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Abstract: Lane line detection is a fundamental and critical task for geographic information perception
of driverless and advanced assisted driving. However, the traditional lane line detection method
relies on manual adjustment of parameters, and has poor universality, a heavy workload, and poor
robustness. Most deep learning-based methods make it difficult to effectively balance accuracy and
efficiency. To improve the comprehensive perception ability of lane line geographic information in a
natural traffic environment, a lane line detection algorithm based on a mixed-attention mechanism
residual network (ResNet) and row anchor classification is proposed. A mixed-attention mechanism
is added after the backbone network convolution, normalization and activation layers, respectively,
so that the model can focus more on important lane line features to improve the pertinence and
efficiency of feature extraction. In addition, to achieve faster detection speed and solve the problem
of no vision, the method of lane line location selection and classification based on the row direction
is used to detect whether there are lane lines in each candidate point according to the row anchor,
reducing the high computational complexity caused by segmentation on a pixel-by-pixel basis of
traditional semantic segmentation. Based on TuSimple and CurveLane datasets, multi-scene, multi-
environment, multi-linear road image datasets and video sequences are integrated and self-built, and
several experiments are designed and tested to verify the effectiveness of the proposed method. The
test accuracy of the mixed-attention mechanism network model reached 95.96%, and the average
time efficiency is nearly 180 FPS, which can achieve a high level of accuracy and real-time detection
process. Therefore, the proposed method can meet the safety perception effect of lane line geographic
information in natural traffic environments, and achieve an effective balance between the accuracy
and efficiency of actual road application scenarios.

Keywords: road geographic information; safe driving; lane line detection; mixed-attention
mechanism; row anchor

1. Introduction

In China, with the rapid increase in the number of cars and the vigorous development
of road construction, drivers have to face more complex road conditions in the driving
process. They urgently need road geometric geographic information that can help drive
safe [1]. Based on this, detecting lane line geographic information is a crucial step to achieve
road safety driving [2].

The existing lane line detection methods can be summarized into two types, one
is the traditional image processing method [3–5], and the other is the method based on
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deep learning [6–8]. The traditional lane line detection method divides the lane line
area by means of edge detection and filtering, and then combines Hough transform [9],
RANSAC [10] and other algorithms. However, these methods require manual adjustment
of filter operators according to the actual scene, which has a heavy workload and poor
robustness. When the driving environment changes obviously, the lane line detection effect
is not good [11].

With the rapid development of deep learning in computer vision, lane line detec-
tion methods based on deep learning have gradually become the mainstream. Lane line
detection methods based on deep learning can be divided into three categories: segmen-
tation, point-based and curve-based modeling methods. The methods based on point
detection [12,13] usually use the R-CNN framework [14,15] to detect lane line by detecting
a series of dense pixels, which is inefficient. Based on the segmentation methods [16,17],
the lane line pixels are segmented one by one by using multi feature clues such as fore-
ground texture, and these pixels are decoded into lane line instances through heuristic
methods, with high calculation cost. However, as an essential component of automatic
driving and advanced assistant driving, lane line detection tasks are frequently executed
during operation, requiring extremely low calculation costs. Based on curved modeling
methods, inefficient cyclic feature aggregation is often used under sheltered or unfavorable
weather/lighting conditions, but the calculation cost is too high. A few methods [18,19]
model the lane line as a polynomial curved to simulate the geometric characteristics, but ab-
stract polynomial coefficients are difficult to learn. The research shows that the performance
of lane line detection based on curved modeling is significantly behind the well-designed
methods based on segmentation and point detection.

Based on the above, we propose a novel lane line detection algorithm based on mixed-
attention mechanism residual network (ResNet) and row anchor classification. ResNet [20]
is the backbone network to improve the reasoning effect of the model. A method of adding
mixed-attention mechanisms after convolutional, normalization and activation layers in
backbone networks is proposed, so that the model can focus more on important lane
line features. The method of lane line position selection and classification based on row
direction is adopted to obtain faster detection speed and solve the problem of no view.
Finally, an effective balance between the accuracy and efficiency of lane line geographic
information detection is achieved in the actual road application scenario.

In summary, the main contributions of this paper are as follows:

• A mixed-attention mechanism is proposed to be added after the backbone network con-
volution, normalization and activation layers, so that the model can focus more on im-
portant lane line features to improve the pertinence and efficiency of feature extraction.

• The method of lane line location selection and classification based on the row direction
is adopted, and the row index is carried out according to the row anchor points
to detect whether there is lane line in each candidate point, so as to achieve faster
detection speed and solve the problem of no field of vision.

• The road video test sequences of multi-scene, multi-environment and multi-line
type are built by ourselves to demonstrate the effectiveness and universality of
the lane geographic information detection method, so as to lay a foundation for
practical application.

2. Related Work

Currently, the methods of lane line detection are mainly divided into traditional and
deep learning methods. The traditional lane line detection methods are divided into model-
based methods and feature-based methods. The lane line detection methods based on
deep learning are emerging recently, with relatively good detection effects, and gradually
become the mainstream.
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2.1. Traditional Lane Line Detection Methods
2.1.1. Feature-Based Lane Line Detection

According to the difference between the lane line and other pavement features, the
feature-based method uses the edge [21], texture [22] and gradient [23] of the lane line and
pavement to judge, so as to realize the function of lane line detection.

Yoo et al. [24] proposed a lane line detection method based on linear discriminant
analysis and gradient enhancement conversion, which converted the original RGB image
of the road into a new gray image, and can dynamically adjust the gray conversion vector
to cope with a variety of light changes. Wei et al. [25] proposed a lane line detection
method based on constrained Hough transform double-edge extraction, which used lane
line width and color features to extract lane line regions, used a Canny edge detector to
obtain lane line edges, and finally recognized lines through modified Hough transform.
Mammeri et al. [26] proposed a lane line detection system based on the combination of
maximum stable extreme value region (MSER) and Hough transform. They used MSER
technology to locate the area of interest, and introduced a three-stage fine calculation
method to enhance the results of MSER and filter out unwanted information.

2.1.2. Model-Based Lane Line Detection

The model-based lane line detection method uses the extracted lane line features to
match the lane line model to achieve detection. Still, it needs to constantly adjust the model
and parameters to ensure the detection effect of various road conditions.

In the past decades, different lane line models have been proposed, including sim-
ple straight line models and complex models such as parabola, hyperbola, B-spline and
clothoid curve. To describe the constant change between straight and circular curves,
Zhao et al. [27] used a high-order lane line model, but with the increase in model order, it
became more sensitive to noise. The spline-based lane line model describes a wider range
of lane structures through a group of different control points forming arbitrary shapes.
He et al. [28] proposed curved lane line detection based on Catmull-Rom spline curve, and
used the Hough transform and Catmull-Rom to fit the near and far lane lines. Lee et al. [29]
proposed a cascaded particle filter algorithm based on model decomposition to detect lane
lines. The lane model was divided into two parts: the straight and curved model, which
can detect curves and straights.

In consequence, traditional lane detection methods need to extract features manually,
which is affected by different detection scenarios. Moreover, these methods require manual
modification of experimental parameters, with low robustness.

2.2. Deep Learning Lane Line Detection Methods

Nowadays, the lane line detection method based on deep learning has become the
mainstream [30–32]. Different models can be selected, and different parameters can be set,
which can adapt to various complex environments. Compared with traditional lane line
detection methods, it has better robustness.

However, the current CNN-based methods still have defects in meeting the challenges
of the above traditional methods. The typical method [16] first generated segmentation
results, then used post-processing methods to generate lane lines, such as segmentation
clustering and curved fitting. These post-processing methods were inefficient, and ignored
the global environment when learning to segment lanes. In order to improve the efficiency
of the algorithm, the literature [19] transferred the pipeline method in target detection to
lane detection without the above segmentation process and post-processing. However,
it relied on complex anchor design selection and additional non-maximum suppression,
making it slower than most lane line detectors. Xu et al. [13] proposed a new lane
sensitive architecture search framework called CurveLane-NAS, which combined multi-
level prediction heads with multi-level feature fusion. For a long lane line, it was divided
into the whole straight line part and the local bending part to capture features. The detection
accuracy was high, but the efficiency needed to be improved. Liu et al. [18] proposed
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an end-to-end method to directly output the parameters of the lane model, and used
Transformer model and self Attention mechanism to obtain the unique structure of the lane
line. This method had higher learning efficiency, but the detection accuracy needed to be
improved.

In a nutshell, the traditional lane line detection methods use edge detection, model
matching, and so forth, to segment the lane area, which requires manual adjustment of
the filter operator, with a heavy workload and poor robustness. Moreover, most of the
existing deep learning lane line detection methods are difficult to achieve an effective
balance between detection accuracy and efficiency.

3. Lane Line Detection Algorithm

We propose a new lane line detection algorithm that mainly consists three modules:
feature extraction module based on mixed-attention mechanism ResNet, auxiliary segmenta-
tion module and classification module based on row anchor. With the cooperation of these
modules, the lane line detection function can be realized with high performance and efficiency.
The network architecture of the entire lane line detection algorithm is shown in Figure 1.

只在训练时使用分割
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spatial attention
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Figure 1. Overall network architecture.

3.1. Feature Extraction Based on Mixed-Attention Mechanism ResNet

Traditional CNN realizes feature extraction by stacking convolution layer and subsam-
pling layer. However, when stacked to a certain depth, gradient disappearance, gradient
explosion and degradation will occur, which will affect the speed and accuracy of lane
detection. Therefore, this paper uses ResNet residual network as the backbone network,
adds an identity mapping, and directly transmits the current output to the next layer of the
network to solve the problem of gradient disappearance in the deep network and improve
the model reasoning effect.

At the same time, to improve the effectiveness and pertinence of feature extraction,
this paper adds channel attention mechanism and spatial attention mechanism after con-
volution, normalization and activation layer on the basis of ResNet backbone network.It
improves the reasoning ability of the model by introducing the mixed-attention mechanism,
so that the model can focus more on essential features. Lane line detection is to find the
lane line from the pavement and detect it, so the lane line is an important feature, while the
pavement is a negligible part. The spatial attention mechanism and the channel attention
mechanism make the model more aware of the “where” (influenced by spatial attention)
and “what to do” (influenced by channel attention). The feature extraction module of the
mixed-attention mechanism ResNet is shown in Figure 2, in which aux-hander 2–4 layers
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are only used in the auxiliary segmentation module during training, and their inputs are
the outputs of ResNet Layer 2–4 layers, respectively.

conv+bn+relu

channel attention

spatial attention

maxpool

layer1-4

aux-hander2

aux-hander3

aux-hander4

Figure 2. Mixed-attention mechanism module.

As shown in Figure 2, features are extracted from the input image through multi-
ple convolutions, pooling and activation functions, and the most important features are
extracted through the mixed-attention mechanism. Specifically, the lane features with
higher effectiveness and pertinence are extracted from the input images after the mixed-
attention mechanism ResNet. The original input image is downsampled four times to
extract relatively shallow features. Through global features and larger field of perception,
the global information is increased and the network reasoning ability in the absence of
vision is improved. Since the ResNet networks used in this paper are mainly ResNet-18
and ResNet-34, the basic block residual blocks are used in layers 1–4 of the module.

Aux-hander 2–4 layers are mainly used in training by a segmentation module. As
shown in Figure 1, semantic segmentation contact the extracted three-layers shallow fea-
tures, and the spliced features are upsampled. This part uses cross-entropy as segmentation
loss to enhance visual features during training.

3.2. Auxiliary Segmentation Module

The auxiliary segmentation module uses semantic segmentation to tensor concatena-
tion for the extracted three shallow features, and upsampling the spliced features. This part
uses cross-entropy as segmentation loss, which is only used in the training process to en-
hance visual features. The input information corresponding to the auxiliary segmentation
is the output information of each residual block of the mixed-attention mechanism ResNet
backbone network, which realizes the auxiliary segmentation method of using multi-scale
features to model local features, as shown in Figure 3.

Specifically, the input of aux-hander 2–4 is the data generated by the residual block
2–4 layer of the mixed-attention mechanism ResNet. After convolution and normalization
activation operations, the image is up-sampled and participated in segmentation. The
specific introduction of each layer is shown in Figure 4, where (a) aux-hander 2, (b) aux-
hander 3 and (c) aux-hander 4 are the detailed parameters of the corresponding layers,
including the number of network input channels, the number of output channels and the
size of the self-convolution kernel.
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aux-hander2

aux-hander3

aux-hander4

conv+bn+relu

conv

CAT

Figure 3. Auxiliary segmentation module.

Figure 4. Aux-hander schematic of the two to four layers.

3.3. Lane Line Location Selection and Classification Based on the Row Direction

At this stage, thinking of how to achieve faster detection speed and solve the problem
of no vision while maintaining the accuracy of lane line detection is a significant challenge.
Based on this, this paper adopts the location selection and classification method of lane
lines based on row direction [33]. In terms of global features, row indexes are carried out
according to row anchor points to detect whether there are lane lines in each candidate point,
which reduces the high computational complexity caused by pixel-by-pixel segmentation
of traditional semantic segmentation.

The selection and classification method based on the position in the row direction
converts the lane line detection to the selection of a specific row anchor point on a predefined
row, as shown in Figure 5. First, the image is gridded and divided into several adjacent
feature blocks by row. Then, the lane lines in each feature block are clustered to determine
whether there are lane lines in each feature block and marked. As it does not need to detect
every point pixel by pixel, as with traditional semantic segmentation, detection is only
based on feature blocks, which greatly reduces the amount of computation and is more
suitable for the real-time requirements of practical applications.
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Feature block of lane lines is detected.Feature block of lane lines is not detected.
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Figure 5. Schematic diagram of selection and classification methods based on row direction [33].

The image is resized into 288× 800 pixels, and the height and width of the image are
represented by H and W, respectively. The number of predefined lines is set to h. The
number of feature blocks divided on each row is w, and the number of lane lines is assumed
to be C. Assuming that X is the global image feature, fi,j is the classifier for the position of
lane i and the anchor point of row j. The lane prediction result is:

Pi,j,: = fi,j(X), i ∈ [1, C], j ∈ [1, h] (1)

where Pi,j,: is a w + 1 dimensional vector, which is expressed as the probability of selecting
w + 1 grid cells for the lane i and the row j of anchor points. Assuming that Ti,j,: is labeled
in the correct position, the formula can be optimized as follows:

Lcls =
C

∑
i=1

h

∑
j=1

LCE
(

Pi,j,:, Ti,j,:
)

(2)

where LCE represents cross-entropy loss. It can be seen that for the selection and classifica-
tion method of the lane line position based on the row direction, the calculation amount
is h × (w + 1) × C, while for the segmentation method, the calculation amount is H × W ×
(C + 1), and h and w are much smaller than H and W. Therefore, the calculation amount of
this method is small and the detection speed is fast.

In order to solve the problem of no vision, this paper defines the lane structure loss
function with the help of context information and global information from the image:

Lstr = Lsim + λ Lshp (3)

where Lsim is the similarity loss, Lshp is the shape loss, and λ is the loss coefficient.
Since the lane lines are continuous and adjacent, after the feature blocks are divided

according to rows, the lane lines at the adjacent row anchor points are also adjacent.
Therefore, by constraining the distribution of each lane line on the feature block, the
continuity between lane lines can be realized. The similarity loss function is defined as
shown in Equation (4). The smoothness is defined by L1 normal form to constrain the
distance between two adjacent points.

Lsim =
C

∑
i=1

h−1

∑
j=1

∥∥(Pi,j,:, Pi,j+1,:
)∥∥

1 (4)

where ‖·‖1 represents L1 normal form.
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Shape loss refers to the definition of lane shape by the second-order difference between
adjacent rows. Since lane lines are mainly straight, the second-order difference is set as 0,
and the difference between the second-order difference and 0 is constrained to make the
predicted lane lines straight.

First, the Softmax function is used to obtain the possibility of the lane at different
locations, then the approximate value of the lane is replaced by the expected value predicted
by the lane line. The probability of the lane at each location is defined as:

Probi,j,: = So f tmax
(

Pi,j,1:w
)

(5)

Since there is no counting in the background grid, the position range of the row is
from 1 to w. Combining Equation (5), the probability of the lane at each position can be
calculated. Then, the expected Loci,j of the position is expressed in Equation (6), where
Probi,j,: is the probability of the lane at each feature block.

Loci,j =
w

∑
k=1

k · Probi,j,k (6)

Finally, the constraint of the second-order difference of lane shape is expressed by
Equation (7). The second-order difference is used because it is less constrained than the
first-order difference. In this way, even if the lane is not straight, the actual effect will not
be affected due to the loss function problem.

Lshp =
C

∑
i=1

h−2

∑
j=1

∥∥(Loci,j − Loci,j+1
)
−

(
Loci,j+1 − Loci,j+2

)∥∥
1 (7)

4. Experiment Description

In this part, we carry out the preparatory work before the experiment and design
several experiments to evaluate the performance of the lane line detection method proposed
in this paper. It mainly includes dataset preparation and training, evaluation index analysis,
training set determination, and backbone network depth selection.

4.1. Datasets Preparation and Training

The composition of the training dataset is based on the TuSimple dataset [34] and
CurveLane dataset [13]. In TuSimple, the scene is relatively simple, such as the highway
scene, and most of them are straight roads. CurveLane is a curved dataset built by Huawei,
China. It contains a variety of road scenes, with many cases of poor lighting, road damage
and vehicle occlusion, and most of them are curves. Details are shown in Table 1.

Table 1. Dataset description.

Dataset Training Testing Resolution Scenes

Tusimple 3268 2782 1280× 720 Highways (mainly straight)
Curvelane 100,000 30,000 2560× 1440 Various complex scenes (curves mainly)

The experiment found that if only the TuSimple was used as the training set, the
trained model had poor adaptability and could only achieve relatively stable detection on
a straight-line road. However, if only the CurveLane was used, the scenes were relatively
complex. When encountering some simple linear scenes, the trained model could not adapt
to them, and the actual detection results are unsatisfactory. Therefore, in this paper we
decided to combine the two datasets for training, which cannot only cope well with some
complex scenes, but can also ensure the detection of simple scenes. At the same time,
combining the datasets of curves and straights can enhance the adaptation effect of the
trained model with better robustness.
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Three training sets are constructed. For convenience, the three datasets are named
DataSet-1, DataSet-2 and DataSet-3. DataSet-1 consists of 15,000 images in the CurveLane,
DataSet-2 consists of 15,000 images in the CurveLane and 2000 images in the TuSimple,
and DataSet-3 consists of 15,000 images in CurveLane and 3500 images in TuSimple. The
details are shown in Table 2.

Table 2. Training set construction description.

Dataset Training Resolution Scenes

DataSet-1 15,000 2560× 1440 Various complex scenes (curves mainly)
DataSet-2 17,000 2560× 1440, 1280× 720 Various complex scenes (curves mainly)
DataSet-3 18,500 2560× 1440, 1280× 720 Various complex scenes (curves mainly)

Since the annotation format of CurveLane is different from that of TuSimple, the
annotation format of the two datasets is incompatible in the process of model training, so it
is necessary to convert the annotation of CurveLane into TuSimple format so that they can
be combined. Specifically, you first need to select the desired images and their annotations
from the CurveLane, and then create a text document to select the image range for the
dataset annotation format conversion. The same json file as the TuSimple annotation can
then be generated. Finally, since the transformed CurveLane and Tusimple do not provide
segmentation annotation, the json annotation of the two datasets should be used to create
segmentation data and generate the train_gt.txt file based on training. Once this has been
completed, you can train by using either of these datasets or combining them.

The main evaluation indexes of the model effect in this paper are Accuracy, FP and
FN. FP refers to the negative samples predicted by the model as positive, and FN refers
to the positive samples predicted by the model as negative. The accuracy is calculated
by Equation (8).

Accuracy =
∑ clip Cclip

∑ clip Sclip
(8)

where Cclip refers to the number of lane line points correctly predicted, and Sclip refers to
the total number of actual lane line points.

The datasets DataSet-1, DataSet-2 and DataSet-3 are taken as the training sets, Tusimple
as the test set, and ResNet-18 as the deep learning backbone network. The corresponding
model training and testing are carried out, and the obtained evaluation index Accuracy, FP
and FN are shown in Table 3.

Table 3. Experimental results on three datasets.

Dataset Testing Backbone Accuracy FP FN

DataSet-1 TuSimple RestNet-18 85.97 0.422 0.317
DataSet-2 TuSimple RestNet-18 94.02 0.215 0.069
DataSet-3 TuSimple RestNet-18 95.26 0.196 0.046

As can be seen from Table 3, on the premise of limited device data-carrying capacity,
when a higher proportion of linear lanes are added to the complex scene training dataset, the
accuracy of the training model tested on the linear lane is significantly improved. Therefore,
when deploying and applying in actual scenarios, for the same deep learning network model,
adding a certain proportion of a linear lane dataset to the complex scenario will provide
better robustness to the structured linear road easily encountered by unmanned drivers. In
the self-made image and video detection experiment part in Section 5.2, visualization results
will be used to further confirm the conclusions obtained in this part of the experiment.
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4.2. Backbone Network Depth Selection

In the previous work, a training dataset with relatively strong adaptability was de-
signed. Next, by modifying the depth of the backbone network, the model was retrained
and compared with the impact of using different depths of the backbone network on the
accuracy and speed of the model test under the same training dataset. In the experiment,
DataSet-1 is used as the training dataset, and ResNet-18 and ResNet-34 are used as the
backbone network to conduct the training and testing of the network model. The specific
test accuracy and speed are shown in Tables 4 and 5.

Table 4. Experimental results on DataSet-1 with different depth backbones.

Dataset Backbone Accuracy FP FN

DataSet-1 RestNet-18 85.97 0.422 0.317
DataSet-1 RestNet-34 84.50 0.474 0.373

Table 5. Experimental results of speeds for different depth backbone networks.

Input Backbone FPS Running Time (ms)

288× 800 RestNet-18 172.38 5.8
288× 800 RestNet-34 81.431 12.28

The FPS and RunTime tests based on the two deep backbone network models are
conducted under NVIDIA GeForce GTX 1060 with Max-Q Design. As can be seen from
Tables 4 and 5, when the network depth is deepened, the model is more complex, which
not only affects the reasoning speed of the model, but also decreases the test accuracy.
Although the effect of ResNet-34 is better than ResNet-18 in theory, due to the problem of
datasets, the improvement of model complexity reduces the generalization ability of the
model, resulting in overfitting. This shows that the ResNet-18 backbone network model
has a better effect, and the method of deepening the network does not apply to the training
dataset constructed in this paper.

5. Results and Discussion

This section describes the experimental results and performance analysis of the pro-
posed method. It mainly includes the mixed-attention mechanism experiment and datasets’
qualitative detection experiments. To further evaluate the performance of our approach,
we test multiple integrated and self-built image/video sequences of onboard cameras on
urban, suburban, and rural roads and highways under different environmental conditions,
road alignments, and traffic scenarios.

5.1. Mixed-Attention Mechanism Experiment

Based on the conclusions of the above experiments, DataSet-3 is used as the training set
and ResNet-18 as the backbone network. This section mainly verifies the lane line detection
effect under the mixed-attention mechanism. It adds the mixed-attention mechanism to
the ResNet-18 backbone network of the feature extraction module for further comparative
experiments. The mixed-attention mechanism is added in front of the first-level residual
block of ResNet-18, so that the proposed model pays more attention to important lane line
feature information and makes greater use of computing resources. The specific test data of
this experiment are shown in Table 6.

Table 6. Experimental results on DataSet-3 under the attention mechanism.

Backbone Accuracy FP FN

RestNet-18 95.26 0.196 0.046
RestNet-18-Attention 95.96 0.196 0.045
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It can be seen from Table 6 that after the mixed-attention mechanism is added to the
ResNet backbone network, the test accuracy of the network model is increased by 0.7%,
which proves the effectiveness of the mixed-attention mechanism ResNet proposed in
this paper. Therefore, the final network model of this paper is ResNet-18 with the mixed-
attention mechanism as the backbone network, and DataSet-3 as the training dataset.

5.2. Lane Line Detection Function Test
5.2.1. Integrated and Self-Built Image Sets Detection

In order to prove the effectiveness of the training dataset construction and the robust-
ness of the network model design in this paper, Tusimple, Dataset-1 and DataSet-3 are used
as the training sets, ResNet-18 is used as the backbone network, and other parameters are
set as the same. The network model is trained separately and the visualization qualitative
test is carried out on the self-built image sets.

We selected cities, suburbs, villages and highways with different environmental condi-
tions, different road alignments and different traffic scenes, and integrated and self-built four
image sets, named SBI-1, SBI-2, SBI-3 and SBI-4, respectively. Among them, the SBI-1 image
set mainly covers the scenes of highways, urban straight roads, and simple curves. The SBI-2
image set mainly covers the scenes with lighting at night, reflections at night, and no lighting
at night. The SBI-3 image set mainly covers the scenes with pavement damage and pavement
shadow, and the SBI-4 image set mainly covers the scenes with slight and severe occlusion.

In the experiment, the newly constructed DataSet-1, DataSet-3 and TuSimple datasets
were trained to obtain different network models, and tested on the three image sets. The
comparison of the visual results of a typical scene are shown in Figures 6–9. Among them,
Figure 6 is a visual comparison under the SBI-1, Figure 7 is a visual comparison under the
SBI-2, Figure 8 is a visual comparison under the SBI-3, and Figure 9 is a visual comparison
under the SBI-4.

(a) (b) (c)

Figure 6. Experimental results on SBI-1 image set. (a) TuSimple; (b) DataSet-1; (c) DataSet-3.
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(a) (b) (c)

Figure 7. Night experiment results on SBI-2 image set. (a) TuSimple; (b) DataSet-1; (c) DataSet-3.

As can be seen from Figure 6, when only the Tusimple is used to train the model, the
test results only have good adaptability to the highway scene, and the effect is poor for
some simple urban straight and curved scenes. However, the model trained by DataSet-1
is not as effective as TuSimple and DataSet-3 on highway scenes. In the urban straight
and simple curved scenes, the detection results of the DataSet-1 and DataSet-3 training
models lead TuSimple by a great advantage. Among them, the model trained by DataSet-1
may misjudge a straight line as a curve, because most of the dataset is curved scenes. By
comparison, the training model of the DataSet-3 performs best on highway, urban straight,
and simple curved scenes. Therefore, for the highway, urban straight and simple curved
scenarios, the comprehensive performance of the model trained by DataSet-3 is the best.

It can be seen from Figure 7 that the model trained by the Tusimple basically loses its
function and cannot effectively detect lane lines in the scenes with lighting at night, night
reflection, and no lighting at night. The models trained by DataSet-1 and DataSet-3 have
achieved good results under the SBI-2, but the DataSet-1 is not as effective as DataSet-3 in
solving the problem of no vision. Therefore, for scenes with lighting at night, reflective at
night, and no lighting at night, the comprehensive performance of the model trained by
DataSet-3 is the best.

As seen from Figure 8, in the scene with obvious illumination changes such as pave-
ment damage and pavement shadow, the model trained by Tusimple is invalid, and the
model trained by DataSet-3 has the best test results under SBI-3. DataSet-1 has the condi-
tion of missing lane detection and has weak adaptability to complex lighting conditions.
Therefore, the comprehensive performance of the model trained by DataSet-3 is the best for
the scene of pavement damage, pavement shadow and other obvious illumination changes.

It can be seen from Figure 9 that the model trained by Tusimple has the worst adapt-
ability and the detection fails under the scenarios of slight or severe occlusion. The model
trained by DataSet-1 is missing part of the lane lines, and DataSet-1 is not as effective as
DataSet-3 in solving the problem of no field of view, and the shadow affects the lane line
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detection effect. Therefore, for scenarios such as slight occlusion and severe occlusion, the
comprehensive performance of the model trained by the DataSet-3 is the best.

(a) (b) (c)

Figure 8. The experimental results of obvious illumination changes such as pavement damage and
pavement shadow on a SBI-3 image set. (a) TuSimple; (b) DataSet-1; (c) DataSet-3.

(a) (b) (c)

Figure 9. Experimental results of light occlusion and severe occlusion. (a) TuSimple; (b) DataSet-1;
(c) DataSet-3.

In summary, whether in simple or complex scenarios, the training datasets constructed by
DataSet-3 can well-detect lane lines under the same network model and parameter conditions,
with the strongest universality, especially in complex environments. Therefore, the model
training method proposed in this paper can deal with more scenarios and achieve good results.

5.2.2. Self-Built Video Sequence

To further illustrate the effectiveness and practicability of the detection method in this
paper, we also drove a car equipped with a camera to collect road videos outdoors. Similarly,
urban, suburban, rural areas and highways under different environmental conditions,
different road alignments and different traffic scenes were selected, including the lanes
under the straight, curved, night-time lighting, night reflection, night no lighting, pavement
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shadow, pavement damage, vehicle occlusion, and so forth, and multiple video sequences
were built by ourselves. DataSet-3 was combined with the ResNet-18 backbone network,
which adds a mixed-attention mechanism to train the model, and the testing effect of the
road video sequence was analyzed with the trained model.

The detection results of part of the video frames of the straight and curved road scenes
during the day are shown in Figure 10.

(a) (b)

(c) (d)

Figure 10. Straight and curved video experiment results. (a) Straight; (b) Curved; (c,d) Straight that
reflect light.

It can be seen from Figure 10 that our method can accurately detect lane lines when
facing the video scene of straight and curved lanes on sunny days. The interference of
vehicles and pedestrians in Figure 10c has also been successfully detected, and has strong
robustness to the reflection of the front windshield of vehicles. Lane lines can also be
detected successfully in no-vision areas under the hood of a vehicle.

The detection results of some frames of the video scenes with lighting, reflection and
no lighting at night are shown in Figure 11.

(a) (b)

(c) (d)

Figure 11. Experiment results with light and dark video at night. (a) Lighting at night; (b) Reflction
at night; (c,d) No lighting at night.
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It can be seen from Figure 11 that there is no problem in detecting videos with lighting,
reflection and no lighting at night. Similarly, lane lines can be successfully detected in the
area without vision, such as facing the vehicle hood occlusion, and even in the case of no
lighting in Figure 11c,d, lane lines can be successfully detected in the curved scene.

The partial frame detection results of the video such as pavement breakage, pavement
shadow and vehicle occlusion are shown in Figure 12.

(a) (b)

(c) (d)

Figure 12. Experimental results of pavement breakage, shadow, occlusion video.

It can be seen from Figure 12 that Figure 12a is pavement breakage interference
that vehicles are more likely to encounter during driving, Figure 12b is pavement shadow
interference, and Figure 12c,d is vehicle occlusion interference. Our method has successfully
realized the lane line detection of the video sequences with the above interference cases.

Finally, partial detection results of the tunnel scene video are shown in Figure 13.

(a) (b)

(c) (d)

Figure 13. The experimental results of the tunnel. (a) Straight in tunnel; (b) Curved in tunnel; (c)
White hole effect in tunnel; (d) Tunnel exit.

As seen from Figure 13, the proposed method overcomes various disturbances and
achieves accurate detection of lane lines, no matter whether it is in the tunnel or at the
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tunnel mouth, or whether it is affected by light reflection in the tunnel or illumination at
the tunnel mouth.

Through the above self-build video test, it is proved that the model and method in this
paper can adapt to most of the lane line geographic information conditions encountered by
drivers during driving, and have good robustness and universality for lane line detection
of video sequences.

In summary, it can be concluded from the above results that the proposed method has
the advantages of fast speed, high accuracy, strong robustness, and a good balance between
accuracy and efficiency. However, the number of lane lines detected by the proposed
method has an upper limit, which needs to be set manually.

6. Conclusions

With the development of deep learning and computer vision, we have used the lane
line detection algorithm based on deep learning to provide drivers with accurate geographic
auxiliary information, prevent drivers from lane yaw due to inattention, bring a better
driving experience to drivers, and reduce the accident rate.

We proposed a lane line detection algorithm based on a mixed-attention mechanism
ResNet and row anchor classification. ResNet with identity mapping was used as the
backbone network to solve the problem of gradient disappearance in the deep network to
improve the model inference effect. It was proposed to add the mixed-attention mechanism
after the convolution, normalization and activation layers of the backbone network, respec-
tively, to make the model more focused on important features and improve the pertinence
and efficiency of feature extraction. In addition, in order to achieve faster detection speed
and solve the problem of no vision, a lane line location selection and classification method
based on the row direction was used to detect whether there are lane lines in each candidate
point according to the row anchor, reducing the high computational complexity caused
by pixel-by-pixel segmentation of traditional semantic segmentation. On the basis of the
TuSimple and CurveLane datasets, multi-scene, multi-environment and multi-linear road
image datasets and video sequences were integrated and self-built, and several experiments
were designed and tested to verify the effectiveness of the proposed method. The proposed
method satisfies the safety perception effect of lane geographic information in natural
traffic environments, and achieves an effective balance between accuracy and efficiency in
actual road application scenarios.
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