
Citation: Yao, X.; Yu, G.; Li, G.; Yan,

S.; Zhao, L.; Zhu, D. HexTile: A

Hexagonal DGGS-Based Map Tile

Algorithm for Visualizing Big

Remote Sensing Data in Spark. ISPRS

Int. J. Geo-Inf. 2023, 12, 89. https://

doi.org/10.3390/ijgi12030089

Academic Editor: Wolfgang Kainz

Received: 20 November 2022

Revised: 20 February 2023

Accepted: 21 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

HexTile: A Hexagonal DGGS-Based Map Tile Algorithm for
Visualizing Big Remote Sensing Data in Spark
Xiaochuang Yao 1,2,* , Guojiang Yu 1, Guoqing Li 3, Shuai Yan 1, Long Zhao 3 and Dehai Zhu 1,2,4

1 College of Land Science and Technology, China Agricultural University, Beijing 100193, China
2 Key Laboratory for Agricultural Land Quality Monitoring and Control, Ministry of Natural Resources,

Beijing 100193, China
3 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
4 Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture and Rural Affairs,

Beijing 100193, China
* Correspondence: yxc@cau.edu.cn; Tel.: +86-010-62-737-554

Abstract: The advent of the era of big remote sensing data has transformed traditional data manage-
ment and analysis models, among which visualization analysis has gradually become an effective
method, and map tiles for remote sensing data have always played an important role. However, in
high-latitude regions, especially in polar regions, the deformation caused by map projection still exists,
which lowers the accuracy of global or large-scale visual analysis, as well as the execution efficiency
of big data. To solve the above problems, this paper proposes an algorithm called HexTile, which uses
a hexagonal discrete global grid system (DGGS) model to effectively avoid problems caused by map
projection and ensure global consistency. At the same time, the algorithm was implemented based on
the Spark platform, which also has advantages in efficiency. Based on the DGGS model, hierarchical
hexagon map tile construction and a visualization algorithm were designed, including hexagonal
slicing, merging, and stitching. The above algorithms were parallelized in Spark to improve the big
data execution efficiency. Experiments were carried out with Landsat-8, and the results show that the
HexTile algorithm can not only guarantee the quality of global data, but also give full play to the
advantages of the cluster in terms of efficiency. Additionally, the visualization was conducted with
Cesium and OpenLayers to validate the integration and completeness of hexagon tiles. The scheme
proposed in this paper could provide a reference for spatiotemporal big data visualization technology.

Keywords: HexTile; DGGS; big remote sensing data; visualization; Spark

1. Introduction

Big remote sensing data presents multi-dimensional expression on space and time
scales, and contains complex and abstract information. As an effective method for spa-
tiotemporal data analysis, visualization can intuitively express the meaning of big data.
The map tile is a widely used visualization solution for remote sensing images, which are
subdivided into pieces of tiles organized as a pyramid model for display [1]. However,
most of the existing map tiles are constructed based on a plane, which cannot avoid a series
of problems caused by map projections, such as area or length deformation, and missing
high latitude data. At the same time, for different regions, the diversity of map projection
types and the complexity of algorithms have further exacerbated the difficulty of multi-
source data fusion in the era of big data, which also makes it impossible for global-scale or
large-scale scientific research to be carried out within a unified space-time framework. The
concept of discrete global grid systems (DGGS) provides a reference for solving the above
problems [2]. A DGGS is a special case of a spatial reference system that uses tessellations
rather than lattice points to encode location. After decades of development, discrete global
grid systems have been applied to the organization, management, analysis, visualization,
and other aspects of spatiotemporal data [3] as a digital Earth [4]. A specification for

ISPRS Int. J. Geo-Inf. 2023, 12, 89. https://doi.org/10.3390/ijgi12030089 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12030089
https://doi.org/10.3390/ijgi12030089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-8068-9415
https://doi.org/10.3390/ijgi12030089
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12030089?type=check_update&version=1

ISPRS Int. J. Geo-Inf. 2023, 12, 89 2 of 15

describing DGGSs was incorporated into OGC in 2014 and into ISO 19170–1:2021 in 2001.
These developments will further promote the industrialization of DGGSs [5]. A discrete
global grid system is a group of cells built on a spherical surface based on the geographic
coordinate system, with great potential as a reference framework for digital representations
of Earth [2]. A number of different types of DGGSs have been proposed, including tes-
sellations of triangles, diamonds [6], and hexagons [7], which have their own advantages
and disadvantages for different applications. A pole-oriented DGGS has been proposed
with the polar semi-hexagon grids and rectangular grids [8]. Hexagon grids are different
from the others, having more consistent adjacency, superior angle resolution, and higher
coverage. Furthermore, hexagon cells share an edge with their six neighbors, and a hexagon
grid maintains the same distance between the central hexagon cell and the neighbor cell [9],
which makes hexagonal DGGSs popular as the basis for global dynamic simulations, such
as atmospheric convection, Earth magnetic field changes, etc. These studies mainly focus
on the internal structure and material/energy movement of space objects, and generally
adopt the field object model for modeling, that is, the location, shape and distribution of
space objects are approximated through the division unit of the sphere space grid, and
the attribute information of space objects is organized according to the grid unit, so as to
establish the simulation model of the movement and change process of space objects. The
consistency and adjacency of hexagons have good spatial structure properties, which are
suitable for spatial dynamic modeling. Notably, a grid aperture is defined to depict the
ratio of the areas at two adjacent levels (e.g., level k and level k-1)—for instance, hexagon
grids have three types of models according to the aperture (aperture 3, 4, and 7).

Table 1 summarizes the existing open-source DGGS coding schemes, and many of
them have available DGGS model source code online [10]. The Open Geospatial Con-
sortium (OGC) also established a group for DGGS standardization in 2014 to discuss the
implementation of DGGS to extend their usability and interoperability. Two kinds of DGGS,
H3 and rHEALPix, are widely discussed in the DGGS specification manuscript of OGC, and
are integrated in GeoServer. H3 is an aperture 7 hexagonal DGGS built on an icosahedron.
Hierarchical Equal Area isoLatitude Pixelation (HEALPix) [11] produces a subdivision
of a spherical surface where each pixel confers the same surface area as each other pixel.
This model was developed to process and analyze data of cosmic microwave background
experiments [12]. In the experiment in this study, we used H3 as the basic DGGS for tile
slicing. On the one hand, H3 is widely used and discussed in OGC reports, and it has
rich language bindings. On the other hand, the hexagonal shape has the advantages of
adjacency and topological consistency.

Table 1. The existing open-source schema of DGGS.

DGGS Base Polyhedron Shape of Polygon URL

H3 Icosahedron Hexagon (aperture 7) https://github.com/uber/h3
(accessed on 20 September 2021)

OpenEAGGR Icosahedron Triangle (aperture 4)
Hexagon (aperture 3)

https://github.com/riskaware-ltd/open-eaggr
(accessed on 20 September 2021)

DGGRID Icosahedron Triangle/diamond/Hexagon
(aperture 3/4/mixed)

https://github.com/sahrk/DGGRID
(accessed on 21 September 2021)

HEALPix Rhombic-dodecahedron
milliarcseconds Curvilinear quadrilaterals https://healpix.sourceforge.io/index.php

(accessed on 21 September 2021)

rHEALPix Cube Square grid http://atlas.gge.unb.ca/rHEALPix
(accessed on 21 September 2021)

Geogrid Icosahedron Hexagon (aperture 3) https://github.com/giscience/geogrid
(accessed on 20 September 2021)

In the field of remote sensing, relevant research has been carried out on hexagonal
DGGS-based data modeling [13], hexagon accuracy evaluation [14], data fusion [15], and
applications [16]. HexASCII [17], which is similar to the ESRI ACSII raster format, was
proposed as an intermediate file to store DGGS data, and it defines specific rules to record

https://github.com/uber/h3
https://github.com/riskaware-ltd/open-eaggr
https://github.com/sahrk/DGGRID
https://healpix.sourceforge.io/index.php
http://atlas.gge.unb.ca/rHEALPix
https://github.com/giscience/geogrid

ISPRS Int. J. Geo-Inf. 2023, 12, 89 3 of 15

the position of DGGS cells. For examples, the cell values should be delimited by spaces.
No carriage returns are necessary at the end of each row in the raster, and so on. However,
data stored in HexASCII files still need to be converted to a vector data format such as
KML to be visualized in GIS software. Robertson [15] developed applications for data
analysis and visualization based on DGGS using grid cells to express the shape of vector
data (e.g., points, polylines, and polygons). As for raster data, resampling methods have
been adopted to extract pixel values from the DGGS cells at the closest resolution. Ma [14]
compared the accuracy of three resampling methods using a planar aperture 4 hexagon grid
system and pointed out that the bilinear resampling method had the highest accuracy. The
above works are an exploration and attempt to use the advantages of DGGS to process and
solve remote sensing data. For the visualization of big remote sensing data, the traditional
map service engine has played a huge role. However, the existing web map services are
not supported for hexagonal DGGS tiles. This paper proposes a hexagonal DGGS-based
remote sensing big data visualization algorithm, HexTile, which focuses on the remote
sensing data with the “scene” as the unit. The slicing of multi-scale hexagon tiles on the
server side and the stitching on the client side are designed to meet the global visualization
needs of remote sensing data.

In order to further improve the execution efficiency of HexTile, its parallel transforma-
tion was carried out based on the Spark cloud computing platform. Many studies have
proposed distributed and cloud environment-based frameworks for massive geospatial data
processing and visualization. Distributed computing frameworks, e.g., SpatialHadoop [18],
HadoopGIS [19], and GeoSpark [20], are designed for geospatial data management to lever-
age the high performance advantage of Hadoop MapReduce and Spark, providing spatial
operation and basic spatial models for processing. HadoopViz [21] and GeoSparkViz [22]
were developed based on SpatialHadoop and GeoSpark, respectively, for geospatial data
visualization. HadoopViz is compatible with SpatialHadoop, and the two are responsible
for visualization and data processing, respectively [18]. GeoSparkViz is a scalable spatial
data visualization framework with massive data rasterization, pixel aggregation, color
rendering and other parallel processing capabilities, and its efficiency can be increased
by up to five times [22]. GeoTrellis is also an open-source high-performance geographic
data framework developed from Spark, which is capable of processing and visualizing
massive amounts of geospatial data. These frameworks are designed for big geospatial data
processing, with which the efficiency of tile generation has been greatly improved. Large-
scale tile data storage and retrieval also represent a significant challenge, and distributed
databases such as HDFS, HBase, and Ceph have been used to solve this problem [23,24].
In total, distributed computation and parallel algorithms have been proven to provide
great improvement for massive geospatial data processing. The trinity of big remote sens-
ing data, cloud computing, and discrete global grid systems can provide a more suitable
solution [25].

The proposed HexTile algorithm considers the unified data framework of DGGS. In
this study, the characteristics of Spark cloud computing were combined to design and
implement the map tile visualization algorithm to maximize the mining and utilization of
remote sensing data values. Firstly, we designed the slicing algorithm based on a hexagon
grid to generate hexagon map tiles. Secondly, we adopted the strategy of stitching child tiles
into parent tiles to avoid repeatedly reading remote sensing images. The HexTile algorithm
was implemented in Spark to achieve high performance. Finally, several experiments were
carried out to measure the performance of our algorithms, and the generated hexagon tiles
are displayed on a web map with Cesium and OpenLayers to validate tile completeness.

The remainder of this paper is organized as follows: Section 2 provides an overview
of our algorithms. The implemented environment and experimental results are outlined in
Section 3. Sections 4 and 5 are the discussion and conclusion.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 4 of 15

2. Materials and Methods

As shown in Figure 1, the HexTile algorithm proposed in this paper mainly includes
three steps: (1) A tile slicing algorithm of remote sensing images based on hexagonal DGGS.
This step is mainly to slice the remote sensing image data into hexagonal grids. (2) Hexagon
tile merging of boundary fragments. For remote sensing image data with “scene” as the
unit, irregular fragments are unified merging to form a hexagon tile. (3) Stitching of tiles of
different levels. This is mainly based on basic-level tiles to generate parent hexagonal tiles
of higher level, which is a many-to-one process.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 4 of 16

hexagon tiles are displayed on a web map with Cesium and OpenLayers to validate tile
completeness.

The remainder of this paper is organized as follows: Section 2 provides an overview
of our algorithms. The implemented environment and experimental results are outlined
in Section 3. Sections 4 and 5 are the discussion and conclusion.

2. Materials and Methods
As shown in Figure 1, the HexTile algorithm proposed in this paper mainly includes

three steps: (1) A tile slicing algorithm of remote sensing images based on hexagonal
DGGS. This step is mainly to slice the remote sensing image data into hexagonal grids. (2)
Hexagon tile merging of boundary fragments. For remote sensing image data with
“scene” as the unit, irregular fragments are unified merging to form a hexagon tile. (3)
Stitching of tiles of different levels. This is mainly based on basic-level tiles to generate
parent hexagonal tiles of higher level, which is a many-to-one process.

Figure 1. Main three steps of the algorithm.

2.1. Hexagonal Slicing for Remote Sensing Data
As shown in Figure 2, the basic flow of hexagon slicing algorithm for remote sensing

image data is described. Taking the K level in DGGS as an example, for a remote sensing
image, the hexagonal grid covering the space range in the K level is firstly calculated ac-
cording to the calculated image range. Then, the envelope rectangle range of the hexago-
nal grid is calculated, according to the envelope rectangle range cut, and the correspond-
ing grid part of each hexagonal grid in the image is extracted.

The position relationship between the hexagonal grid and a remote sensing image
can be divided into two kinds. In the first, the grid is located at the boundary of the image
and intersects with the image part. In this case, the solution is to expand the clipped grid
space according to the space range of the hexagonal grid and the ratio of width and height.
As shown in Formula (1), we can inversely calculate the offset of the intersecting image
relative to the hexagonal grid by taking the upper left coordinate as the starting point
according to the spatial range and image resolution of the hexagonal grid and the inter-
secting image. According to the offset of the two, the image of the intersecting part is
drawn to the corresponding position in the hexagonal grid canvas, so as to maintain its
relative position in the hexagonal grid.

For the second position relationship, the hexagon grid is completely located inside
the image, and there is no stretching problem caused by partial intersection of tiles during
visualization, so a complete hexagon tile can be directly generated.

Algorithm 1 shows the pseudocode of hexagonal slicing for remote sensing data.

Figure 1. Main three steps of the algorithm.

2.1. Hexagonal Slicing for Remote Sensing Data

As shown in Figure 2, the basic flow of hexagon slicing algorithm for remote sensing
image data is described. Taking the K level in DGGS as an example, for a remote sensing
image, the hexagonal grid covering the space range in the K level is firstly calculated ac-
cording to the calculated image range. Then, the envelope rectangle range of the hexagonal
grid is calculated, according to the envelope rectangle range cut, and the corresponding
grid part of each hexagonal grid in the image is extracted.

The position relationship between the hexagonal grid and a remote sensing image can
be divided into two kinds. In the first, the grid is located at the boundary of the image
and intersects with the image part. In this case, the solution is to expand the clipped
grid space according to the space range of the hexagonal grid and the ratio of width and
height. As shown in Formula (1), we can inversely calculate the offset of the intersecting
image relative to the hexagonal grid by taking the upper left coordinate as the starting
point according to the spatial range and image resolution of the hexagonal grid and the
intersecting image. According to the offset of the two, the image of the intersecting part is
drawn to the corresponding position in the hexagonal grid canvas, so as to maintain its
relative position in the hexagonal grid.

For the second position relationship, the hexagon grid is completely located inside
the image, and there is no stretching problem caused by partial intersection of tiles during
visualization, so a complete hexagon tile can be directly generated.

Algorithm 1 shows the pseudocode of hexagonal slicing for remote sensing data.Xo f f set =
abs
(

Xcropped
min −Xhexagon

min

)
resolution

Yo f f set =
abs
(

Ycropped
max −Yhexagon

max

)
resolution

(1)

where
{

Xo f f set , Yo f f set

}
is the offset of the cropped raster in the hexagon cell,{

Xcropped
min , Ycropped

max

}
is the minimum longitude and maximum latitude of the cropped raster,{

Xhexagon
min , Yhexagon

max

}
is the minimum longitude and maximum latitude of the hexagon cell,

and resolution is the resolution of the remote sensing imagery.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 5 of 15

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 16

(1)

where is the offset of the cropped raster in the hexagon cell,
 is the minimum longitude and maximum latitude of the cropped ras-

ter, is the minimum longitude and maximum latitude of the hexagon
cell, and is the resolution of the remote sensing imagery.

Figure 2. Illustration of slicing method based on a hexagon grid.

Algorithm 1: The pseudocode of remote sensing data hexagonal slicing
Input: Remote Sensing Image
Output: hexagon Tiles
1. Calculate the extent of image.
2. Generate the list of hexagons covering the image according to the extent.
3. Loop for each hexagon.
for each hexagon in hexagon list do

3.1 Calculate the extent of hexagon cells and crop the image with the extent.
3.2 Calculate the offset (Offsetx, Offsety) between the extent of cropped raster and hexagon

raster.
end
4.Merge the cropped raster images that from the same hexagon cells.
5.Mask the raster with hexagon cell and render into hexagon tile.

Figure 2. Illustration of slicing method based on a hexagon grid.

Algorithm 1: The pseudocode of remote sensing data hexagonal slicing

Input: Remote Sensing Image
Output: hexagon Tiles
1. Calculate the extent of image.
2. Generate the list of hexagons covering the image according to the extent.
3. Loop for each hexagon.
for each hexagon in hexagon list do

3.1 Calculate the extent of hexagon cells and crop the image with the extent.
3.2 Calculate the offset (Offsetx, Offsety) between the extent of cropped raster and hexagon raster.

end
4. Merge the cropped raster images that from the same hexagon cells.
5. Mask the raster with hexagon cell and render into hexagon tile.

2.2. Hexagonal Merging for Boundary Fragments

Since the remote sensing image takes “scene” as the unit, which is inconsistent with
the tile range of hexagonal DGGS, a large number of trivial fragments are generated in
the generation process of the hexagon tile, which are post-processed, specifically via the
combination of hexagon tiles, to ensure the integrity of map tiles.

As shown in Figure 3, the merger of hexagonal tiles is relatively simple, mainly
involving the merging of fragments located on the same tile into a complete hexagonal tile.
This process merges tiles as a unit, making it ideal for parallelization.

2.3. Hexagonal Stitching Based on Hierarchy

Figure 4 shows the hexagon tile stitching algorithm. This algorithm is mainly based
on the hierarchy of the DGGS to generate hexagonal tiles of a higher level, so as to avoid
building multi-level map tiles from the original image and save the overall time of tile
construction. In general, we took the map tiles constructed for the first time as the base
layer, that is, the lowest layer, and then produced the tiles of the next level according to the
parent-child relationship of the DGGS hierarchy.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 6 of 15

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 16

2.2. Hexagonal Merging for Boundary Fragments
Since the remote sensing image takes “scene” as the unit, which is inconsistent with

the tile range of hexagonal DGGS, a large number of trivial fragments are generated in the
generation process of the hexagon tile, which are post-processed, specifically via the com-
bination of hexagon tiles, to ensure the integrity of map tiles.

As shown in Figure 3, the merger of hexagonal tiles is relatively simple, mainly in-
volving the merging of fragments located on the same tile into a complete hexagonal tile.
This process merges tiles as a unit, making it ideal for parallelization.

Figure 3. The diagram of merging the tiles intersecting with the same hexagon cell into one tile.

2.3. Hexagonal Stitching Based on Hierarchy
Figure 4 shows the hexagon tile stitching algorithm. This algorithm is mainly based

on the hierarchy of the DGGS to generate hexagonal tiles of a higher level, so as to avoid
building multi-level map tiles from the original image and save the overall time of tile
construction. In general, we took the map tiles constructed for the first time as the base
layer, that is, the lowest layer, and then produced the tiles of the next level according to
the parent-child relationship of the DGGS hierarchy.

The key to generating parent tiles by stitching child tiles is to determine the relation-
ship between the parent and child hierarchical grids. Here, we used H3, so the corre-
sponding relationship is 1:7, or a multiple of 7. Assuming that the level k has been built,
the level k-1 is grid hp. Firstly, all the sub grids covering the hp are calculated, namely hc =
{hic, i∈N+}. Then, the coordinate offset of each sub-grid hic in the range of hc, namely, Xoffset
and Yoffset, are calculated to determine the relative position of the child grid, as shown in
Formula (2). Finally, the corresponding tiles of each child grid are filled into the corre-
sponding position of the canvas to realize hexagonal stitching based on the DGGS hierar-
chy.

(2)

where Xmin and Ymax are the coordinates of the upper left corner of the envelope rectangle
of the parent grid or a single child grid, respectively. Xsmin and Ysmax are the coordinates of
the upper left corner of the envelope rectangle of the subgrid set, resolution is the real sur-
face resolution represented by the original resolution of the image or the unit pixel in the
parent tile after tile combination.

Figure 3. The diagram of merging the tiles intersecting with the same hexagon cell into one tile.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 7 of 16

Algorithm 2 shows the pseudocode of hexagonal stitching based on the DGGS hier-
archy.

Figure 4. Illustration of stitching hexagon tiles.

Algorithm 2: The pseudocode of hexagonal stitching.
Input: hexagon grids at level k-1 and hexagon tiles at level k
Output: hexagon tiles at level k-1
Calculate the child hexagon grids that fully cover the parent grid in level k.
Map parent grids with the corresponding child grids.
for each child grid do
2.1 Read the corresponding tile.
2.2 Calculate the extent of child cells and its offset in the parent cell.
end
4.Read the corresponding child tiles and stitch the tiles that have the same parent cell into a new
raster.
5.Mask the stitched tiles with corresponding parent hexagon cells and render parent hexagon tiles.

Figure 4. Illustration of stitching hexagon tiles.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 7 of 15

The key to generating parent tiles by stitching child tiles is to determine the relationship
between the parent and child hierarchical grids. Here, we used H3, so the corresponding
relationship is 1:7, or a multiple of 7. Assuming that the level k has been built, the level k-1
is grid hp. Firstly, all the sub grids covering the hp are calculated, namely hc = {hi

c, i∈N+}.
Then, the coordinate offset of each sub-grid hi

c in the range of hc, namely, Xoffset and Yoffset,
are calculated to determine the relative position of the child grid, as shown in Formula (2).
Finally, the corresponding tiles of each child grid are filled into the corresponding position
of the canvas to realize hexagonal stitching based on the DGGS hierarchy.{

Xo f f set = int (Xmin−Xs
min)

resolution
Yo f f set = int (Ys

max−Ymax)
resolution

(2)

where Xmin and Ymax are the coordinates of the upper left corner of the envelope rectangle
of the parent grid or a single child grid, respectively. Xs

min and Ys
max are the coordinates

of the upper left corner of the envelope rectangle of the subgrid set, resolution is the real
surface resolution represented by the original resolution of the image or the unit pixel in
the parent tile after tile combination.

Algorithm 2 shows the pseudocode of hexagonal stitching based on the DGGS hierarchy.

Algorithm 2: The pseudocode of hexagonal stitching.

Input: hexagon grids at level k-1 and hexagon tiles at level k
Output: hexagon tiles at level k-1
Calculate the child hexagon grids that fully cover the parent grid in level k.
Map parent grids with the corresponding child grids.
for each child grid do
2.1 Read the corresponding tile.
2.2 Calculate the extent of child cells and its offset in the parent cell.
end
4. Read the corresponding child tiles and stitch the tiles that have the same parent cell into a new raster.
5. Mask the stitched tiles with corresponding parent hexagon cells and render parent hexagon tiles.

2.4. HexTile Parallelization in Spark

With the help of the MapReduce programming model and Spark rich operator, as well
as GeoTrellis Raster, Tile, and other serialized objects and related functions and methods,
the parallel construction of hexagonal DGGS tiles was realized. Figure 5 shows the entire
flow chart of the HexTile algorithm in Spark.

(1) Slicing. Hexagon cells that cover the extent of each image at the basic level were
calculated to match the key-value pair <hexagon, image>. Then, each image was
cropped with the corresponding hexagon cells, and the offset of the cropped raster in
the hexagon cell was computed. The two steps are executed in the function.

(2) Merging. Additionally, one hexagon cell might partly intersect with several images,
at most four, so the next step was to merge these raster images into one raster, which
was implemented in the function. Finally, the raster images were masked with the
hexagon cell and rendered into hexagon tiles in parallel.

(3) Stitching. In the stitching part, child cells that fully cover their parent cells were
firstly acquired, and the key-value pair was matched. Then the pair was flattened to
a one-to-one pair using the flat Map function. In the next step, the spatial offset of
each child cell in the parent cell was calculated to stitch these corresponding tiles in
the correct position. The stitching process was operated in the function. Finally, each
stitched tile was masked and rendered into hexagon tiles.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 8 of 15

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 8 of 16

2.4. HexTile Parallelization in Spark
With the help of the MapReduce programming model and Spark rich operator, as

well as GeoTrellis Raster, Tile, and other serialized objects and related functions and meth-
ods, the parallel construction of hexagonal DGGS tiles was realized. Figure 5 shows the
entire flow chart of the HexTile algorithm in Spark.
(1) Slicing. Hexagon cells that cover the extent of each image at the basic level were cal-

culated to match the key-value pair < hexagon, image >. Then, each image was cropped
with the corresponding hexagon cells, and the offset of the cropped raster in the hex-
agon cell was computed. The two steps are executed in the function.

(2) Merging. Additionally, one hexagon cell might partly intersect with several images,
at most four, so the next step was to merge these raster images into one raster, which
was implemented in the function. Finally, the raster images were masked with the
hexagon cell and rendered into hexagon tiles in parallel.

(3) Stitching. In the stitching part, child cells that fully cover their parent cells were firstly
acquired, and the key-value pair was matched. Then the pair was flattened to a one-
to-one pair using the flat Map function. In the next step, the spatial offset of each
child cell in the parent cell was calculated to stitch these corresponding tiles in the
correct position. The stitching process was operated in the function. Finally, each
stitched tile was masked and rendered into hexagon tiles.

Figure 5. The flow chart of the HexTile algorithm in Spark.

Figure 5. The flow chart of the HexTile algorithm in Spark.

3. Results
3.1. Experiment Environment and Datasets

Experiments were designed to measure the stability and scalability of our algorithms.
The experiments were run in a cluster environment that was composed of one master node
and three workers. The master node was run on Ubuntu 18.04 with an 8-core Intel CPU
@2.1GHz and 16 GB of memory. The three workers were run on Ubuntu 16.04 with a 4-core
Intel CPU @2.1GHz and 32 GB of memory. We also applied solid-state drives to workers
as temporary caches for Spark. The code was written in Scala, and the programming
environments were JDK-1.8, Scala SDK version 2.12.14, Hadoop-3.3.0, and Spark-2.4.7.

The image dataset we used was Landsat-8 data L1T, downloaded from the website of
the United States Geological Survey (USGS). We performed some preprocesses that con-
verted the projection coordination to the geographic coordinate system (WGS84, EPSG:4326)
and combined bands of blue, green, and red into one GeoTiff file. The spatial extent of
the data is all over China, approximately 93 GB in size and comprising 553 scenes. The
dataset was stored in the Hadoop Distributed File System (HDFS). The HexTile algorithm
was developed based on GeoTrellis. The hexagon discrete global grid system we used in
the experiment was H3, developed by Uber.

3.2. Performance of HexTile Algorithm

The first experiment was carried out to estimate the stability and performance of the
parallel algorithm from one to three nodes for slicing at level 4. In the second experiment,
images were sliced directly from levels 6 to 2. In the third experiment, we selected a

ISPRS Int. J. Geo-Inf. 2023, 12, 89 9 of 15

different data volume for direct slicing (Table 2) at level 4. The number of hexagon tiles
sliced from the datasets is shown below (Table 3).

Table 2. Data volume and the corresponding number of hexagon tiles at level 4.

Data Volume Number of GeoTiffs Number of Hexagon Tiles

1 GB 6 158
10 GB 60 1270
20 GB 120 2292
50 GB 360 5870
93 GB 553 8210

Table 3. The number of hexagon tiles sliced from 553 images in different levels.

Level Number of Hexagon Tiles

L2 168
L3 1183
L4 8210
L5 57,444
L6 402,122

We performed a pre-experiment to adjust the configuration of Spark and chose the best
settings for the run-time test. The performance was distinctly improved with the increase
in the number of nodes and different levels (Figure 6). We tested the algorithm under the
conditions of a single machine environment, and the code was run in the same worker
node. It is obvious that the parallel algorithm accelerates the processing of slicing, and the
efficiency is enhanced by 3.7 to 10 times. At the same time, for the hexagonal DGGS model,
the higher the level, the more time is consumed. This comparison indicates the advantages
of parallel processing and the stability of our algorithm.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 16

Figure 6. Time-consumption comparison of tile construction with different numbers of nodes and
different levels.

The time consumption for each tile generation decreases as the level number in-
creases, even if the number of hexagon tiles is more than 400,000 at level 6 (Figure 7).
However, we found that the efficiency of tile generation at level 3 performs better than at
level 2. The explanation for this contradiction is that the extent of the hexagon cell at level
2 is much larger than the scene of a Landsat-8 image, and hence a number of images are
stitched together to generate a larger raster tile instead of slicing. This experiment shows
that the slicing algorithm is suitable for the generation of a large number of tiles.

Figure 7. The performance of directly slicing all images at different levels.

We also tested slicing efficiency for different scales of data volume. The result shows
that the efficiency of tile generation declines as the data volume grows (Figure 8). Alt-
hough the total time consumption of slicing for 1 GB of data is less than 2 min, it took
more time to generate each hexagon tile than slicing for 10 GB of data. For the slicing of a
massive number of images, the total time consumption increases immensely, but it is still
acceptable for the generation time of each tile.

Figure 6. Time-consumption comparison of tile construction with different numbers of nodes and
different levels.

The time consumption for each tile generation decreases as the level number increases,
even if the number of hexagon tiles is more than 400,000 at level 6 (Figure 7). However, we
found that the efficiency of tile generation at level 3 performs better than at level 2. The
explanation for this contradiction is that the extent of the hexagon cell at level 2 is much
larger than the scene of a Landsat-8 image, and hence a number of images are stitched
together to generate a larger raster tile instead of slicing. This experiment shows that the
slicing algorithm is suitable for the generation of a large number of tiles.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 10 of 15

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 16

Figure 6. Time-consumption comparison of tile construction with different numbers of nodes and
different levels.

The time consumption for each tile generation decreases as the level number in-
creases, even if the number of hexagon tiles is more than 400,000 at level 6 (Figure 7).
However, we found that the efficiency of tile generation at level 3 performs better than at
level 2. The explanation for this contradiction is that the extent of the hexagon cell at level
2 is much larger than the scene of a Landsat-8 image, and hence a number of images are
stitched together to generate a larger raster tile instead of slicing. This experiment shows
that the slicing algorithm is suitable for the generation of a large number of tiles.

Figure 7. The performance of directly slicing all images at different levels.

We also tested slicing efficiency for different scales of data volume. The result shows
that the efficiency of tile generation declines as the data volume grows (Figure 8). Alt-
hough the total time consumption of slicing for 1 GB of data is less than 2 min, it took
more time to generate each hexagon tile than slicing for 10 GB of data. For the slicing of a
massive number of images, the total time consumption increases immensely, but it is still
acceptable for the generation time of each tile.

Figure 7. The performance of directly slicing all images at different levels.

We also tested slicing efficiency for different scales of data volume. The result shows
that the efficiency of tile generation declines as the data volume grows (Figure 8). Although
the total time consumption of slicing for 1 GB of data is less than 2 min, it took more time
to generate each hexagon tile than slicing for 10 GB of data. For the slicing of a massive
number of images, the total time consumption increases immensely, but it is still acceptable
for the generation time of each tile.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 11 of 16

Figure 8. The performance of slicing in different data volumes.

We also designed an experiment to compare the efficiency of traditional direct slicing
and the stitching algorithm. The propose of stitching tiles is to reduce the disk read times;
however, it would take a large amount of time for the machine to search for certain tiles
before stitching. Thus, we tested the time cost of randomly generating hexagon tiles. The
comparison results are shown in Figure 9. It only requires about 0.6 s on average to stitch
a single tile, showing that the efficiency performance for stitching is at least four times
faster than traditional direct slicing. The time cost for each tile is higher than the time
consumption in other experiments, which might result from the random sampling time
because we recorded the whole running time instead of separate parts. This comparative
experiment indicates that it saves a great amount of time through stitching, which can
increase efficiency by up to 22 times.

Figure 9. Efficiency comparison between direct slicing and stitching.

3.3. Accuracy Evaluation of Hexagonal Tiles
For the evaluation of the quality of the hexagon grid, two indicators were selected in

this study: deviation index of spectral information (DISI) and mean root mean square er-
ror (RMSE) [14]. DISI compares the information loss pixel by pixel from a global perspec-
tive, while RMSE evaluates the geometric features of the image. Manually selected sample
points with obvious features in the image were utilized, such as the boundary between
land and water and the boundary between a natural surface and artificial surface. A total

Figure 8. The performance of slicing in different data volumes.

We also designed an experiment to compare the efficiency of traditional direct slicing
and the stitching algorithm. The propose of stitching tiles is to reduce the disk read times;
however, it would take a large amount of time for the machine to search for certain tiles
before stitching. Thus, we tested the time cost of randomly generating hexagon tiles. The
comparison results are shown in Figure 9. It only requires about 0.6 s on average to stitch
a single tile, showing that the efficiency performance for stitching is at least four times
faster than traditional direct slicing. The time cost for each tile is higher than the time
consumption in other experiments, which might result from the random sampling time
because we recorded the whole running time instead of separate parts. This comparative
experiment indicates that it saves a great amount of time through stitching, which can
increase efficiency by up to 22 times.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 11 of 15

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 11 of 16

Figure 8. The performance of slicing in different data volumes.

We also designed an experiment to compare the efficiency of traditional direct slicing
and the stitching algorithm. The propose of stitching tiles is to reduce the disk read times;
however, it would take a large amount of time for the machine to search for certain tiles
before stitching. Thus, we tested the time cost of randomly generating hexagon tiles. The
comparison results are shown in Figure 9. It only requires about 0.6 s on average to stitch
a single tile, showing that the efficiency performance for stitching is at least four times
faster than traditional direct slicing. The time cost for each tile is higher than the time
consumption in other experiments, which might result from the random sampling time
because we recorded the whole running time instead of separate parts. This comparative
experiment indicates that it saves a great amount of time through stitching, which can
increase efficiency by up to 22 times.

Figure 9. Efficiency comparison between direct slicing and stitching.

3.3. Accuracy Evaluation of Hexagonal Tiles
For the evaluation of the quality of the hexagon grid, two indicators were selected in

this study: deviation index of spectral information (DISI) and mean root mean square er-
ror (RMSE) [14]. DISI compares the information loss pixel by pixel from a global perspec-
tive, while RMSE evaluates the geometric features of the image. Manually selected sample
points with obvious features in the image were utilized, such as the boundary between
land and water and the boundary between a natural surface and artificial surface. A total

Figure 9. Efficiency comparison between direct slicing and stitching.

3.3. Accuracy Evaluation of Hexagonal Tiles

For the evaluation of the quality of the hexagon grid, two indicators were selected in
this study: deviation index of spectral information (DISI) and mean root mean square error
(RMSE) [14]. DISI compares the information loss pixel by pixel from a global perspective,
while RMSE evaluates the geometric features of the image. Manually selected sample
points with obvious features in the image were utilized, such as the boundary between
land and water and the boundary between a natural surface and artificial surface. A total
of 30 sample points (Figure 10) were selected for the calculation of the different study areas
a and b. The calculation formulas of the two indexes are (3) and (4).

DISI =
1

Col·Row ∑Col
i=1 ∑Row

j=1

∣∣Wi,j − Si,j
∣∣

Si,j
(3)

RMSE =

√
∑n

i=1(Wi − Si)
2

n
(4)

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 12 of 16

of 30 sample points (Figure 10) were selected for the calculation of the different study
areas a and b. The calculation formulas of the two indexes are (2) and (3).

(2)

(3)

Among them, Row and Col are the number of rows and columns of the image; W and
S represent the tile-stitched image and the original image, respectively; and n is the se-
lected sample point. The smaller the values of the two indices, the higher the precision.

Figure 10. Distribution of sampling points for precision evaluation.

The evaluation index calculates the average value of the accuracy of the three bands
of R, G, and B as the result, and the evaluation index calculation results are shown in Table
4 for the different study areas a and b. The accuracy of the tiles obtained by using the
slicing method is better than that generated by merging. The larger the number of levels
of tile construction, the higher the accuracy of the tile. At the sixth level, the complete data
restored from the tiles generated by the slices is very close to the original data, and the
error of pixel loss is also minimized. However, the tiles constructed by tile merging have
large errors in pixel loss and position offset.

The tiles obtained by using the slicing method can better restore the remote sensing
image data, so combining the hexagon tiles when calculating with hexagonal DGGS data
can guarantee better calculation accuracy. However, the tiles constructed by the merging
method have low accuracy and are not suitable for computing, but they are suitable for
map visualization.

Table 4. Quality accuracy evaluation of hexagon tiles.

Study Areas
Indices DISI RMSE
Levels 4 5 6 4 5 6

(a)
Slice 0.0347 0.0299 0.0157 2.0324 2.6402 0

Merge 1.1422 1.2268 1.1238 6.8613 6.3547 5.8274

(b) Slice 0.0849 0.0228 0.0101 2.0717 1.8140 0
Merge 1.2670 1.1699 1.0892 7.2619 6.6685 3.9679

Figure 10. Distribution of sampling points for precision evaluation.

Among them, Row and Col are the number of rows and columns of the image; W and S
represent the tile-stitched image and the original image, respectively; and n is the selected
sample point. The smaller the values of the two indices, the higher the precision.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 12 of 15

The evaluation index calculates the average value of the accuracy of the three bands
of R, G, and B as the result, and the evaluation index calculation results are shown in
Table 4 for the different study areas a and b. The accuracy of the tiles obtained by using the
slicing method is better than that generated by merging. The larger the number of levels of
tile construction, the higher the accuracy of the tile. At the sixth level, the complete data
restored from the tiles generated by the slices is very close to the original data, and the
error of pixel loss is also minimized. However, the tiles constructed by tile merging have
large errors in pixel loss and position offset.

Table 4. Quality accuracy evaluation of hexagon tiles.

Study Areas
Indices DISI RMSE

Levels 4 5 6 4 5 6

(a)
Slice 0.0347 0.0299 0.0157 2.0324 2.6402 0

Merge 1.1422 1.2268 1.1238 6.8613 6.3547 5.8274

(b)
Slice 0.0849 0.0228 0.0101 2.0717 1.8140 0

Merge 1.2670 1.1699 1.0892 7.2619 6.6685 3.9679

The tiles obtained by using the slicing method can better restore the remote sensing
image data, so combining the hexagon tiles when calculating with hexagonal DGGS data
can guarantee better calculation accuracy. However, the tiles constructed by the merging
method have low accuracy and are not suitable for computing, but they are suitable for
map visualization.

3.4. Visualization with WebGIS

Map tiles are mainly used for efficient visualization of spatial data. In terms of
visualization engine, Cesium and OpenLayers, which are commonly used as carriers, were
selected in this study to load and display hexagonal tiles. It is worth mentioning here that
the original Cesium and OpenLayers class libraries do not support the display of hexagonal
map tiles. Therefore, we designed the mapping relationship between map level, zooming
level, and hexagonal discrete grid level to quickly browse the map tiles.

Figure 11 shows Landsat-8 and LAI images in multiple levels visualized with Cesium.
The position of the hexagon tile in the map is consistent with the actual spatial position,
which also verifies the reliability of the parallel slice. In addition, the multi-level hexagon
tile also shows details at different scales.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 13 of 16

3.4. Visualization with WebGIS
Map tiles are mainly used for efficient visualization of spatial data. In terms of visu-

alization engine, Cesium and OpenLayers, which are commonly used as carriers, were
selected in this study to load and display hexagonal tiles. It is worth mentioning here that
the original Cesium and OpenLayers class libraries do not support the display of hexago-
nal map tiles. Therefore, we designed the mapping relationship between map level, zoom-
ing level, and hexagonal discrete grid level to quickly browse the map tiles.

Figure 11 shows Landsat-8 and LAI images in multiple levels visualized with Ce-
sium. The position of the hexagon tile in the map is consistent with the actual spatial po-
sition, which also verifies the reliability of the parallel slice. In addition, the multi-level
hexagon tile also shows details at different scales.

Figure 11. Hexagon tile visualization on the web map.

We also compared hexagon tiles with traditional map tiles loaded through Web Map
Service and Web Map Tile Service in GeoServer, and the result is shown in Figure 12.
Greenland is chosen as the study area here.

Figure 12. Comparison of hexagon tiles and traditional map tiles for visualization: (a) Hexagon tiles
generated by HexTile. (b) Image loaded through WMS. (c) Map tiles loaded through WMTS.

The visualization shows the completeness of the hexagon tiles generated by our hex-
agonal DGGS-based slicing algorithms. In terms of the hexagon tiles generated by the
stitching method, we compared hexagon tiles generated by traditional direct slicing and
the tiles generated by the stitching (Figure 13) in OpenLayers. From the perspective of the
visualization effect, the suture algorithm proposed in this paper is not only more efficient,
but also has no loss in data display quality.

Figure 11. Hexagon tile visualization on the web map.

ISPRS Int. J. Geo-Inf. 2023, 12, 89 13 of 15

We also compared hexagon tiles with traditional map tiles loaded through Web Map
Service and Web Map Tile Service in GeoServer, and the result is shown in Figure 12.
Greenland is chosen as the study area here.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 13 of 16

3.4. Visualization with WebGIS
Map tiles are mainly used for efficient visualization of spatial data. In terms of visu-

alization engine, Cesium and OpenLayers, which are commonly used as carriers, were
selected in this study to load and display hexagonal tiles. It is worth mentioning here that
the original Cesium and OpenLayers class libraries do not support the display of hexago-
nal map tiles. Therefore, we designed the mapping relationship between map level, zoom-
ing level, and hexagonal discrete grid level to quickly browse the map tiles.

Figure 11 shows Landsat-8 and LAI images in multiple levels visualized with Ce-
sium. The position of the hexagon tile in the map is consistent with the actual spatial po-
sition, which also verifies the reliability of the parallel slice. In addition, the multi-level
hexagon tile also shows details at different scales.

Figure 11. Hexagon tile visualization on the web map.

We also compared hexagon tiles with traditional map tiles loaded through Web Map
Service and Web Map Tile Service in GeoServer, and the result is shown in Figure 12.
Greenland is chosen as the study area here.

Figure 12. Comparison of hexagon tiles and traditional map tiles for visualization: (a) Hexagon tiles
generated by HexTile. (b) Image loaded through WMS. (c) Map tiles loaded through WMTS.

The visualization shows the completeness of the hexagon tiles generated by our hex-
agonal DGGS-based slicing algorithms. In terms of the hexagon tiles generated by the
stitching method, we compared hexagon tiles generated by traditional direct slicing and
the tiles generated by the stitching (Figure 13) in OpenLayers. From the perspective of the
visualization effect, the suture algorithm proposed in this paper is not only more efficient,
but also has no loss in data display quality.

Figure 12. Comparison of hexagon tiles and traditional map tiles for visualization: (a) Hexagon tiles
generated by HexTile. (b) Image loaded through WMS. (c) Map tiles loaded through WMTS.

The visualization shows the completeness of the hexagon tiles generated by our
hexagonal DGGS-based slicing algorithms. In terms of the hexagon tiles generated by the
stitching method, we compared hexagon tiles generated by traditional direct slicing and
the tiles generated by the stitching (Figure 13) in OpenLayers. From the perspective of the
visualization effect, the suture algorithm proposed in this paper is not only more efficient,
but also has no loss in data display quality.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 14 of 16

Figure 13. Comparison of different tile generation methods: direct slicing and stitching.

4. Discussion
In the era of big data, visualization has become an effective data analysis method,

through which the distribution and change of data can be expressed well. However, how
to effectively and truly display the data of globalization has always been a hot research
topic. Based on the advantages of the hexagonal discrete global grid system (DGGS), this
paper focuses on the construction of algorithms on the server side and the client side and
the parallelization of algorithms.

The hexagonal global discrete grid system has unique advantages in spatiotemporal
data organization, calculation, and analysis, which have been recognized by previous
studies. The visualization of large-scale remote sensing data is still a problem worth stud-
ying. As we know, the types and quantities of remote sensing data are constantly increas-
ing and globally oriented, and the globalization and large-scale applications based on re-
mote sensing data are increasingly rich. Therefore, the research content of this paper com-
bines the global discrete grid system with remote sensing big data, and through data slic-
ing, merging, stitching and other algorithms, a map tile technology based on hexagonal
DGGS was realized, which effectively solves various deformation problems caused by the
projection of traditional map tiles in high latitudes and polar regions. This also brings
great benefits for further data calculation and data fusion, because globally homogeneous
tiles can also effectively solve problems such as calculation hotspots and global unified
models.

In order to solve the efficiency problem caused by large-scale remote sensing data,
the Spark cloud computing platform was adopted in the algorithm construction in this
study. Spark technology has been proven to have significant advantages in terms of big
data computing efficiency, and this view is also verified by a series of experiments in this
study. During the construction of the Spark platform, the efficiency of hexagonal DGGS
tiles is dozens of times that of the traditional single-machine algorithm. In addition to the
above experiments, this study also combined the Cesium and OpenLayers class libraries
to visualize the tile data in the front end and evaluate the accuracy of the data, which
achieved good results.

5. Conclusions
In this paper, a HexTile algorithm is proposed, which is mainly based on the hexag-

onal DGGS model and Spark cloud computing platform to solve the visualization prob-
lems caused by big remote sensing data. The HexTile algorithm mainly realizes hexagon

Figure 13. Comparison of different tile generation methods: direct slicing and stitching.

4. Discussion

In the era of big data, visualization has become an effective data analysis method,
through which the distribution and change of data can be expressed well. However, how
to effectively and truly display the data of globalization has always been a hot research
topic. Based on the advantages of the hexagonal discrete global grid system (DGGS), this
paper focuses on the construction of algorithms on the server side and the client side and
the parallelization of algorithms.

The hexagonal global discrete grid system has unique advantages in spatiotemporal
data organization, calculation, and analysis, which have been recognized by previous
studies. The visualization of large-scale remote sensing data is still a problem worth
studying. As we know, the types and quantities of remote sensing data are constantly
increasing and globally oriented, and the globalization and large-scale applications based

ISPRS Int. J. Geo-Inf. 2023, 12, 89 14 of 15

on remote sensing data are increasingly rich. Therefore, the research content of this paper
combines the global discrete grid system with remote sensing big data, and through data
slicing, merging, stitching and other algorithms, a map tile technology based on hexagonal
DGGS was realized, which effectively solves various deformation problems caused by the
projection of traditional map tiles in high latitudes and polar regions. This also brings great
benefits for further data calculation and data fusion, because globally homogeneous tiles
can also effectively solve problems such as calculation hotspots and global unified models.

In order to solve the efficiency problem caused by large-scale remote sensing data,
the Spark cloud computing platform was adopted in the algorithm construction in this
study. Spark technology has been proven to have significant advantages in terms of big
data computing efficiency, and this view is also verified by a series of experiments in this
study. During the construction of the Spark platform, the efficiency of hexagonal DGGS
tiles is dozens of times that of the traditional single-machine algorithm. In addition to the
above experiments, this study also combined the Cesium and OpenLayers class libraries to
visualize the tile data in the front end and evaluate the accuracy of the data, which achieved
good results.

5. Conclusions

In this paper, a HexTile algorithm is proposed, which is mainly based on the hexagonal
DGGS model and Spark cloud computing platform to solve the visualization problems
caused by big remote sensing data. The HexTile algorithm mainly realizes hexagon slicing,
fragment merging and multilevel tile suturing of large-scale remote sensing data. In terms
of algorithm verification, a large number of experiments were conducted to compare the
efficiency of algorithms and verify the quality of data visualization, and the loading and
display of hexagonal tiles were integrated with Cesium and OpenLayers. The results show
that the HexTile algorithm proposed in this paper can not only improve the implementation
of big remote sensing data visualization efficiently but also maintain the quality of data
visualization well. At the same time, the algorithm can be effectively integrated with
existing data engines.

However, the HexTile algorithm has room for improvement, such as in conjunction
with spatial indexing, and the uncertainty of the boundary. In addition, it is also a solution
to develop a visualization engine suitable for hexagonal DGGS from the bottom, but at
present, this is still challenging.

Author Contributions: Conceptualization, Xiaochuang Yao, Guoqing Li and Dehai Zhu; methodol-
ogy, Xiaochuang Yao and Guojiang Yu; software, Guojiang Yu; validation, Guojiang Yu and Long
Zhao; formal analysis, Guojiang Yu; investigation, Xiaochuang Yao; resources, Xiaochuang Yao and
Shuai Yan; data curation, Guojiang Yu and Shuai Yan; writing—original draft preparation, Guo-
jiang Yu; writing—review and editing, Xiaochuang Yao; visualization, Guojiang Yu; supervision,
Xiaochuang Yao, Guoqing Li and Dehai Zhu; project administration, Xiaochuang Yao; funding acqui-
sition, Xiaochuang Yao. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Department of Science and Technology of Henan
Province through grant 201400210100 and the National Key R&D Program of China through grant
2019YFE0127000. This work was also supported by the National Supercomputing Center in Zhengzhou.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this paper are supported by the United States
Geological Survey (USGS) from https://earthexplorer.usgs.gov/ (accessed on 10 September 2021).

Acknowledgments: We are grateful for the comments and contributions of the anonymous reviewers
and the members of the editorial team.

Conflicts of Interest: The authors declare no conflict of interest.

https://earthexplorer.usgs.gov/

ISPRS Int. J. Geo-Inf. 2023, 12, 89 15 of 15

References
1. Guo, N.; Xiong, W.; Wu, Q.; Jing, N. An Efficient Tile-Pyramids Building Method for Fast Visualization of Massive Geospatial

Raster Datasets. Adv. Electr. Comput. Eng. 2016, 16, 3–8. [CrossRef]
2. Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2003, 30, 121–134. [CrossRef]
3. Rawson, A.; Sabeur, Z.; Brito, M. Geospatial Data Analysis for Global Maritime Risk Assessment Using the Discrete Global Grid

System. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium,
11–16 July 2021; pp. 3904–3907.

4. Hojati, M.; Robertson, C.; Roberts, S.; Chaudhuri, C. GIScience research challenges for realizing discrete global grid systems as a
Digital Earth. Big Earth Data 2022, 6, 358–379. [CrossRef]

5. Yao, X.; Li, G. Big spatial vector data management: A review. Big Earth Data 2018, 2, 108–129. [CrossRef]
6. Zhao, X.S.; Bai, J.J. Hierarchical model of global discrete grids based on diamonds. J. China Univ. Min. Technol. 2007, 36, 397.
7. Zhao, L.; Li, G.; Yao, X.; Ma, Y.; Cao, Q. An optimized hexagonal quadtree encoding and operation scheme for icosahedral

hexagonal discrete global grid systems. Int. J. Digit. Earth 2022, 15, 975–1000. [CrossRef]
8. Zhou, M.; Chen, J.; Gong, J. A pole-oriented discrete global grid system: Quaternary quadrangle mesh. Comput. Geosci. 2013, 61,

133–143. [CrossRef]
9. Li, M.; McGrath, H.; Stefanakis, E. Geovisualization of Hydrological Flow in Hexagonal Grid Systems. Geographies 2022, 2,

227–244. [CrossRef]
10. Li, M.; Stefanakis, E. Geospatial Operations of Discrete Global Grid Systems—A Comparison with Traditional GIS. J. Geovis. Spat.

Anal. 2020, 4, 26. [CrossRef]
11. Górski, K.M.; Hivon, E.; Banday, A.J.; Wandelt, B.D.; Hansen, F.K.; Reinecke, M.; Bartelmann, M. HEALPix: A Framework for

High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere. Astrophys. J. 2005, 622, 759. [CrossRef]
12. Gibb, R.G. The rHEALPix Discrete Global Grid System. IOP Conf. Ser. Earth Environ. Sci. 2016, 34, 012012. [CrossRef]
13. Zhao, X.; Wang, L.; Wang, H.; Li, Y. Modeling methods and basic problems of discrete global grids. Geogr. Geo-Inf. Sci. 2012, 28,

29–34.
14. Ma, Y.; Li, G.; Yao, X.; Cao, Q.; Zhao, L.; Wang, S.; Zhang, L. A Precision Evaluation Index System for Remote Sensing Data

Sampling Based on Hexagonal Discrete Grids. ISPRS Int. J. Geo-Inf. 2021, 10, 194. [CrossRef]
15. Robertson, C.; Chaudhuri, C.; Hojati, M.; Roberts, S.A. An integrated environmental analytics system (IDEAS) based on a DGGS.

ISPRS J. Photogramm. Remote Sens. 2020, 162, 214–228. [CrossRef]
16. Yan, S.; Yao, X.; Zhu, D.; Liu, D.; Zhang, L.; Yu, G.; Gao, B.; Yang, J.; Yun, W. Large-scale crop mapping from multi-source optical

satellite imageries using machine learning with discrete grids. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102485. [CrossRef]
17. de Sousa, L.M.; Leitão, J.P. HexASCII: A file format for cartographical hexagonal rasters. Trans. GIS 2018, 22, 217–232. [CrossRef]
18. Eldawy, A.; Mokbel, M.F. SpatialHadoop: A MapReduce framework for spatial data. In Proceedings of the 2015 IEEE 31st

International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April 2015; pp. 1352–1363.
19. Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop-GIS: A High Performance Spatial Data Warehousing System

over MapReduce. Proc. VLDB Endow. 2013, 6, 1009–1020. [CrossRef]
20. Jia, Y.; Wu, J.; Sarwat, M. GeoSpark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the

23rd SIGSPATIAL International Conference, Seattle, WA, USA, 3–6 November 2015; pp. 1–4.
21. Eldawy, A.; Mokbel, M.F.; Jonathan, C. HadoopViz: A MapReduce framework for extensible visualization of big spatial data. In

Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, 16–20 May 2016;
pp. 601–612.

22. Yu, J.; Zhang, Z.; Sarwat, M. GeoSparkViz: A Scalable Geospatial Data Visualization Framework in the Apache Spark Ecosystem.
In Proceedings of the 30th International Conference on Scientific and Statistical Database Management, Bozen-Bolzano, Italy, 9–11
July 2018; pp. 1–12.

23. Wan, L.; Huang, Z.; Peng, X. An Effective NoSQL-Based Vector Map Tile Management Approach. ISPRS Int. J. Geo-Inf. 2016,
5, 215. [CrossRef]

24. Tang, X.; Yao, X.; Liu, D.; Zhao, L.; Li, L.; Zhu, D.; Li, G. A Ceph-based storage strategy for big gridded remote sensing data. Big
Earth Data 2022, 6, 323–339. [CrossRef]

25. Yao, X.; Li, G.; Xia, J.; Ben, J.; Cao, Q.; Zhao, L.; Ma, Y.; Zhang, L.; Zhu, D. Enabling the Big Earth Observation Data via Cloud
Computing and DGGS: Opportunities and Challenges. Remote Sens. 2019, 12, 62. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.4316/AECE.2016.04001
http://doi.org/10.1559/152304003100011090
http://doi.org/10.1080/20964471.2021.2012912
http://doi.org/10.1080/20964471.2018.1432115
http://doi.org/10.1080/17538947.2022.2088871
http://doi.org/10.1016/j.cageo.2013.08.012
http://doi.org/10.3390/geographies2020016
http://doi.org/10.1007/s41651-020-00066-3
http://doi.org/10.1086/427976
http://doi.org/10.1088/1755-1315/34/1/012012
http://doi.org/10.3390/ijgi10030194
http://doi.org/10.1016/j.isprsjprs.2020.02.009
http://doi.org/10.1016/j.jag.2021.102485
http://doi.org/10.1111/tgis.12304
http://doi.org/10.14778/2536222.2536227
http://doi.org/10.3390/ijgi5110215
http://doi.org/10.1080/20964471.2021.1989792
http://doi.org/10.3390/rs12010062

	Introduction
	Materials and Methods
	Hexagonal Slicing for Remote Sensing Data
	Hexagonal Merging for Boundary Fragments
	Hexagonal Stitching Based on Hierarchy
	HexTile Parallelization in Spark

	Results
	Experiment Environment and Datasets
	Performance of HexTile Algorithm
	Accuracy Evaluation of Hexagonal Tiles
	Visualization with WebGIS

	Discussion
	Conclusions
	References

