supermarket densities. The accessibility level was
relatively high in the core urban regions (Nanshan, Futian, and Luohu) and relatively low in
rural regions (Guangming, Pingshan, and Dapeng). For example, such indicators can well
identify the low accessibility level for areas nearby Supermarket No. 39 in Dapeng district,
since only one large supermarket is available in those areas. Similarly, a more distinct
rural–urban disparity of accessibility can be observed when k = 3 is used, see Figure 7c. As
the value of k increases, the accessibility level of a location with low supermarket density
would decrease rapidly, as they lack alternative supermarket supplies. However, a large
k value could cover infeasible supermarkets with too large travel times. The selection
of a suitable k parameter is critical for this accessibility measure. As suggested by Chen
et al. [28], k = 3 is appropriate for supermarket accessibility studies.

4.2. Computational Experiments

This section reports the computational performance of the proposed algorithm. Previ-
ous Okabe’s algorithm [1] was also implemented for comparisons. Since Okabe’s algorithm
did not provide the detailed procedure for the second stage, we employed that of our
proposed algorithm. Both algorithms were coded in the same C# programming language
and used the same F-heap data structure [24] as the priority queue. Since constructing
inward and outward OkNVDs requires the same computational performance, we only
report that of inward OkNVD constructions for simplicity. All experiments were conducted
on a desktop with a four-core Intel 3.3 GHz CPU (only a single processor was used) and
8GB RAM running on Windows 10 operation system.

Table 2 reports the computational performance of both OkNVD construction algo-
rithms in Shenzhen network under a different number of generators (i.e., |F| values).
Network nodes were randomly selected as new generators. The k value was set as 3. As
can be seen, the computational performance of Stage 1 dominates that of both algorithms.
Therefore, we only examined the computational performance of Stage 1 hereafter.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 17 of 23

Table 2. Computational time of two algorithms in the Shenzhen network under different numbers of
generators when k = 3 (in seconds).

Number of
Generators

the Proposed Algorithm Okabe’s Algorithm

Stage 1 Stage 2 Total Stage 1 Stage 2 Total

39 1.89 0.19 2.08 10.04 0.19 10.23
100 2.40 0.22 2.62 27.49 0.22 27.71
200 3.00 0.24 3.24 61.92 0.24 62.16
300 3.47 0.28 3.75 90.18 0.28 90.46
500 4.45 0.30 4.75 154.75 0.30 155.05
1000 4.60 0.31 4.91 305.19 0.31 305.50

It can be seen from the table that the computational time of Okabe’s algorithm (i.e.,
Stage 1) raised linearly with |F|. For example, when |F| = 100, Okabe’s algorithm con-
sumed 27.49 s to construct inward OkNVD in Shenzhen network. When |F| = 1000, the
computational time of this algorithm increased by 10.1 times (i.e., 305.19/27.49 − 1) to
305.19 s. This result is expected, mainly because Okabe’s algorithm calculates |F| shortest
paths at each node by constructing |F| completed shortest path trees rooted at all generators.
In addition, computational cost was required to sort |F| shortest paths at each node.

As shown, the proposed algorithm has a much lower rate of degradation with the
increase of |F|. When |F| increases from 100 to 1000, its computational time raised by only
91.7% from 2.40 s to 4.60 s. This is because the proposed algorithm calculates only k shortest
paths at each node by constructing |F| partial shortest path trees. Therefore, the proposed
algorithm performed significantly faster than Okabe’s algorithm by calculating much less
shortest paths, especially for the scenarios of large |F|. As shown, the proposed algorithm
ran 10.45 (i.e., 27.49/2.40 − 1) times faster than Okabe’s algorithm when |F| = 100. This
computational advantage further increased to 65.34 times when |F| = 1000. Such computa-
tional advantage is important for real applications commonly with large |F|, for example
|F| = 6899 in Chen et al. [6].

Figure 8 shows the computational performance of both OkNVD construction algo-
rithms in Shenzhen network under different k values. The number of generators was set as
500. As can be seen, the computational performance of Okabe’s algorithm is stable under
different k values. It is obvious, since Okabe’s algorithm calculates |F| shortest paths at each
node regardless of different k settings. It can be seen that the computational performance of
the proposed algorithm degraded linearly with the increase of k value. This is because the
proposed algorithm calculates k shortest paths at each node. The larger the k value was, the
more shortest paths were calculated. In practice, the k value is usually low, e.g., k ≤ 5 [28].
It should be noted that the proposed algorithm ran still significantly better than Okabe’s
algorithm various k values under various k values.

Table 3 reports the computational performance of both testing algorithms in five real
road networks with different sizes. The number of generators was selected as 500 and
the k value was set as 3. Generators were randomly selected from the network nodes. As
shown, the computational times of both testing algorithms increased with the network size.
This result is expected, since the computational performance of shortest path algorithms
themselves degraded with the network size [19]. It can be seen that the proposed algorithm
performed consistently better than Okabe’s algorithm in all road networks with different
sizes. For example, in a small network of Xiamen, the proposed algorithm consumed 0.19 s
to construct inward OkNVD, which was 36.73 times (i.e., 7.17/0.19 − 1) faster than Okabe’s
algorithm. This computational improvement remained relatively stable in all networks
ranging from 31 to 37 times.

ISPRS Int. J. Geo-Inf. 2023, 12, 172 18 of 23

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 23

paths at each node by constructing |𝐹| completed shortest path trees rooted at all gener-
ators. In addition, computational cost was required to sort |𝐹| shortest paths at each
node.

As shown, the proposed algorithm has a much lower rate of degradation with the
increase of |𝐹|. When |𝐹| increases from 100 to 1000, its computational time raised by
only 91.7% from 2.40 s to 4.60 s. This is because the proposed algorithm calculates only 𝑘
shortest paths at each node by constructing |𝐹| partial shortest path trees. Therefore, the
proposed algorithm performed significantly faster than Okabe’s algorithm by calculating
much less shortest paths, especially for the scenarios of large |𝐹|. As shown, the proposed
algorithm ran 10.45 (i.e., 27.49/2.40 − 1) times faster than Okabe’s algorithm when |𝐹| =100 . This computational advantage further increased to 65.34 times when |𝐹| = 1000 .
Such computational advantage is important for real applications commonly with large |𝐹|, for example |𝐹| = 6899 in Chen et al. [6].

Figure 8 shows the computational performance of both OkNVD construction algo-
rithms in Shenzhen network under different 𝑘 values. The number of generators was set
as 500. As can be seen, the computational performance of Okabe’s algorithm is stable un-
der different 𝑘 values. It is obvious, since Okabe’s algorithm calculates |𝐹| shortest paths
at each node regardless of different 𝑘 settings. It can be seen that the computational per-
formance of the proposed algorithm degraded linearly with the increase of 𝑘 value. This
is because the proposed algorithm calculates 𝑘 shortest paths at each node. The larger the
k value was, the more shortest paths were calculated. In practice, the 𝑘 value is usually
low, e.g., 𝑘 ≤ 5 [28]. It should be noted that the proposed algorithm ran still significantly
better than Okabe’s algorithm various 𝑘 values under various 𝑘 values.

Figure 8. Computational times of both testing algorithms in Shenzhen network under different k
values when |𝐹| = 500.

Table 3 reports the computational performance of both testing algorithms in five real
road networks with different sizes. The number of generators was selected as 500 and the
k value was set as 3. Generators were randomly selected from the network nodes. As
shown, the computational times of both testing algorithms increased with the network
size. This result is expected, since the computational performance of shortest path algo-
rithms themselves degraded with the network size [19]. It can be seen that the proposed
algorithm performed consistently better than Okabe’s algorithm in all road networks with

Figure 8. Computational times of both testing algorithms in Shenzhen network under different k
values when |F| = 500.

Table 3. Computational time of both testing algorithms under different network sizes when k = 3 and
|F| = 500 (in Seconds).

Network Node Number Link Number Proposed Algorithm Okabe’s Algorithm Computational Improvement

Xiamen 1997 6252 0.19 7.17 36.73
Wuhan 19,306 52,810 2.54 91.68 35.09

Shenzhen 32,065 81,618 4.73 155.03 31.77
Shanghai 95,128 248,166 20.40 782.61 37.36

Beijing 111,544 304,494 29.75 1087.47 35.55

5. Conclusions

The order k network Voronoi diagram (OkNVD) is an effective geometric construction
to partition the network space into a set of order k network Voronoi regions (OkNVRs)
such that all locations within an OkNVR share the same k nearest generators. Despite
the broad applications of OkNVD, few effective and efficient algorithms had been devel-
oped to construct OkNVD in real road networks. This study proposed a novel OkNVD
construction algorithm consisting of two stages. In the first stage, a new one-to-all k
shortest path procedure was proposed to efficiently determine the k nearest generators for
each network node in a single shortest path search process. This proposed procedure im-
proves the worst-case complexity from previous O(|F||N|Log(|N|) + |F||A|+ |N||F|2) [1]
to O(k|N|Log(|F||N|) + k|A|). In the second stage, a new recursive procedure was intro-
duced to effectively divide boundary links into different OkNVRs using the hierarchical
tessellation property. The introduced procedure can effectively solve the link division issue
that had not been addressed by the previous study [1].

To demonstrate the applicability of the proposed OkNVD construction algorithm, a
comprehensive case study in Shenzhen city was carried out. Results of the case study
demonstrated that the proposed OkNVD construction algorithm can well quantify place-
based accessibility in a fine-gained spatial resolution. Results of computational experiments
showed that the proposed algorithm was significantly faster than previous Okabe’s al-

ISPRS Int. J. Geo-Inf. 2023, 12, 172 19 of 23

gorithm for all five testing networks under different k and |F| settings. For example, it
performed about 65 times faster than Okabe’s algorithm in the Shenzhen network when
k = 3 and |F| = 1000. This computational advantage would be more obvious in real
large-scale applications, in which the number of generators |F| are large and the k value
is small.

Several directions for future research are worth pursuing. Firstly, this study assumed
that link costs are static and deterministic. Traffic conditions in real road networks are
dynamic and stochastic [29]. How to incorporate such dynamic and stochastic travel times
into the proposed algorithm needs further investigation. Secondly, the proposed algorithm
considers only the road transport mode. The extension of this proposed algorithm into the
multi-mode transport networks, such as metro and bus, is warranted for further study. Last
but not least, finding k nearest generators is a critical step for many network analyses, such
as spatial interpolation, spatial clustering, outlier detection, and k nearest neighbor query,
etc. [12,14,28]. Subsequent studies should investigate how to incorporate the proposed
algorithm in these network analysis methods.

Author Contributions: Bi Yu Chen: Conceptualization, Methodology, Funding acquisition, Writing—
original draft, Writing—review and editing; Huihuang Huang: Conceptualization, Methodology,
Writing—review and editing; Hui-Ping Chen: Conceptualization, Methodology, Project adminis-
tration, Writing—review and editing; Xuan-Yan Chen: Writing—review and editing; Wenxuan Liu:
Writing—review and editing; Tao Jia: Writing—review and editing. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program (No.
2021YFB3900900), the Fundamental Research Funds for the Central Universities (No. 2042022kf1199),
National Natural Science Foundation of China (No. 42271473), the Natural Science Foundation of
Hubei Province (2020CFA054), and LIESMARS special Research Funding.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Notations used in this article.

A a set of links in the road network
|A| number of links in the road network
aij a network link from tail node ni to head node nj
aiq a partial link from tail node ni to location q
aqj a partial link from location q to head node nj

CRSK−1,i
out the child region set of vrK−1,i

out
F the set of generators
Fq,K

in the set of K inward nearest generators of location q
Fq,K

out the set of K outward nearest generators of location q
|F| the number of generators
f q,1
in first inward nearest generator of location q

f q,K
in Kth inward nearest generator of location q

f q,1
out first outward nearest generator of location q

f q,K
out Kth outward nearest generator of location q

G road network

ISPRS Int. J. Geo-Inf. 2023, 12, 172 20 of 23

k key parameter, such as k nearest generators
LSj label set of node nj
LSj[i] a label for recording the shortest path from the ith generator fi
N a set of nodes in the road network
|N| number of nodes in the road network
ni a network node
o a network location
osj open status
poq the shortest path from a location o from another location q
p̃ f w a temporal path from generator fi to node nw
PRED

(
nj
)

a set of predecessor nodes of node nj
q a network location
SE priority queue for sorting shortest paths
SGj the set of determined generators of node nj
SGj[i] the ith determined generator of node nj
SUCC

(
nj
)

a set of successor nodes of node nj
tij cost of link aij
toq cost of path poq

t f q
1 cost of the shortest path from generator f q,1

out to location q
t f q
i cost of the shortest path from the ith nearest generator fi to location q

tq f
i cost of the shortest path from location q to the ith nearest generator fi

VDK
in inward OkNVD (order k network Voronoi diagram)

VDK
out outward OkNVD (order k network Voronoi diagram)

vrK,i
in ith inward OkNVR (order k network Voronoi region) of VDK

in
vrK,i

Out ith outward OkNVR (order k network Voronoi region) of VDK
out

θq relative position of location q
δ

oq
ij link-path incidence relationship

Appendix A

Proposition A1. If the road network is fully connected, the order first outward (or inward) NVD
forms a tessellation on the road network.

Proof. We first prove that Voronoi regions of the order first outward NVD are collectively
exhaustive as follows. Because the road network is fully connected, we can calculate
shortest paths from all generators to a location q. Then, we can determine the location’s first
outward nearest generator, f q,1

out ∈ F, satisfying txq
1 ≤ txq

i , ∀ fi ∈ F−
{

f q,1
out

}
. According to

Equation (6), the location q belongs to a Voronoi region vr1,i
Out(Fq,1

out). Therefore, any location
q in the road network is covered by VR1

out. Thus, the collectively exhaustive property of
VR1

out is satisfied.
We then prove that Voronoi regions of the order first outward NVD are mutually

exclusive except at the boundary points as below. As proved, we can determine the first
outward nearest generator of location q, i.e., f q,1

out ∈ F satisfying txq
1 ≤ txq

i , ∀ fi ∈ F−
{

f q,1
out

}
,

which can further divide into two scenarios. The first scenario is txq
1 < txq

i , ∀ fi ∈ F −{
f q,1
out

}
. According to Equation (6), the location q belongs to only one Voronoi region,

i.e., vr1,i
Out

(
Fq,1

out

)
. Without the loss of generality, the other scenario is txq

1 < txq
i , ∀ fi ∈

F −
{

f q,1
out

}
−
{

. . . , f j,1
out, . . .

}
and txq

1 = txq
j for ∀ f j ∈

{
. . . , f j,1

out, . . .
}

. In this case, location

q is at the boundary of vr1,i
Out(f q,1

out) and vr1,i
Out(f j,1

out) for ∀ f j ∈
{

. . . , f j,1
out, . . .

}
. Therefore,

Voronoi regions of the order first outward NVD are mutually exclusive except at the
boundary points. Therefore, the order first outward VND forms a tessellation on the road

ISPRS Int. J. Geo-Inf. 2023, 12, 172 21 of 23

network. Similarly, we also can prove that the order first inward VND forms a tessellation
on the road network by using the shortest paths from a location q to all generators. �

Proposition A2. If the road network is fully connected, CRSK−1,i
out forms a tessellation on vrK−1,i

out .

Proof. We first prove that Voronoi regions of CRSK−1,i
out belong to vrK−1,i

out and fill the whole
area of vrK−1,i

out exhaustively as below. The kth nearest generators set Fq,K
out of the region

vrK,i
out ∈ CRSK−1,i

out satisfies Fq,K
out = Fw,K−1

out ∪
{

f q,K
out

}
. According to Equation (6), CRSK−1,i

out

belongs to vrK−1,i
out . Then, we prove that CRSK−1,i

out fill the region of vrK−1,i
out exhaustively.

Because the road network is fully connected, we can calculate shortest paths from generators
F− Fw,K−1

out to a location q. Thus, we can determine the location’s kth outward nearest
generator, fq,K

out ∈ F− Fw,K−1
out , satisfying t f q

K ≤ t f q
i , ∀ fi ∈ F− Fw,K−1

out . According to Equation
(6), the location q belongs to a Voronoi region vrK,i

out ⊂ CRSK−1,i
out . Therefore, any location q

in vrK−1,i
out is covered by CRSK−1,i

out . Thus, the collectively exhaustive property of CRSK−1,i
out

is satisfied.
We then prove that Voronoi regions of the CRSK−1,i

out are mutually exclusive except at the
boundary points as below. As proved, we can determine the kth outward nearest generator
of location q, i.e., fq,K

out ∈ F− Fw,K−1
out satisfying t f q

K ≤ t f q
i , ∀ fi ∈ F− Fw,K−1

out − fq,K
out , which can

further divide into two scenarios. The first scenario is t f q
K < t f q

i , ∀ fi ∈ F− Fw,K−1
out − fq,K

out .
According to Equation (6), the location q belongs to only one Voronoi region, i.e., vrK,i

out.
Without the loss of generality, the other scenario is t f q

K < t f q
i , ∀ fi ∈ F − Fw,K−1

out − fq,K
out −{

. . . , f j,K
out , . . .

}
and t f q

K = t f q
j for ∀xj ∈

{
. . . , f j,K

out , . . .
}

. In this case, location q is at the

boundary of vrK,i
out and vrK,j

out. Therefore, Voronoi regions of the CRSK−1,i
out are mutually

exclusive except at the boundary points. Therefore, the CRSK−1,i
out forms a tessellation on

the vrK−1,i
out . �

Proposition A3. When the proposed FindKNearestPOIs procedure terminates, it can determine
the shortest paths from K nearest generators Fj,K

out for all nodes.

Proof. The proposed procedure simultaneously constructs |F| shortest path trees rooted at
all generators using the one-to-all label-setting technique. According to Dijkstra (1959), this
label-setting technique can exactly construct |F| completed shortest path trees if all nodes
are not closed during the shortest path tree construction process. Let SGj =

{
f j,1
out, . . . , f j,K

out

}
be the k generators identified at node nj when the procedure terminated, and

{
p f j

1 , . . . , p f j
k

}
be the shortest paths from corresponding generators to node nj and

{
t f j
1 , . . . , t f j

k

}
are travel

costs of these shortest paths. According to the monotonic property of priority queue, we
have t f j

1 ≤ . . . ≤ t f j
k . Then, we prove that

{
p f j

1 , . . . , p f j
k

}
are k shortest paths by assuming

the contrary, namely that there exists another path p f j
∗ /∈

{
p f j

1 , . . . , p f j
k

}
satisfying t f j

∗ ≤ t f j
k .

There are two contrary cases to consider, as follows:
Case 1: Path p f j

∗ is discarded before the node nj is closed. Suppose that p f j
∗ =

p f w
∗ ⊕ pwj

∗ is discarded at node nw, i.e., we have k shortest paths
{

p f w
1 , . . . , p f w

k

}
satisfying

t f w
1 ≤ . . . ≤ t f w

K ≤ t f w
∗ . Therefore, we have at least k paths

{
p f w

1 ⊕ pwj
∗ , . . . , p f w

k ⊕ pwj
∗
}

satisfying t f w
1 + tjw

∗ ≤ . . . ≤ t f w
K + tjw

∗ ≤ t f j
∗ . This contradicts the assumption that p f j

∗ is the
one of k shortest paths.

Case 2: Path p f j
∗ is generated after the node nj is closed. When p f j

k was selected from

priority queue SE, we have t f j
k ≤ t f v

u for any path p f v
u ∈ SE. Since p f j

∗ will be generated

ISPRS Int. J. Geo-Inf. 2023, 12, 172 22 of 23

after node nj was closed, we have t f j
∗ ≥ t f j

k according to the monotonic property of SE. This

contradicts the assumption of t f j
∗ ≤ t f j

k . �

Proposition A4. When the introduced AddLinkToOkNVRs procedure terminates, it can correctly
divide two input links into a set of OkNVRs.

Proof. If SGj[1] 6= SGw[1] holds, the procedure will divide two input links ajw and awj
at the first level. Because any location q on two input links should go through either
left-bound route p f q

1 = p f j
1 ⊕ ajq or right-bound route p f q

1 := p f w
1 ⊕ awq to its nearest

generator, Step 2.1 can accurately determine break points, θu and θv, on two input links
using Equations (9) and (10). Then, we can determine two left-bound partial links aju and

auj belonging to a Voronoi region of Fq,1
out =

{
SGj[1]

}
and two right-bound partial links avw

and awv belonging to another Voronoi region of Fq,1
out = {SGw[1]}. Because break points have

equal path cost on left-bound and right-bound paths, SGj[1] and SGw[1] are their first and
second nearest generators. Step 2.2 then determines other k− 2 nearest generators for break
points by constructing candidate paths p f j

l ⊕ aju and p f v
l := p f w

l ⊕ awv for any path p f j
l

and p f w
l maintained at nj and nw. Using the priority queue technique, Step 2.2 can identify

the top k− 2 paths from all candidate paths. Therefore, Step 2.2 can correctly determine
SGu (SGv) and LSu (LSv) for break point nu (nv). Step 2.3 calls the procedure using newly
created left-bound links and right-bound links as the input links respectively. Therefore,
the procedure will recursively divide two input links at the first, second, . . . , until the
kth level. At the ith level with the scenario of SGj[i] 6= SGw[i], two input links are within

the same Voronoi region of Fq,i−1
out =

{
SGj[1], . . . , SGj[i− 1]

}
. Using the same technique as

the first level, Step 2.1 can accurately determine break points on two input links at the ith
level; and can divide input links into two left-bound links belonging to Voronoi region
of Fq,i

out =
{

SGj[1], . . . , SGj[i]
}

and two right-bound links belonging to Voronoi region of

Fq,i
out = {SGw[1], . . . , SGw[i]}. By constructing candidate paths for other k− i− 1 nearest

generators, Step 2.2 can correctly determine SGu (SGv) and LSu (LSv) for two break points.
Therefore, by recursively dividing two input links at the first, second, . . . , until the kth
level, the procedure can correctly divide them into a set of OkNVRs. �

References
1. Okabe, A.; Satoh, T.; Furuta, T.; Suzuki, A.; Okano, K. Generalized network Voronoi diagrams: Concepts, computational methods,

and applications. Int. J. Geogr. Inf. Sci. 2008, 22, 965–994. [CrossRef]
2. Ai, T.; Yu, W.; He, Y. Generation of constrained network Voronoi diagram using linear tessellation and expansion method. Comput.

Environ. Urban Syst. 2015, 51, 83–96. [CrossRef]
3. Gold, C. Tessellations in GIS: Part I—Putting it all together. Geo-Spat. Inf. Sci. 2016, 19, 9–25. [CrossRef]
4. She, B.; Zhu, X.; Ye, X.; Guo, W.; Su, K.; Lee, J. Weighted network Voronoi Diagrams for local spatial analysis. Comput. Environ.

Urban Syst. 2015, 52, 70–80. [CrossRef]
5. Chen, J.; Zhao, R.; Li, Z. Voronoi-based k-order neighbour relations for spatial analysis. ISPRS J. Photogramm. Remote Sens. 2004,

59, 60–72. [CrossRef]
6. Chen, B.Y.; Wang, Y.; Wang, D.; Li, Q.; Lam, W.H.K.; Shaw, S.-L. Understanding the Impacts of Human Mobility on Accessibility

Using Massive Mobile Phone Tracking Data. Ann. Am. Assoc. Geogr. 2018, 108, 1115–1133. [CrossRef]
7. Zheng, L.; Li, J.; Hu, W.; Duan, P. Analysis of the spatial range of service and accessibility of hospitals designated for coronavirus

disease 2019 in Yunnan Province, China. Geocarto Int. 2021, 37, 6519–6537. [CrossRef]
8. Morioka, W.; Okabe, A.; Kwan, M.-P.; McLafferty, S.L. An exact statistical method for analyzing co-location on a street network

and its computational implementation. Int. J. Geogr. Inf. Sci. 2021, 36, 773–798. [CrossRef]
9. Tu, W.; Fang, Z.; Li, Q.; Shaw, S.-L.; Chen, B. A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle

routing problem. Transp. Res. Part E: Logist. Transp. Rev. 2014, 61, 84–97. [CrossRef]
10. Shamos, M.I.; Hoey, D. Closest-point problems. In Proceedings of the 16th Annual Symposium on Foundations of Computer

Science (sfcs 1975), Washington, DC, USA, 13–15 October 1975.
11. Boissonnat, J.D.; Devillers, O.; Teillaud, M. A semidynamic construction of higher-order voronoi diagrams and its randomized

analysis. Algorithmica 1993, 9, 329–356. [CrossRef]

https://doi.org/10.1080/13658810701587891
https://doi.org/10.1016/j.compenvurbsys.2015.02.001
https://doi.org/10.1080/10095020.2016.1146440
https://doi.org/10.1016/j.compenvurbsys.2015.03.005
https://doi.org/10.1016/j.isprsjprs.2004.04.001
https://doi.org/10.1080/24694452.2017.1411244
https://doi.org/10.1080/10106049.2021.1943008
https://doi.org/10.1080/13658816.2021.1976409
https://doi.org/10.1016/j.tre.2013.11.003
https://doi.org/10.1007/BF01228508

ISPRS Int. J. Geo-Inf. 2023, 12, 172 23 of 23

12. Zou, H.; Yue, Y.; Li, Q.; Yeh, A.G.O. An improved distance metric for the interpolation of link-based traffic data using kriging: A
case study of a large-scale urban road network. Int. J. Geogr. Inf. Sci. 2012, 26, 667–689. [CrossRef]

13. Chen, B.Y.; Yuan, H.; Li, Q.; Wang, D.; Shaw, S.-L.; Chen, H.-P.; Lam, W.H.K. Measuring place-based accessibility under travel
time uncertainty. Int. J. Geogr. Inf. Sci. 2016, 31, 783–804. [CrossRef]

14. Nutanong, S.; Zhang, R.; Tanin, E.; Kulik, L. The V*-Diagram. Proc. VLDB Endow. 2008, 1, 1095–1106. [CrossRef]
15. Chen, Z.; Han, J.; Wang, B.; Liu, W. Voronoi-based k-path nearest neighbor query in road networks. In Proceedings of the 2010

International Conference on Computer and Information Application, Tianjin, China, 3–5 December 2010; pp. 52–55. [CrossRef]
16. Ohsawa, Y.; Htoo, H.; Nyunt, N.J.; Sein, M.M. Generalized bichromatic homogeneous vicinity query algorithm in road network

distance. In Proceedings of the New Trends in Databases and Information Systems: ADBIS 2015 Short Papers and Workshops,
BigDap, DCSA, GID, MEBIS, OAIS, SW4CH, WISARD, Poitiers, France, 8–11 September 2015; pp. 60–67.

17. Chen, B.Y.; Yuan, H.; Li, Q.; Lam, W.H.K.; Shaw, S.-L.; Yan, K. Map-matching algorithm for large-scale low-frequency floating car
data. Int. J. Geogr. Inf. Sci. 2013, 28, 22–38. [CrossRef]

18. Erwig, M. The graph Voronoi diagram with applications. Networks 2000, 36, 156–163. [CrossRef]
19. Li, Q.; Chen, B.Y.; Wang, Y.; Lam, W.H.K. A Hybrid Link-Node Approach for Finding Shortest Paths in Road Networks with Turn

Restrictions. Trans. GIS 2015, 19, 915–929. [CrossRef]
20. Ohsawa, Y.; Htoo, H.; Sein, M.M. Generalized vicinity query algorithm in road network distance. In East European Conference on

Advances in Databases and Information Systems; MERAL Portal; Springer: Berlin/Heidelberg, Germany, 2016.
21. Chen, B.Y.; Teng, W.; Jia, T.; Chen, H.-P.; Liu, X. Transit Voronoi diagrams in multi-mode public transport networks. Comput.

Environ. Urban Syst. 2022, 96, 101849. [CrossRef]
22. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
23. Chen, B.Y.; Yuan, H.; Li, Q.; Shaw, S.-L.; Lam, W.H.K.; Chen, X. Spatiotemporal data model for network time geographic analysis

in the era of big data. Int. J. Geogr. Inf. Sci. 2016, 30, 1041–1071. [CrossRef]
24. Fredman, M.L.; Tarjan, R.E. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 1987, 34,

596–615. [CrossRef]
25. Shi, C.; Chen, B.; Li, Q. Estimation of Travel Time Distributions in Urban Road Networks Using Low-Frequency Floating Car

Data. ISPRS Int. J. Geo-Inf. 2017, 6, 253. [CrossRef]
26. Geurs, K.T.; van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp.

Geogr. 2004, 12, 127–140. [CrossRef]
27. Dubowitz, T.; Zenk, S.N.; Ghosh-Dastidar, B.; Cohen, D.A.; Beckman, R.; Hunter, G.; Steiner, E.D.; Collins, R.L. Healthy food

access for urban food desert residents: Examination of the food environment, food purchasing practices, diet and BMI. Public
Health Nutr. 2014, 18, 2220–2230. [CrossRef] [PubMed]

28. Chen, B.Y.; Fu, C.-X.; Huang, H.-H. Measuring food accessibility using K nearest neighbor distance. Working paper.
29. Zhang, C.; Chen, B.Y.; Lam, W.H.K.; Ho, H.W.; Shi, X.; Yang, X.; Ma, W.; Wong, S.C.; Chow, A.H.F. Vehicle Re-identification for

Lane-level Travel Time Estimations on Congested Urban Road Networks Using Video Images. IEEE Trans. Intell. Transp. Syst.
2022, 23, 12877–12893. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/13658816.2011.609488
https://doi.org/10.1080/13658816.2016.1238919
https://doi.org/10.14778/1453856.1453973
https://doi.org/10.1109/ICCIA.2010.6141535
https://doi.org/10.1080/13658816.2013.816427
https://doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L
https://doi.org/10.1111/tgis.12133
https://doi.org/10.1016/j.compenvurbsys.2022.101849
https://doi.org/10.1007/BF01386390
https://doi.org/10.1080/13658816.2015.1104317
https://doi.org/10.1145/28869.28874
https://doi.org/10.3390/ijgi6080253
https://doi.org/10.1016/j.jtrangeo.2003.10.005
https://doi.org/10.1017/S1368980014002742
https://www.ncbi.nlm.nih.gov/pubmed/25475559
https://doi.org/10.1109/TITS.2021.3118206

	Introduction
	Model Formulation of Order k Network Voronoi Diagrams
	Proposed Algorithm for Constructing OkNVDs
	The FindKNearestPOIs Procedure
	The AddLinkToOkNVRs Procedure
	Complexity Analysis of the Proposed OkNVD Construction Algorithms

	Numerical Experiments
	Place-Based Accessibility to Supermarkets
	Computational Experiments

	Conclusions
	Appendix A
	References

