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Abstract: The rapid development of big data technology and mobile intelligent devices has led to the
development of location-based social networks (LBSNs). To understand users’ behavioral patterns
and improve the accuracy of location-based services, point-of-interest (POI) recommendation has
become an important task. In contrast to the general task of product recommendation, POI recom-
mendation faces the problems of the sparsity and weak semantics of user check-in data. To address
these issues, an increasing number of studies have improved the accuracy of POI recommendations
by introducing contextual information such as geographical, temporal, textual, and social relations.
However, the rich context also brings great challenges to POI recommendation, such as the low
utilization rate of context information, difficulty in balancing the richness of contextual information,
and the complexity of the recommendation matrix. Considering that similar users have more interest
preferences in common than users generally have, the check-in information of similar users has
greater reference meaning. Thus, we propose a personalized POI recommendation method named
CULT-TF, which incorporates similar users’ contextual information into the tensor factorization
model. First, we present a user activity model and a user similarity model, which integrate contextual
information to calculate the user activity and similarity between users. According to user activity, the
most representative active users are selected as user clustering centers, and then users are clustered
based on user similarity into several similar user clusters (C). Next, we construct a third-order tensor
(user-location-time matrix) for each user cluster by using user activity, POI popularity, and time
slot popularity as the eigenvalues in the user (U), location (L), and time (T) dimensions, and the
eigenvalue of each dimension is modeled by integrating contextual information of users’ check-in
behavior at the user, location, and time levels. Similar user clustering reduces the number of users in
tensor modeling, reducing the U dimension. To further reduce the complexity of the recommendation
matrix, the reduction of the L dimension is achieved through ROI (region of interest) clustering,
and the reduction of the T dimension is achieved through time slot encoding. Then, we use tensor
factorization (TF) to obtain the recommendation results. Our method decreases the complexity of
the tensor matrix and integrates rich contextual information on users’ check-in behavior. Finally, we
conducted a comprehensive performance evaluation of CULT-TF using real-world LBSN datasets
from Brightkite. The experimental results show that our proposed method performs much better
than other recommendation methods in terms of precision and recall.

Keywords: point-of-interest (POI) recommendation; location-based social network; tensor factoriza-
tion; context information

1. Introduction

In recent years, the wide availability of mobile devices (e.g., smartphones and tablets)
and advances in mobile networks have led to the development of location-based social net-
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works (LBSNs). LBSNs enable users to check in to geographic locations via social networks,
generating a large amount of point-of-interest (POI) data such as social, spatiotemporal,
and content information. Unlike online social networks, in addition to the social relations
between users, LBSNs have many geographic relations between locations and check-in
relations between locations and users [1].

POI recommendation filters massive geographic information data in LBSNs by analyz-
ing user behavior and helping users filter useless information, which plays an important
role in personalized recommendation systems. POI recommendation also helps service
providers promote personalized services to potential users [2,3]. However, unlike tradi-
tional product recommendation tasks that can be used to directly obtain explicit feedback
through user ratings, POI check-in data cannot directly reflect users’ POI preferences and
are weak in semantics [4]. In addition, people’s check-in activities tend to be concentrated in
a few areas and are not constant throughout the day, resulting in high data sparsity [5,6]. At
present, many studies have addressed the weak semantics and high sparsity by introducing
contextual information, such as location [7], category [8] and text information [9] of POIs,
user check-in time [10], and social relationships [11]. Although incorporating contextual
information helps in the understanding of the real preferences of users’ check-in behavior
and improves the accuracy of POI recommendations, it is difficult to balance the richness
of contextual information with the complexity of the recommendation matrix, which could
affect the performance of POI recommendation [12,13].

Therefore, a personalized POI recommendation method named CULT-TF, which
incorporates similar users’ contextual information into the tensor factorization model, is
proposed in this paper. The following contributions are provided by this work:

1. We define a user activity model and a user similarity model that can integrate contextual
information of users’ check-in behavior to calculate user activity and user similarity;

2. A similar user clustering method based on user activity and user similarity is presented
to select the most influential active users as clustering centers based on user activity and
to cluster users into several similar user clusters according to user similarity;

3. A U-L-T tensor that incorporates contextual information using user activity, POI
popularity, and time slot popularity as the eigenvalues in the U, L, and T dimensions,
which improves the integration of contextual information, is presented;

4. The CULT-TF recommendation method based on tensor factorization, which decreases
the complexity of the matrix-integrating rich contextual information by clustering
similar users, clustering POIs into regions of interest (ROIs), and encoding check-
in timestamps to time slots, to realize the reduction of the U, L, and T dimension,
respectively, is proposed. In this way, CULT-TF reduces the complexity of the recom-
mendation matrix while integrating the richness of the contextual information.

The rest of this paper is organized as follows: Section 2 introduces the related work
on POI recommendation methods. Section 3 summarizes the technical framework of this
method. Section 4 elaborates on the principle of the CULT-TF method. Section 5 presents
experiments and analysis. Section 6 is a discussion. Conclusions and future work are
presented in Section 7.

2. Related Work

POI recommendation based on LBSNs has been widely studied. Much work has
been performed in this area based on core ideas such as collaborative filtering (CF) and
matrix factorization (MF). As one of the early trending research domains of recommenda-
tion systems, collaborative filtering has played an important role in the development of
recommendation systems for years and is also the basis of many other recommendation
models [14,15]. Matrix factorization can mine the implicit feature relationship between
users and POIs and achieves good results in handling sparse data [16,17]. Thus, tensors are
a natural choice for simulating high-level context information in POI recommendations [18].
Some researchers use tensor factorization for traditional recommendation systems with
both explicit and implicit feedback [19]. Others recommend POIs by integrating time and
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other contextual information into the tensor factorization framework, which is more reason-
able for predicting where a user may go in a certain time period [20]. Furthermore, along
with the rapid growth of data, an increasing number of researchers have paid attention
to POI recommendation methods that consider one or more factors, such as geographical,
temporal, social, text, and category factors. Most researchers use user check-in data and
contextual information to improve recommendation effectiveness [21]. According to dif-
ferent types of contextual information, the existing POI recommendation methods can be
classified into several main categories.

2.1. POI Recommendation Based on Geographical Influence

According to Tobler’s first law of geography, everything is related to everything else,
but near things are more related than distant things [22]. Ye et al. investigated the strong cor-
relation between friend relationships and geographic locations and proposed a naive Bayes
algorithm based on user social relationships and geographic locations in a recommendation
model (USG) [15]. Cheng et al. incorporated social and geographical information into a gen-
eralized matrix factorization model through a polycentric Gaussian model (MGMPFM) [17].
Some studies have introduced geographic information by integrating geographic influence
into matrix factorization [20,23] or by converting geographical influence into a weight
of relevant similarity as input to a collaborative filtering model [14]. Due to the spatial
aggregation phenomenon, Luan et al. proposed a partition-based collaborative tensor
factorization (PCTF) method [24], which further improved the recommendation accuracy.

2.2. POI Recommendation Based on Temporal Influence

Users’ check-in behavior tends to show periodicity, continuity, or nonuniformity in
terms of temporal characteristics, which has inspired researchers to incorporate tempo-
ral influence into POI recommendations. The use of a real-time factor in the temporal
characteristics can clearly portray the user’s preference at the current moment, so adding
this factor to the POI recommendation can yield more accurate predictions of the user’s
interest preferences [25]. Some studies have introduced the periodicity of user behavior,
such as checking in at the office on weekdays and shopping centers on weekends [26].
Tour recommendations often include temporal continuity, where tourists tend to visit POIs
in a certain geographic order. The time-series pattern of a location from the historical
check-in trajectory of a tour is mined to guide the next POI recommendation in the time
series [27]. Some studies have used Markov chains to capture the time-series impact of
user check-in locations for POI recommendation [28]. Other studies have analyzed the
influence of nonuniform temporal characteristics on user check-in behavior. For example,
Li et al. proposed a fourth-order tensor factorization-based ranking methodology that
considers time-varying behavioral trends while capturing nonuniform preferences [10].
In addition, Zhao et al. employed a temporal tensor factorization method subsuming
these three temporal characteristics together to model check-in activity and achieve good
performance [29].

2.3. POI Recommendation Based on Social Influence

Users’ behavioral decisions are typically influenced by their friends or users with the
same interests, and the social relationship characteristics of “followers” and “companions”
are hidden in the check-in data. The social relationship between users intuitively reflects
the degree of interaction influence between the users. Therefore, introducing social influ-
ence can improve recommendation accuracy. Some studies have integrated the similarity
of users’ social relationships based on collaborative filtering models [30] or used social
relationships as regular terms or weights of the recommendation matrix to perform POI
recommendations [11]. In other studies, check-in locations of users with similar characteris-
tics are directly recommended to target users based on social relationships [31]. In addition,
some studies have modeled users’ social influence based on network linking methods to
improve recommendation accuracy [32].
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2.4. POI Recommendation Based on Text Context Influence

Text information is derived from users’ comments, opinions, and views on check-
in locations, which are key factors that influence other users’ check-in behavior. Some
studies have used LDA (latent Dirichlet allocation) models to predict user preferences and
recommend local or global POIs for users [9]. Collaborative filtering techniques combined
with topic models have been used by researchers such as Ye et al., who provided semantic
annotations of locations with categorical tags [33], and Pennacchiotti et al., who used topic
models to study user interests [34]. Although user comments are crucial for improving
POI recommendation performance, not every check-in dataset includes the corresponding
text information.

2.5. POI Recommendation Based on Multiple-Context Information

Contextual factors have been demonstrated to exert a substantial influence on indi-
viduals’ preferences [24]. Considering more kinds of contextual information in the recom-
mendation system helps to make more accurate recommendations. Therefore, many POI
recommendation methods introduce multiple-context information to improve effectiveness.
For example, Cheng et al. proposed a model (MGMPFM) that fuses matrix factorization
with geographical and social influence [17]. Li et al. proposed a spatial-temporal proba-
bilistic matrix factorization model (STPMF) based on users’ general preferences as well
as geographical and temporal information [35]. Some studies introduce more contextual
information, including the kernel estimation method based on adaptive bandwidth, which
introduces the geographical correlation between users and POIs while incorporating social
and categorical correlations (GeoSoCa) [36]; the joint probabilistic generation model based
on geographical, textual, social, categorical and popularity information (GTSCP) [9]; and
the multigraph fusion model based on POI categories, geographical and social relations
(GraphPOI) [37]. Although the abovementioned methods achieve relatively good rec-
ommendation performance by exploiting contextual information such as geographical,
temporal, and social influence, the rich contextual information also increases the complexity
of the recommendation matrix. We aim to solve these problems via similar user clustering,
which not only helps to reduce the computational complexity but also enhances the fusion
of contextual information and improves the recommendation accuracy.

3. Overview

In the CULT-TF method proposed in this paper, users are first clustered (C) based on
their social relationship similarity and check-in behavior similarity to obtain several clusters
of similar users; then, a third-order U-L-T tensor model containing user (U), location (L)
and time (T) features is constructed for each user cluster, and user activity, POI popularity,
and time slot popularity are modeled as the eigenvalues of the U, L, and T dimensions of
the tensor matrix. Finally, tensor factorization (TF) based on the U-L-T tensor model is used
to obtain the POI recommendation results for the user.

The recommendation framework of the CULT-TF method consists of three main
components: similar user clustering, U-L-T tensor modeling, and tensor factorization, as
shown in Figure 1.

3.1. Similar User Clustering

“Friends” in social networks, such as communities and interest groups, are users with
similar interests. Similar users have more common interest preferences than ordinary users,
and the check-in information of similar users has a greater reference value. Therefore, in
our proposed method, similar user clustering is first conducted; then, the interest points
of similar users are recommended to the target user, which is helpful for improving the
accuracy of POI recommendations. In addition, if a large number of users, POIs, and check-
in times in the LBSN are directly formed into a recommendation matrix, a large matrix
size, sparse matrix data, and high computational complexity could be obtained. Therefore,
similar user clustering also helps reduce the number of users in the recommendation matrix.
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The core of similar user clustering consists of two parts: selecting clustering centers
and calculating user similarity. In this paper, we select several users with the highest
activity as clustering centers based on their social data and check-in data, calculate the user
similarity based on their social relationship similarity and check-in behavior similarity, and
then cluster the remaining users in the clustering center with the highest user similarity, as
detailed in Section 4.1.

3.2. U-L-T Tensor Modeling

Based on the results of similar user clustering, a third-order U-L-T tensor model
containing user (U), location (L), and time (T) dimensions is constructed for each user
cluster. The advantage of the tensor model is that it can be used to explicitly model
the feature information and maintain the features of the dataset in different dimensions.
Unlike the POI recommendation method, which directly uses the user, location, and time
information of check-in data to construct the tensor model, our proposed method models
user activity, POI popularity, and time slot popularity as the eigenvalues of the U, L, and T
dimensions. The eigenvalues of each dimension are modeled by integrating the contextual
information of user check-in behavior at the user, location, and time levels, enhancing the
fusion of contextual information. User activity reflects the activity degree of users’ check-in
behavior, and the check-in behavior of active users has more referential meaning than that
of ordinary users. POI popularity reflects the popularity degree of an interest point, and
the higher the POI popularity is, the more users check-in at this POI. Time slot popularity
reflects the time distribution pattern of users’ check-in behavior. See Section 4.2 for details
of U-L-T tensor modeling and eigenvalue calculation.

3.3. Tensor Factorization

The sparsity of check-in data and the ambiguity of contextual information make it
difficult to obtain the check-in records of the target user in a given context. Therefore, the
constructed U-L-T tensor matrix is sparse, and the tensor values must be complemented to
predict the check-in behavior of target users in different contexts. Tensor factorization can
be used to present and maintain the structural characteristics of high-dimensional data by
mapping the relationships in the original space to a low-dimensional space and extracting
the potential relation between different dimensions to calculate the approximate tensor
of the missing values and compensate for the matrix sparsity problem caused by missing
data. In this paper, we use Tucker factorization [38] to calculate the approximate tensor
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of the original tensor and the least squares method to optimize the tensor factorization
results. Finally, the approximate tensor values are used to predict the check-in behavior of
the target user in given contextual situations and to generate a recommended list of Top-N
POIs for the target user.

4. The Proposed CULT-TF Method

Table 1 gives the key notation used in this paper.

Table 1. Key notations and descriptions.

Notation Description

U user set
L POI set
T time slot set
ui the user, with user ID i,ui ∈ U
lj the location, with POI ID j,lj ∈ L
tk the time slot, with time slot type ID k,tk ∈ T

Uui the friend set of the user ui
Lui the POI set checked in by the user ui
Tui the time slot set checked in by the user ui
Ulj

the set of users checking in at a location lj
Utk the set of users checking in at a time slot tk
fui the number of user ui check-ins
flj

the number of all user check-ins at the location lj
ftk the number of all user check-ins at the time slot tk

Uuv the friend set of user uv
Tlj

the set of time slot types for user check-ins at the location lj
Ltk the set of POIs for user check-ins during the time slot tk

4.1. Similar User Clustering Based on User Similarity

Friends with similar interests play an important role in users’ decisions, so similar
user clustering helps to improve the accuracy of interest point recommendations. The
main process of similar user clustering is shown in Figure 2: 1© Selecting user clustering
centers: the user clustering centers are selected based on the user activity model described
in Section 4.1.1; 2© Calculating user similarity: the similarity between users and each cluster
center is calculated based on the user similarity model defined in Section 4.1.2; 3© User
clustering: each user is clustered to the user clustering center with the highest similarity
to the user. The two cores of user clustering are user clustering center selection and user
similarity calculation. These two parts are explained in detail below.
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4.1.1. User Activity Model

The user selected as the clustering center should be the most representative user of the
cluster. Since active users have a wider social influence, user cluster centers are selected
based on user activity in this paper. In LBSNs, user activity is reflected in two main aspects:
the user’s social activity and the user’s check-in activity. The check-in activity of the user is
represented by the check-in location activity of the user and the check-in time activity of
the user. Thus, the user activity of user ui is expressed as wui , which can be calculated, as
shown in Formula (1):

wui = wui−u × wui−l × wui−t (1)

where wui−u denotes the social activity of user ui, which reflects the social influence of the
user in the user dimension. wui−u can be obtained from Formula (2). |Uui | and |U| denote
the number of user ui’s friends, and the number of users, respectively: the more friends a
user has, the higher the social activity and the greater the social influence of the user.

wui−u =
|Uui |
|U| (2)

wui−l denotes the check-in location activity of user ui, which reflects how active the
user is in visiting POIs in the location dimension. The greater the number of user check-ins
and POI types, the more active the user is in the real world. wui−l can be obtained from

Formula (3). ∑lj∈Lui

∣∣∣Ulj

∣∣∣ calculates the number of users who have checked in at locations at
which user ui has checked in. ∑lj∈Lui

flj
calculates the number of check-ins of all the users

at different locations.

wui−l =
∑lj∈Lui

|Ulj
|

|U| × |Lui |
|L| ×

fui

∑lj∈Lui
flj

(3)

wui−t is the check-in time activity of user ui, which reflects the activity of users’ check-
in behavior in the time dimension. The greater the number of users’ check-ins and the
check-in time diversity indicates that users’ check-in behavior is more active at different
times. wui−t can be obtained from Formula (4). ∑tk∈Tui

∣∣Utk

∣∣ calculates the total number
of users who have check-in time slots at the same time as user ui. ∑tk∈Tui

ftk calculates
the number of check-ins of all users at different time slots. In this paper, to reduce the
complexity of the time dimension of the recommendation matrix, we encode a user’s
check-in timestamp to a particular time slot ID based on the time encoding method [39].
User check-in activities may be concentrated in some time slots or distributed in different
time slots, and the time slots reflect the specific temporal preferences indicated by user
check-in behavior. A user’s check-in time activity is related to the number of user check-in
time slots and the number of times the user checks in during each time slot.

wui−t =
∑tk∈Tui

∣∣Utk

∣∣
|U| × |Tui |

|T| ×
fui

∑tk∈Tui
ftk

(4)

To facilitate the analysis of the temporal distribution characteristics of user check-
in behavior, the month, day, and period time granularities are used to encode check-in
timestamps to 96 types of time slots in this paper. The time slot type IDs range from 0 to
95, and each time slot corresponds to a continuous period. Taking the timestamp of user
check-in “9 July 2010 14:33:27”, which belongs to time slot ID 62, as an example, Figure 3
illustrates the process of encoding the timestamp of the user check-in to the time slot ID.
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illustrates the process of encoding the timestamp of the user check-in to the time slot ID. 

9 July 2010 14:33:27

t1:0111 t2:1 t3:10

0111110

62

Month

     Jan: 0001      Feb: 0010
     Mar: 0011    Apr: 0100
     May: 0101    Jun: 0110
     Jul: 0111      Aug: 1000
     Sep: 1001     Oct: 1010
     Nov: 1011    Dec: 1100

Day

Weekday: 0
Weekend: 1

Hour

Dawn: 00
（00:00-05:59）

AM: 01
（06:00-11:59）

PM: 10
（12:00-17:59）

Night: 11
（18:00-23:59）
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In summary, according to Formula (1), the activity of each user can be calculated; then,
the C users with the largest user activity are selected as user clustering centers.

4.1.2. User Similarity Model

User similarity is indicated by the similarity of social relationships and the similarity
of check-in behavior between users. The similarity of check-in behavior is represented by
the check-in location similarity and the check-in time similarity between users. Therefore,
the user similarity between user ui and user uv is expressed as simui−uv , and its calculation
is given in Formula (5).

simui−uv = simuui−uv + simlui−uv + simtui−uv (5)

simuui−uv denotes the similarity of social relationships between user ui and user uv.
The greater the number of common friends between the users, the higher the similarity
of their social relationships. In this paper, the Jaccard coefficient [40] is used to define the
social similarity of users, as shown in Formula (6) and simuui−uv ∈ [0, 1].

simuui−uv =
|Uui ∩Uuv |
|Uui ∪Uuv |

=
|Uui ∩Uuv |

|Uui |+|Uuv |−|Uui ∩Uuv |
(6)

simlui−uv is the similarity of check-in locations between user ui and user uv, which
reflects the similarity of users’ check-in behavior at the location level. The more often two
users check in at the same location and the more similar the number of check-ins at the
same location, the higher the similarity of their check-in behavior. In real life, a geographic
location may cover many POIs, and the POIs that users check in at when they visit the same
geographic location may not be the same. The similarity of check-in locations obtained
only by judging whether users visit the same POIs may be close to zero. Considering
the sparsity of check-in data and the spatial aggregation of users’ check-in behavior, we
cluster all POIs where users check in as ROIs based on K-means [41] clustering and then
measure the similarity of check-in locations between users based on their check-in ROIs.



ISPRS Int. J. Geo-Inf. 2023, 12, 145 9 of 24

Clustering a large number of user check-in POIs into a limited number of ROIs can reduce
the complexity of the recommendation matrix location dimension. The check-in location
matrix of all users visiting ROIs is defined as ULM×K, as shown in (7).

ULM×K =



r1,1 r1,2 · · · r1,j · · · r1,K
r2,1 r2,2 · · · r2,j · · · r2,K

...
...

. . .
...

. . .
...

ri,1 ri,2 · · · ri,j · · · ri,K
...

...
. . .

...
. . .

...
rM,1 rM,2 · · · rM,j · · · rM,K


(7)

where M is the number of users, K is the number of ROIs, and ri,j denotes the number
of normalized check-ins of user ui at the jth ROI. Representing the normalized check-in
number of users at K ROIs as a vector, the check-in location vectors of user ui and user
uv are ULi = (ri,1, ri,2, . . . , ri,j, . . . ri,K) and ULv = (rv,1, rv,2, . . . , rv,j, . . . rv,K), respectively.
We use the cosine angle between vectors to measure the similarity of check-in locations
between users. The similarity of check-in locations between user ui and user uv can be
obtained from Formula (8).

simlui−uv = cos(ULi, ULv) =
ULi ·ULv

‖ULi‖‖ULv‖
(8)

simtui−uv denotes the check-in time similarity between users ui and uv, which reflects
the similarity of the users’ check-in behavior at the time level. The more similar two
users’ check-in time slots are, the more similar the distribution of check-in time slots,
indicating a higher similarity of their check-in behavior at the temporal level. As described
in Section 4.1.1, we encode users’ check-in timestamps to 96 time slots, and the check-in
time matrix of all users based on these 96 time slots is defined as UTM×96, as shown in (9).

UTM×96 =



p1,0 p1,1 · · · p1,k · · · p1,95
p2,0 p2,1 · · · p2,k · · · p2,95

...
...

. . .
...

. . .
...

pi,0 pi,1 · · · pi,k · · · pi,95
...

...
. . .

...
. . .

...
pM,0 pM,1 · · · pM,k · · · pM,95


(9)

where M is the number of users and pi,k denotes the normalized check-in number of
user ui at the kth time slot. Representing the normalized check-in number of the user in
96 time slots as a vector, the check-in time vectors of user ui and user uv are UTi =
(pi,0, pi,1, . . . , pi,k, . . . , pi,95) and UTv = (pv,0, pv,1, . . . , pv,k, . . . , pv,95), respectively. The
check-in time similarity between user ui and user uv can be obtained from Formula (10).

simtui−uv = cos(UTi, UTv) =
UTi ·UTv

‖UTi‖‖UTv‖
(10)

In summary, user clustering is achieved by calculating the user similarity between
each user and C active users separately according to Formula (5) and clustering each user
into the cluster of the active user with the highest similarity to the user.

4.2. U-L-T Tensor Modeling with the Integration of Contextual Information

Based on the clustering results of similar users, a third-order tensor Z is constructed
for each user cluster, as shown in Figure 4. U, L, and T represent the user (U), location
(L), and time (T) dimensions, respectively, and the eigenvalues of each dimension reflect
the check-in characteristics of that dimension. In this paper, user activity, POI popularity,
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and time slot popularity are modeled as the eigenvalues of the U, L, and T dimensions in
tensor Z. The U-dimension eigenvalues (user activity) are described in Section 4.1, and the
L-dimension eigenvalues and T-dimension eigenvalues are introduced below.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 11 of 25 
 

 

User (U)
U=1，2，…，m

Location (L)
L=1，2，…，n

Time (T)
T=1，2，…，k

Z

 
Figure 4. U-L-T third-order tensor. 

The eigenvalues of the L dimension are the POI popularity values. At the user level, 
POI popularity is expressed as the ratio of the number of users who checked in at this POI 
to the total number of users; at the location level, POI popularity is represented by the 
ratio of the number of user check-ins at this POI to the total number of user check-ins at 
all POIs; at the time level, POI popularity is the ratio of the number of time slot types at 
which users check in at this POI to the total number of time slot types. By integrating the 
influences of user, location, and time contextual information on the check-ins of interest 

points, we express the POI popularity at location jl  as 
jl
p , and its calculation Formula 

is (11). 

j
| | | |

| | | |
j j

j
jjl

l l l
l

lL

U T

U T

f
p

f∈

× ×=
   

(11)

The eigenvalues of the T dimension are the time slot popularity values. At the user 
level, the time slot popularity is expressed as the ratio of the number of users checking in 
at this time slot to the total number of users; at the location level, the time slot popularity 
is the ratio of the number of POIs at which users check in during this time slot to the total 
number of POIs; at the time level, the time slot popularity is represented by the ratio of 
the number of users’ check-ins during this time slot to the total number of users’ check-
ins at all time slots. By integrating the influences of user, location, and time contextual 
information on the check-in time slots of users, we express the popularity of time slot kt  

as 
kt
v , and its calculation formula is (12). 

| | | |
| | | |

k k k

kk

k

t t t

tt T
t

U L

U L

f
f

v
∈

× ×=
   

(12)

To unify the magnitudes of the eigenvalues of each dimension, maximum-minimum 
normalization, shown in Formula (13), is used to normalize the eigenvalues. *z  denotes 
the normalized eigenvalue, where * [0,1]z ∈ ; z  is the original value of the eigenvalue, 

minz  is the minimum value of the eigenvalue, and maxz  is the maximum value of the 
eigenvalue. 

* min

max min

z zz
z z

−=
−   

(13)

Figure 4. U-L-T third-order tensor.

The eigenvalues of the L dimension are the POI popularity values. At the user level,
POI popularity is expressed as the ratio of the number of users who checked in at this POI
to the total number of users; at the location level, POI popularity is represented by the ratio
of the number of user check-ins at this POI to the total number of user check-ins at all POIs;
at the time level, POI popularity is the ratio of the number of time slot types at which users
check in at this POI to the total number of time slot types. By integrating the influences
of user, location, and time contextual information on the check-ins of interest points, we
express the POI popularity at location lj as plj

, and its calculation Formula is (11).

plj
=
|Ulj |
|U| ×

flj

∑lj∈L flj

×
|Tlj
|

|T| (11)

The eigenvalues of the T dimension are the time slot popularity values. At the user
level, the time slot popularity is expressed as the ratio of the number of users checking in
at this time slot to the total number of users; at the location level, the time slot popularity is
the ratio of the number of POIs at which users check in during this time slot to the total
number of POIs; at the time level, the time slot popularity is represented by the ratio of the
number of users’ check-ins during this time slot to the total number of users’ check-ins at all
time slots. By integrating the influences of user, location, and time contextual information
on the check-in time slots of users, we express the popularity of time slot tk as vtk , and its
calculation formula is (12).

vtk =

∣∣Utk

∣∣
|U| ×

∣∣Ltk

∣∣
|L| ×

ftk

∑tk∈T ftk

(12)

To unify the magnitudes of the eigenvalues of each dimension, maximum-minimum
normalization, shown in Formula (13), is used to normalize the eigenvalues. z∗ denotes the
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normalized eigenvalue, where z∗ ∈ [0, 1]; z is the original value of the eigenvalue, zmin is
the minimum value of the eigenvalue, and zmax is the maximum value of the eigenvalue.

z∗ =
z− zmin

zmax − zmin
(13)

When the given context is user ui, location lj, and time slot tk, the corresponding tensor
element is expressed as zui ,lj ,tk

, and its calculation formula is (14).

zui ,lj ,tk
= wui

∗ + plj
∗ + vtk

∗ (14)

where wui
∗ denotes the normalized user activity of user ui; plj

∗ is the normalized POI
popularity of location lj; and vtk

∗ represents the normalized time slot popularity of time
slot tk. The tensor element zui ,lj ,tk

calculated from the normalized eigenvalues is in the
range [0, 3]. Ultimately, the eigenvalues of each dimension integrate the contextual in-
formation of user check-in behavior at the user, location, and time levels, enhancing the
integration of contextual information.

4.3. TOP-N POIs Based on Tensor Factorization

Due to the sparsity of check-in data, tensor elements may be missing. The missing
tensor element values can be filled in by tensor factorization. The approximate tensor value
obtained by tensor factorization, which can be used as the predicted value of user check-in
behavior, contains the check-in behavior features of the original tensor in the U, L, and T
dimensions. This paper uses the Tucker method [38] for tensor factorization, and the least
squares method is used to optimize the results.

In the Tucker method, the tensor is split into the product of a kernel tensor and each
dimensional matrix, expressed as Z ≈ G×1 U×2 L×3 T, as shown in Figure 5. U ∈ Rm×r1 ,
L ∈ Rn×r2 , and T ∈ Rk×r3 are the low-rank eigenmatrices in the U, L, and T dimensions,
respectively. R refers to the low-dimensional feature space formed by the factorization of
each dimensional feature of the original tensor. The core tensor G ∈ Rr1×r2×r3 represents
the interaction between different eigenmatrices, retains the main information of the original
tensor, and is stable. The core tensor G has dimensions r1 × r2 × r3 and is much smaller
than the original vector. After the least-squares iterative solutions of the eigenmatrix and
core tensor are found, the approximate tensor element values are calculated according to
Formula (15).

ẑu,l,t = ∑
ũ

∑
l̃

∑
t̃

ĝũ,l̃ ,̃t · ûu,ũ · l̂l,l̃ · t̂t,̃t (15)

where ẑu,l,t is the approximate tensor element value, ĝũ,l̃ ,̃t is the core tensor, ûu,ũ is the

element value of the low-rank eigenmatrix in the U dimension, l̂l,l̃ is the element value
of the low-rank eigenmatrix in the L dimension, t̂t,̃t is the element value of the low-rank
eigenmatrix in the T dimension, “~” is the label for an index of the feature dimension, and
“ˆ” is the label for the elements in the eigenmatrix.

After obtaining the approximate tensor element values of the tensor model Z by the
tensor factorization method, a recommended list of Top-N POIs is generated according to
Formula (16). It denotes a list of locations l, which are the N POIs at which user u is most
likely to check in when the time is t.

Top− N =
N

argmax
t∈T

ẑu,l,t (16)



ISPRS Int. J. Geo-Inf. 2023, 12, 145 12 of 24ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 13 of 25 
 

 

Z
GU T

L
m n k× × 1m r×

2n r×

3k r×

1 2 3r r r× ×

≈

 
Figure 5. Tucker factorization form of a third-order tensor. 

After obtaining the approximate tensor element values of the tensor model Z  by the 
tensor factorization method, a recommended list of Top-N POIs is generated according to 
Formula (16). It denotes a list of locations l , which are the N POIs at which user u  is 
most likely to check in when the time is t . 

, ,- arg max ˆ
N

u l t
t T

Top N z
∈

=
  

(16)

5. Experiments 
5.1. Datasets 

The experiments use publicly available datasets from Brightkite, a location-based so-
cial networking service provider. The Brightkite datasets include a social dataset and 
check-in dataset in the US region (http://snap.stanford.edu/data/loc-brightkite.html, ac-
cessed on 1 March 2023). The experimental data comprise the data from the Brightkite 
datasets from 1 October 2009 to 30 September 2010, which are processed before the exper-
iment. For example, false information is deleted. The experimental dataset profile is 
shown in Table 2. The social dataset contains 4844 users and 186,071 relations. The check-
in dataset contains 388,148 check-in records, and each record consists of a check-in time, 
a longitude and a latitude coordinate, and a location id of POI corresponding to the check-
in coordinates. The check-in dataset contains 7685 POIs in total. To clearly show the geo-
graphic distribution of user check-ins, we use the map to display a large number of user 
check-ins based on POI information. Each red dot indicates a POI that users have checked 
in, as shown in Figure 6. 

Table 2. Brightkite datasets. 

Description Statistics 
Time Range 1 October 2009–30 September 2010 

Geographic Range 19.27° N–71.29° N 
67.84° W–159.67° W 

Number of Users 4844 
Number of POIs 7685 

Number of Social Relations 186,071 
Number of Check-ins 388,148 

Figure 5. Tucker factorization form of a third-order tensor.

5. Experiments
5.1. Datasets

The experiments use publicly available datasets from Brightkite, a location-based social
networking service provider. The Brightkite datasets include a social dataset and check-in
dataset in the US region (http://snap.stanford.edu/data/loc-brightkite.html, accessed
on 1 March 2023). The experimental data comprise the data from the Brightkite datasets
from 1 October 2009 to 30 September 2010, which are processed before the experiment. For
example, false information is deleted. The experimental dataset profile is shown in Table 2.
The social dataset contains 4844 users and 186,071 relations. The check-in dataset contains
388,148 check-in records, and each record consists of a check-in time, a longitude and a
latitude coordinate, and a location id of POI corresponding to the check-in coordinates. The
check-in dataset contains 7685 POIs in total. To clearly show the geographic distribution of
user check-ins, we use the map to display a large number of user check-ins based on POI
information. Each red dot indicates a POI that users have checked in, as shown in Figure 6.

Table 2. Brightkite datasets.

Description Statistics

Time Range 1 October 2009–30 September 2010

Geographic Range 19.27◦ N–71.29◦ N
67.84◦ W–159.67◦ W

Number of Users 4844
Number of POIs 7685

Number of Social Relations 186,071
Number of Check-ins 388,148

5.2. Evaluation Metrics

The two most common metrics used to evaluate POI recommendation methods are
Precision@N and Recall@N [42]. Precision@N, as defined in Formula (17), is the ratio of
correctly predicted POIs to the total number of recommended POIs. Recall@N, as defined
in Formula (18), is the ratio of correctly predicted POIs to the total number of POIs where a
check-in occurred.

Precision@N =
1
|U| ∑u∈U

|R(u) ∩ T(u)|
N

(17)

http://snap.stanford.edu/data/loc-brightkite.html
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Recall@N =
1
|U| ∑u∈U

|R(u) ∩ T(u)|
|T(u)| (18)

where N is the number of POIs recommended to the user, R(u) denotes the recommended
list of Top-N POIs that user u would like to visit, and T(u) is the list of POIs that user u
has visited.
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5.3. Clustering Parameter Analysis

As described in Section 4.1, the proposed method requires setting the user clustering
center parameter C and the ROI clustering parameter K. The activity of each user can be
calculated based on the Brightkite dataset. The normalized user activities of the ten most
active users are shown in Table 3. Theoretically, the larger the value of C is, the larger
the number of user clusters, the higher the similarity between users within a cluster, and
accordingly, the higher the accuracy of POI recommendation based on these similar users.
However, too large a value of C can cause excessive partitioning of user clusters, resulting
in more sparse check-in data of user clusters; too small a value of C may decrease the
similarity between users within a cluster, which makes it difficult to ensure the accuracy
of POI recommendation. Therefore, this section analyzes the effect of parameter C on
the standard deviation of users and average user similarity to set a suitable value of
parameter C.

Table 3. Top 10 user activities.

Ranking User ID User Activity Ranking User ID User Activity

1 1863 1.000000 6 620 0.608652
2 1864 0.822594 7 0 0.483306
3 143 0.808769 8 1302 0.468147
4 2149 0.732460 9 212 0.414451
5 35 0.623615 10 208 0.385934
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The standard deviation of users reflects the difference between the number of users in
each cluster and the average number of users; a smaller value indicates that the number
of users in each cluster is closer to the average number of users. The average number of
users is the ratio of the total number of users to the number of clusters C. Figure 7 shows
the average number of users and the standard deviation of users for different values of
parameter C. When C is 3, the standard deviation of users decreases substantially, and the
average number of users is close to 1615. However, a large number of users will affect the
performance of tensor modeling and tensor calculation. We set parameter C to 7 in this
paper because the standard deviation of users at this time is close to that when C is equal
to 3, and the average number of users is only 692.
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Figure 7. Average number of users and standard deviation of users.

Figure 8 shows the maximum proportion of users and the average user similarity
with different values of parameter C. The maximum proportion of users is the ratio of
the number of users in the largest user cluster to the total number of all users, and the
larger the value is, the more users are concentrated in the same cluster. The user similarity
of the cluster is defined as the average user similarity between each user and the central
user in the same cluster, and a higher value indicates that the check-in behavior of the
users in the cluster is more similar. The average user similarity is the average of the user
similarity of C clusters, and a higher value indicates that each cluster has a higher user
similarity. As shown in Figure 8, as parameter C increases, the maximum proportion of
users tends to decrease, and the average user similarity tends to increase; the curve of the
maximum proportion of users starts to level off when C is 7, and the curve of the average
user similarity is also relatively high at this time. When C is 7, Table 4 gives the user ID of
the cluster center and the user similarity of the cluster for each user cluster. In Table 4, the
cluster’s minimum value of user similarity reaches 0.72074 among the seven user clusters,
indicating that all user clusters have high user similarity. All the above experiments show
that it is reasonable to set parameter C to 7.
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Table 4. User cluster information (C = 7).

Cluster No. User ID of Cluster Center User Similarity of Cluster

1 1863 1.00592
2 1864 0.72074
3 143 0.90315
4 2149 0.86348
5 35 0.81491
6 620 0.90564
7 0 0.89310

To calculate the similarity of check-in locations between users, we cluster POIs into K
ROI clusters, as described in Section 4.1.2. The results of ROI clustering directly affect the
similarity of check-in locations. Therefore, to set a reasonable ROI clustering parameter K,
the silhouette coefficient is used to evaluate the results of ROI clustering in this experiment.
The range of the silhouette coefficient is [–1, 1], and the closer to 1 the value is, the better
the clustering result. The silhouette coefficients of ROI clustering with different values of K
are shown in Figure 9. Figure 9 shows that the silhouette coefficient is the highest when
parameter K is 12 and the number of ROI clusters is moderate; therefore, the ROI clustering
parameter K is set to 12 in this paper.
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5.4. Time Slot Analysis

In this paper, we encode a large number of users’ check-in timestamps to a limited
number of time slots. Theoretically, if the number of time slots is too small, then each
time slot will have a large number of user check-ins, making the time periodicity of user
check-in behavior more difficult to see. If the number of time slots is too large, the time
periodicity of user check-in behavior can be found more accurately, but the more time
slots there are, the greater the cost of tensor modeling. To set the number of time slots
reasonably, we consider low (32 time slots), medium (96 time slots), and high (192 time
slots) values and analyze the number of user check-ins for different time slots to find the
temporal distribution characteristic of user check-in behavior. Compared with the 96 time
slots described in Section 4.1.1, the 32 time slots use “Quarter” instead of “Month,” where
one quarter consists of three months (i.e., there are four quarters in one year), and the “Day”
and “Hour” time slots remain unchanged; for 192 time slots “Hour” is partitioned into
eight time slots, where every three hours is a time slot, and the “Month” and “Day” time
slots remain unchanged.

The quantity distributions of user check-ins when the number of time slots is set to 32,
96, and 192 are shown in Figures 10, 11, and 12, respectively. When the number of time
slots is set to 32, the check-in distribution regularity is not obvious; when the number of
time slots is set to 96 or 192, the distribution of users’ check-ins shows obvious periodic
characteristics.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 25 
 

 

have a large number of user check-ins, making the time periodicity of user check-in behavior 
more difficult to see. If the number of time slots is too large, the time periodicity of user check-
in behavior can be found more accurately, but the more time slots there are, the greater the 
cost of tensor modeling. To set the number of time slots reasonably, we consider low (32 time 
slots), medium (96 time slots), and high (192 time slots) values and analyze the number of user 
check-ins for different time slots to find the temporal distribution characteristic of user check-
in behavior. Compared with the 96 time slots described in Section 4.1.1, the 32 time slots use 
“Quarter” instead of “Month,” where one quarter consists of three months (i.e., there are four 
quarters in one year), and the “Day” and “Hour” time slots remain unchanged; for 192 time 
slots “Hour” is partitioned into eight time slots, where every three hours is a time slot, and the 
“Month” and “Day” time slots remain unchanged. 

The quantity distributions of user check-ins when the number of time slots is set to 
32, 96, and 192 are shown in Figure 10, Figure 11, and Figure 12, respectively. When the 
number of time slots is set to 32, the check-in distribution regularity is not obvious; when 
the number of time slots is set to 96 or 192, the distribution of users’ check-ins shows ob-
vious periodic characteristics. 

 
Figure 10. The distribution of check-ins for 32 time slots. 

As shown in Figure 11, between time slots 30 and 40 (March to May), the number of 
user check-ins is at a low level, which indicates that user willingness to travel is lower 
from March to May than in other months. The number of users’ check-ins gradually de-
creases from day to night during a day, and the distribution of check-ins in different 
months also varies. These results indicate that the temporal distribution characteristics of 
user check-in behavior can be more clearly shown through time slots. 

 
Figure 11. The distribution of check-ins for 96 time slots. 

0

5,000

10,000

15,000

20,000

25,000

30,000

0 5 10 15 20 25 30

C
he

ck
-in

 Q
ua

nt
ity

Time Slot ID

Day

Night
0

2,000

4,000

6,000

8,000

10,000

0 10 20 30 40 50 60 70 80 90

C
he

ck
-in

 Q
ua

nt
ity

Time Slot ID

Figure 10. The distribution of check-ins for 32 time slots.
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Figure 11. The distribution of check-ins for 96 time slots.
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As shown in Figure 11, between time slots 30 and 40 (March to May), the number of
user check-ins is at a low level, which indicates that user willingness to travel is lower from
March to May than in other months. The number of users’ check-ins gradually decreases
from day to night during a day, and the distribution of check-ins in different months also
varies. These results indicate that the temporal distribution characteristics of user check-in
behavior can be more clearly shown through time slots.

As shown in Figure 12, when the number of time slots is 192, although more time slots
can show more detailed check-in distribution regularity, excessive time slots in a day do not
bring significant benefits; for example, most users’ check-in behavior and intention are very
low during the late night to early morning hours (00:00–05:59), and dividing this time slot
into two time slots (00:00–02:59) and (03:00–05:59) has no significant impact on mining users’
check-in behavior regularity. In addition, too many time slots will significantly increase the
cost of tensor modeling; therefore, the number of time slots is set to 96 in our experiments,
which can reflect the temporal periodic characteristic of users’ check-in behavior while
controlling the cost of tensor modeling, and the number of time slots is moderate.

5.5. Experimental Results and Analysis

To analyze the effectiveness of the CULT-TF recommendation method, four POI
recommendation methods integrating different types of contextual information are chosen
for comparison as follows:

• USG [15]: USG is a collaborative recommendation method based on the geographical
influence that models the geographical clustering phenomenon by means of a naive
Bayesian approach and integrates social influence;

• MGMPFM [17]: MGMPFM is a POI recommendation method based on matrix factor-
ization that models the geographical influence of users’ check-in behavior based on a
multicenter Gaussian model (MGM) and fuses social and geographical influence into
a matrix factorization framework;

• GeoSoCa [36]: GeoSoCa is a POI recommendation method that exploits geographical
correlations, social correlations, and category correlations among users and POIs;

• LORE [28]: LORE is a location recommendation method with sequential influence
based on an additive Markov chain (AMC), which integrates sequential influence
with geographical influence and social influence into a unified location recommenda-
tion framework.
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In these experiments, the Brightkite datasets are used; 20% of the data are randomly
selected as the test set, and 80% of the data are used as the training set. The parameter
N of Top-N is set to 5, 10, 15, and 20 to compare the precision and recall of the CULT-TF
method with those of the above four methods, and the experimental results are shown
in Figure 13. The trends in the precision and recall of all evaluated methods are intuitive.
All five recommendation methods show a trend of decreasing precision and increasing
recall with increasing N, which means that the more POIs are recommended to users, the
more likely users are to find POIs that they are willing to visit; however, some of the
recommended POIs are less likely to be visited by users.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 19 of 25 
 

 

check-in data are collected. This phenomenon has been observed repeatedly in previous 
works [28,36]. So, we focus on contrasting the relative accuracy of all evaluated methods. 

USG linearly integrates social influence and geographical influence, and it considers 
only the impact of distance on user check-in behavior in terms of geographical influence. 
As shown in Figure 13, USG gives the worst recommendation result with respect to the 
Top-N values. MGMPFM adopts MGM to model the geographical influence and integrates 
social and geographical influence into matrix factorization. The geographical influence 
can be captured more accurately by MGMPFM than USG. Thus, the recommendation ac-
curacy of MGMPFM is a little better than that of USG. However, it does not consider the 
popularity of POI categories. As a result, it reports the second-lowest recommendation 
accuracy. 

From Figure 13, GeoSoCa achieves better performance than MGMPFM and USG. Ac-
cording to Table 5, for example, when the value of Top-N is 10, the precision increases from 
0.0259 for MGMPFM to 0.0385 for GeoSoCa, and the recall increases from 0.0280 for 
MGMPFM to 0.0375 for GeoSoCa. This improvement in performance is mainly due to Ge-
oSoCa not only considering the geographical influence and social influence but also taking 
the popularity of POI categories into account. Nonetheless, its improvement is limited in 
comparison to MGMPFM and USG because GeoSoCa ignores the temporal influence of 
POI recommendations. 

As shown in Table 5, CULT-TF and LORE significantly outperform GeoSoCa, 
MGMPFM, and USG in all metrics. For example, when Precision@15, the precision of 
CULT-TF attains 0.0685 and LORE attains 0.0501, while the precision of GeoSoCa, 
MGMPFM, and USG achieves 0.0342, 0.0245, and 0.0179, respectively. When Recall@15, 
the recall of CULT-TF attains 0.0815 and LORE attains 0.0630, while the recall of GeoSoCa, 
MGMPFM, and USG achieves 0.0475, 0.0386, and 0.0240, respectively. This implies that 
temporal influence plays a significant role in POI recommendation. By integrating tem-
poral influence, we can provide a much better performance of POI recommendations. 

CULT-TF always exhibits the best recommendation performance in terms of preci-
sion and recall. In particular, it achieves a significant improvement compared to the sec-
ond-best recommendation method LORE, mainly because it takes good advantage of con-
textual information from similar users and incorporates user activity, POI popularity, and 
time slot popularity into the recommendation matrix, achieving a significant improve-
ment compared to other recommendation methods. 

 
(a) 

5 10 15 200.00

0.02

0.04

0.06

0.08

0.10

Pr
ec
isi
on

Top-N

   USG     
   MGMPFM     
   GeoSoCa     
   LORE     
   CULT-TF

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 20 of 25 
 

 

 
(b) 

Figure 13. Recommendation accuracy of five recommendation methods. (a) Top-N Precision; (b) Top-
N Recall. 

Table 5. Precision and recall of different recommendation methods. 

Metrics USG MGMPFM GeoSoCa LORE CULT-TF 
Precision@5 0.0220 0.0288 0.0435 0.0664 0.0855 

Recall@5 0.0127 0.0175 0.0237 0.0363 0.0510 
Precision@10 0.0196 0.0259 0.0385 0.0563 0.0765 

Recall@10 0.0190 0.0280 0.0375 0.0518 0.0687 
Precision@15 0.0179 0.0245 0.0342 0.0501 0.0685 

Recall@15 0.0240 0.0386 0.0475 0.0630 0.0815 
Precision@20 

Recall@20 
0.0168 0.0230 0.0316 0.0455 0.0639 
0.0284 0.0472 0.0566 0.0718 0.0901 

To analyze the effects of similar user clustering, user activity, POI popularity, and 
time slot popularity on POI recommendation, the following four baseline methods are 
designed for comparison with our proposed method. 
• ULT-TF: This is a recommended method based on CULT-TF that does not conduct 

similar user clustering, i.e., it does not consider the influence of similar users; 
• CLT-TF: This is a simplified version of CULT-TF in terms of the U dimension, which 

does not introduce the U dimensional eigenvalue “user activity”; 
• CUT-TF: This is a simplified version of CULT-TF in terms of the L dimension, which 

does not introduce the L dimensional eigenvalue “POI popularity”; 
• CUL-TF: CUL-TF is a simplified version of CULT-TF in terms of the T dimension, 

which does not introduce the T dimensional eigenvalue “time slot popularity.” 
The experimental results of CULT-TF and the four baseline methods are shown in 

Figure 14 and Table 6, which indicates that the precision and recall of CULT-TF are always 
superior to those of the four baseline methods. As shown, ULT-TF exhibits the lowest rec-
ommendation precision and recall. That suggests that similar user clustering has the most 
important impact on recommendation accuracy. The recommendation performance of 
CUL-TF is slightly better than that of ULT-TF; in fact, they are close. As shown in Table 6, 
for example, the precision and recall of ULT-TF are 0.0726 and 0.0382 when the value of 
Top-N is 5, and those of CUL-TF are 0.742 and 0.387, respectively. CUL-TF gives the second 
worst recommendation result. The result implies that temporal influence plays the second 
most important role in improving recommendation quality. CUT-TF is better than CUL-
TF. This means that the impact of time slot popularity on the decrease in recommendation 
accuracy is greater than that of POI popularity. From Table 6, CLT-TF outperforms CUT-
TF, CUL-TF, and ULT-TF; that is, according to the impacts of the four baseline methods 

5 10 15 200.00

0.02

0.04

0.06

0.08

0.10

Rc
al
l

Top-N

   USG     
   MGMPFM     
   GeoSoCa     
   LORE     
   CULT-TF

Figure 13. Recommendation accuracy of five recommendation methods. (a) Top-N Precision;
(b) Top-N Recall.

The absolute accuracy of POI recommendation methods is usually not high due to
the sparsity of check-in data. However, POI recommendation will perform better as more
check-in data are collected. This phenomenon has been observed repeatedly in previous
works [28,36]. So, we focus on contrasting the relative accuracy of all evaluated methods.

USG linearly integrates social influence and geographical influence, and it considers
only the impact of distance on user check-in behavior in terms of geographical influence.
As shown in Figure 13, USG gives the worst recommendation result with respect to the
Top-N values. MGMPFM adopts MGM to model the geographical influence and integrates
social and geographical influence into matrix factorization. The geographical influence can
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be captured more accurately by MGMPFM than USG. Thus, the recommendation accuracy
of MGMPFM is a little better than that of USG. However, it does not consider the popularity
of POI categories. As a result, it reports the second-lowest recommendation accuracy.

From Figure 13, GeoSoCa achieves better performance than MGMPFM and USG.
According to Table 5, for example, when the value of Top-N is 10, the precision increases
from 0.0259 for MGMPFM to 0.0385 for GeoSoCa, and the recall increases from 0.0280 for
MGMPFM to 0.0375 for GeoSoCa. This improvement in performance is mainly due to
GeoSoCa not only considering the geographical influence and social influence but also
taking the popularity of POI categories into account. Nonetheless, its improvement is
limited in comparison to MGMPFM and USG because GeoSoCa ignores the temporal
influence of POI recommendations.

Table 5. Precision and recall of different recommendation methods.

Metrics USG MGMPFM GeoSoCa LORE CULT-TF

Precision@5 0.0220 0.0288 0.0435 0.0664 0.0855
Recall@5 0.0127 0.0175 0.0237 0.0363 0.0510

Precision@10 0.0196 0.0259 0.0385 0.0563 0.0765
Recall@10 0.0190 0.0280 0.0375 0.0518 0.0687

Precision@15 0.0179 0.0245 0.0342 0.0501 0.0685
Recall@15 0.0240 0.0386 0.0475 0.0630 0.0815

Precision@20
Recall@20

0.0168 0.0230 0.0316 0.0455 0.0639
0.0284 0.0472 0.0566 0.0718 0.0901

As shown in Table 5, CULT-TF and LORE significantly outperform GeoSoCa, MGMPFM,
and USG in all metrics. For example, when Precision@15, the precision of CULT-TF attains
0.0685 and LORE attains 0.0501, while the precision of GeoSoCa, MGMPFM, and USG
achieves 0.0342, 0.0245, and 0.0179, respectively. When Recall@15, the recall of CULT-TF
attains 0.0815 and LORE attains 0.0630, while the recall of GeoSoCa, MGMPFM, and USG
achieves 0.0475, 0.0386, and 0.0240, respectively. This implies that temporal influence
plays a significant role in POI recommendation. By integrating temporal influence, we can
provide a much better performance of POI recommendations.

CULT-TF always exhibits the best recommendation performance in terms of precision
and recall. In particular, it achieves a significant improvement compared to the second-best
recommendation method LORE, mainly because it takes good advantage of contextual
information from similar users and incorporates user activity, POI popularity, and time
slot popularity into the recommendation matrix, achieving a significant improvement
compared to other recommendation methods.

To analyze the effects of similar user clustering, user activity, POI popularity, and time
slot popularity on POI recommendation, the following four baseline methods are designed
for comparison with our proposed method.

• ULT-TF: This is a recommended method based on CULT-TF that does not conduct
similar user clustering, i.e., it does not consider the influence of similar users;

• CLT-TF: This is a simplified version of CULT-TF in terms of the U dimension, which
does not introduce the U dimensional eigenvalue “user activity”;

• CUT-TF: This is a simplified version of CULT-TF in terms of the L dimension, which
does not introduce the L dimensional eigenvalue “POI popularity”;

• CUL-TF: CUL-TF is a simplified version of CULT-TF in terms of the T dimension,
which does not introduce the T dimensional eigenvalue “time slot popularity.”

The experimental results of CULT-TF and the four baseline methods are shown in
Figure 14 and Table 6, which indicates that the precision and recall of CULT-TF are always
superior to those of the four baseline methods. As shown, ULT-TF exhibits the lowest
recommendation precision and recall. That suggests that similar user clustering has the
most important impact on recommendation accuracy. The recommendation performance
of CUL-TF is slightly better than that of ULT-TF; in fact, they are close. As shown in Table 6,
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for example, the precision and recall of ULT-TF are 0.0726 and 0.0382 when the value of
Top-N is 5, and those of CUL-TF are 0.742 and 0.387, respectively. CUL-TF gives the second
worst recommendation result. The result implies that temporal influence plays the second
most important role in improving recommendation quality. CUT-TF is better than CUL-TF.
This means that the impact of time slot popularity on the decrease in recommendation
accuracy is greater than that of POI popularity. From Table 6, CLT-TF outperforms CUT-TF,
CUL-TF, and ULT-TF; that is, according to the impacts of the four baseline methods on the
recommendation results, the importance of the four factors is ranked as follows: similar user
clustering > time slot popularity > POI popularity > user activity. As shown in Figure 14
and Table 6, CULT-TF always gives the best performance of POI recommendation, and the
results suggest that a single factor alone cannot accurately reflect user preferences for POIs.
CULT-TF shows the strength of combining all four factors of similar user clustering, user
activity, POI popularity, and time slot popularity.
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Table 6. Precision and recall of different baseline methods.

Metrics ULT-TF CUL-TF CUT-TF CLT-TF CULT-TF

Precision@5 0.0726 0.0742 0.0768 0.0807 0.0855
Recall@5 0.0382 0.0387 0.0424 0.0478 0.0510

Precision@10 0.0641 0.0665 0.0706 0.0717 0.0765
Recall@10 0.0530 0.0546 0.0609 0.0634 0.0687

Precision@15 0.0576 0.0597 0.0622 0.0656 0.0685
Recall@15 0.0593 0.0641 0.0730 0.0763 0.0815

Precision@20
Recall@20

0.0522 0.0573 0.0584 0.0620 0.0639
0.0634 0.0723 0.0804 0.0875 0.0901

6. Discussion

CULT-TF always exhibits the best recommendation quality in terms of both precision
and recall. It achieves a significant improvement compared to USG, MGMPFM, GeoSoCa,
and LORE. This is because USG and MGMPFM consider only geographical and social
influence, and GeoSoCa further integrates POI popularity, but all these three methods
ignore temporal influence for POI recommendation. LORE fuses sequential influence
with geographical and social influence into a recommendation framework, and LORE
implicitly expresses temporal influence via the sequential influence on users’ check-in
behavior. CULT-TF is distinct from the abovementioned methods. (1) CULT-TF exploits
contextual information from similar users and integrates geographical, temporal, and
social influence into a unified recommendation framework. (2) CULT-TF explicitly models
temporal influence as time slot popularity. Social and geographical influence are mod-
eled as user activity and POI popularity, respectively. (3) CULT-TF constructs a U-L-T
tensor matrix based on a similar user cluster that can capture user preferences more accu-
rately by integrating user activity, POI popularity, and time slot popularity into the tensor.
(4) CULT-TF reduces the complexity of tensor modeling by clustering similar users, cluster-
ing ROIs, and encoding time slots, significantly improving recommendation quality.

CULT-TF is significantly superior to each baseline method, i.e., ULT-TF, CUL-TF,
CUT-TF, and CLT-TF. The reason is that, in reality, users are affected by varying degrees
of geographical, temporal, and social influences. It is unable to model users’ check-in
behavior by considering only one influence. Similar user clustering has the greatest im-
pact on recommendation accuracy, which can significantly improve the recommendation
effect. Temporal influence also plays an important role in improving the quality of recom-
mendations. That is mainly because time slot popularity can reduce the sparsity of the T
dimension by mapping discrete check-in timestamps to time slots to capture the temporal
preference of user check-in behavior more accurately. The impact of POI popularity on the
recommendation results is greater than that of user activity, partly because users within a
cluster have greater similarity after user clustering, resulting in user activity differences
that are not obvious, and partly because POI popularity fusing the contextual information
of the user, location, and time levels, can capture the location preference of user check-in
behavior more accurately.

Our proposed CULT-TF method can be extended to other heterogeneous information
networks containing rich semantic information. Nonetheless, there are still some potential
limitations to our study. One limitation of our method is that the values of clustering
parameters C and K affect the recommendation results, so it is necessary to set reasonable
parameter values according to the datasets. In addition, we encode check-in timestamps to
time slots by the month, day, and period time granularities and obtain the check-in pattern
of users over the course of a year. The number of time slots should be set appropriately for
datasets with longer time information, which affects the performance of tensor modeling.
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7. Conclusions and Future Work

This paper proposes a POI recommendation method (CULT-TF) that integrates the
contextual information of similar users to capture user preferences more accurately. A
user activity model and user similarity model are presented to find active users as cluster-
ing centers and then cluster similar users. CULT-TF integrates social, geographical, and
temporal influence into a unified location recommendation framework, in which social,
geographical, and temporal influences are modeled as user activity, POI popularity, and
time slot popularity, respectively. In CULT-TF, a U-L-T tensor matrix is constructed based
on the clusters of similar users, and the Top-N list of POI recommendations is obtained
through tensor factorization, which not only fuses the context of similar users but also
reduces the complexity of tensor modeling. Finally, we conducted extensive experiments to
evaluate the performance of CULT-TF on the Brightkite dataset. The experimental results
show that the precision and recall of CULT-TF are always superior to those of the other
recommendation methods evaluated in our experiments. This indicates that integrating the
contexts of similar users can significantly improve recommendation accuracy.

In the future, we plan to integrate the semantics of POIs and the textual information
derived from user comments, opinions, and views on check-in locations into a unified
recommendation framework to further improve the recommendation quality of CULT-
TF. In addition, we aim to perform more efficient and accurate clustering for users by
considering other advanced clustering algorithms and addressing the cold start issue.
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