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Abstract: Quantifying traffic congestion is a critical task for transportation planning and research.
Numerous metrics have been developed, mainly focusing on changes in vehicle speeds, their extents,
and travel time. In this study, new metrics are presented using the Hägerstrand’s space-time cube that
has been studied from time geography perspectives since the 1960s. Particularly, the product of dis-
tance and time, i.e., distanceTime, is proposed as a base metric to measure traffic congestion amounts.
Using the base metric such as mileHours, metrics of weighted congestion and normalized congestion
amounts were also developed. New metrics were applied to six metropolitan areas and their vicinities
in the United States (Atlanta, Chicago, Washington, D.C. and Baltimore, Dallas and Fort Worth, Los
Angeles, and New York), and congestion amounts were calculated and compared. The Google Traffic
Layer API was used to obtain traffic congestion datasets for six months (April–September 2022), and
GIS (geographic information systems) was used for delineating road features and traffic intensity
levels. Among the six areas, New York and its vicinity showed the largest congestion when only
heavy congestion was used. Los Angeles and its vicinity showed the largest congestion when all
congestion levels were considered. This study shows that the proposed metrics are very effective
in summarizing traffic amounts and broadly applicable for further analyses of traffic congestion
phenomena by associating various other factors, such as weekdays, months, or gas prices. The new
metrics developed in this research may help transportation researchers and practitioners by providing
them with a set of metrics applicable to summarizing congestion amounts by synthesizing congestion
intensity, extent, and duration.

Keywords: traffic congestion; congestion metrics; distanceTime; mileHours; average daily
congestion; transportation

1. Introduction

Traffic congestion (TC) reflects the difference between the travel time experienced
during busy traffic periods and when the road is lightly traveled [1]. TC can be defined
as travel time or delay in excess of that normally incurred under light or free-flow travel
conditions [2]. The four components of TC include intensity, extent, duration, and reliability,
where intensity reflects the severity of congestion typically expressed as a rate, duration
refers to the amount of time the travel system is congested, and extent describes the
geographic distance of roads that are congested or the number of travelers or vehicles
affected by the congestion [1,2].

TC metrics were characterized by twelve distinctive situations based on the relation of
three road system types (i.e., single roadway, corridor, and areawide network) and four
congestion components (i.e., duration, extent, intensity, and reliability) [2]. For example, the
hours that facility operates below acceptable speed was classified as the duration metrics
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for a single roadway. Interestingly, a set of travel time contour maps or the bandwidth
maps showing the amount of congested time for system sections were classified as the
duration metrics of an areawide network.

Multiple TC measurement tools have been developed. Afrin and Yodo [3], for example,
grouped them into five categories based on the critical properties they represent (note:
typical metrics in parentheses)—speed (speed reduction index or speed performance index),
travel time (travel rate), delay (delay ratio or delay rate), level of service (volume to capacity
ratio), and congestion indices (relative congestion index). In addition, they put congested
hours, travel time index, and planning time index into the federal congestion measures
used by the U.S. DOT-FHWA.

The TC metrics that are commonly used include travel time index (TTI), vehicle miles
traveled (VMT), vehicle hours traveled (VHT), volume capacity (V/C) ratio, and peak traffic
period duration (PTPD) [4,5]. TTI compares peak period travel time to free-flow travel time
and is typically expressed as a ratio [6]. VMT evaluates the extent of the TC and measures
the congested miles in peak hours [7]. The V/C ratio is calculated by dividing the volume
of traffic on a roadway by the roadway’s capacity [8,9]. PTPD assesses how many hours are
congested daily during morning and evening peak times [4]. As a variant of PTPD, INRIX
developed the total number of hours lost (HL) in congestion during peak commute periods
compared to off-peak conditions and used HL to measure TC in metropolitan areas and
publish annual Global Traffic Scorecards [10].

Even though multiple TC metrics identify individual TC components well, particularly,
intensity, extent, and duration, no metrics represent multiple TC components simultane-
ously, such as intensity with duration or intensity and duration with extent. Therefore,
there are no metrics available that may answer simple questions such as “What is the traffic
congestion amount in a city?”. Considering that TC is a spatiotemporal phenomenon,
wherein certain levels of intensity are inseparable, it is necessary to develop new metrics
that synthesize the three TC components or dimensions, i.e., intensity, extent, and dura-
tion, intrinsically. This research explores the synthesis of the three TC dimensions from
a geographic spatiotemporal perspective. Particularly, research objectives are (1) devel-
oping new metrics that incorporate traffic intensity, extent, and duration together, and
(2) demonstrating the applicability of the metrics with real-world examples.

To accomplish the objectives, TC intensity, extent, and duration are conceptualized in a
space-time cube and synthesized by novel TC metrics, such as distanceTime, weighted dis-
tanceTime, and normalized distanceTime (Section 2). Applying the new metrics, Section 3
compares the average daily heavy congestion, average daily weighted congestion, normal-
ized average daily heavy congestion, and normalized average daily weighted congestion
among six U.S. metropolitan areas. Then, TCs are compared by weekdays and months
and further analyzed in relation to monthly gas price changes. Section 3 also compares
metropolitan congestion amounts with the city rankings using the INRIX Scorecard. After
a brief discussion about the applicability of the new metrics, Section 4 summarizes this
research with conclusions.

2. Materials and Methods
2.1. Space-Time Cube and Traffic Congestion

TC is a physical phenomenon that has the properties of geographic location (i.e., ex-
tent) and temporal duration with certain levels of severity (i.e., intensity). Geographic and
temporal phenomena have been modeled and researched actively since Hägerstrand intro-
duced the space-time cube (or space-time model) for time geography in the 1960s [11–13].
Particularly, recent advancements in geographic information systems (GIS) and location-
based services, such as GPS, mobile phones, and radiofrequency identification (RFID),
have greatly expanded capabilities for collecting and processing spatiotemporal data with
improved analytical methodologies and have opened various opportunities for researching
mobility including accessibility [14].
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Typical space-time models are composed of the 2-dimensional geographic space along
the x and y axes and the time dimension along the z axis [12]. Numerous approaches
have been proposed to model the time dimension effectively in GIS environments, and,
according to Siabato et al. [15], the snapshot approach has been the most common solution
to analyzing spatiotemporal data in GIS. The snapshot approach is based on the field
view of geospatial data modeling [16], where real-world phenomena are represented on a
continuous field. The raster representations of digital elevation models, land cover maps,
aerial photos, and satellite imagery are some examples of the field view representations [17].
Multiple object-based approaches have also been developed actively based on the object
view in geospatial data modeling that represents real-world features with a series of discrete
objects, such as points, lines, and polygons [16]. Examples of object-based methods include,
but are not limited to, object-oriented approaches [18–20], event-based approaches [21–23],
feature-based approaches [24–26], and agent-based approaches [27–29].

If floating car data (FCD) are available with time-tagged location information, the
object-based approaches may be very effective because the continuously changing mobility
data of individuals or vehicles can be modeled in the space-time cube as temporal location
vectors. On the other hand, if TC intensity maps are collected as temporal slices, they may
best fit into a space-time cube as a series of temporal snapshots as shown in Figure 1. Along
the temporal axis z, traffic congestion snapshots may be collected at regular intervals, such
as every 10 min, every hour, once a day, etc. Congestion snapshots may also be collected at
various geographic extents that are scalable from a single spot or a road section to a large
metropolitan region.
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Figure 1. A space-time cube with traffic congestion intensity levels in different colors—green for free
flow, orange for light congestion, red for medium congestion, and dark red for heavy congestion.

2.2. Traffic Congestion Metrics from a Space-Time Cube

From a geography perspective, one way of identifying the TC quantity of an area
from a snapshot of intensity levels is to calculate the total distance of congestion. As
Lomax et al. [2] identified, the percent or miles of congested roads can be calculated from
a snapshot in the space-time model. Even though the percent or miles is dependent on
how congestion is defined, a simple arithmetic sum of congested sections will identify
the TC quantity. For example, a total of 20 miles of heavily congested roads during a
morning rush hour in a metropolitan area will give simple and intuitive information about
its traffic conditions.
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When multiple snapshots along the time axis are accounted, the simple sum of indi-
vidual distances needs to be refined. In this case, the time domain should be integrated
with the geographic domain, and it can be accomplished by multiplying congested road
distance and temporal duration. Using time to express the amount of a physical quantity
is not new. The multiplication concept has been used in physics frequently. For example,
batteries’ electric power capacities have been noted by the Watt-hours unit (or Ampere
hour in Ah), which is calculated by multiplying Watt and hours. The same method can be
applied to temporal geographic phenomena like TC, as denoted in Equation (1):

τ = d × t (1)

where τ is TC amount in distanceTime, d is the total distance of congested roads in a
temporal snapshot, and t is the duration of the congestion. For example, if an area (or
a road section) experienced 3.2 km of congestion for 3 h, the area experienced a total of
9.6 kmHours of congestion. The 9.6 kmHours can be converted into any other distance and
time units; therefore, the 9.6 kmHours are equivalent to 576.0 kmMinutes or 6.0 mileHours.
In a real-world situation, the geographic extent of TC varies continuously; therefore, the
d value changes dynamically, too. If d values were sampled n times over the temporal
duration of t, then the TC amount in distanceTime is the product of the average of d values

(
−
d) and the temporal duration t, as shown in Equation (2):

τ =
−
d × t (2)

For example, if d values from three hourly samples are, d = [1.2, 2.6, 5.8] in km over a

duration of 3 h, then
−
d is 3.2 km and t is 3 h. Multiplying them gives the total TC amount,

τ = 9.6 kmHours. Further, the τ unit, i.e., distanceTime, is different from distance per time.
The 9.6 kmHours congestion for 3 h would indicate an average of 3.2 km congestion from
the hourly samples.

The distanceTime unit can be represented using various temporal units. For example,
if an area experienced an average of 2 km congestion from multiple samples in the span
of a month (note: suppose a month is composed of 30 days), the total TC amount (τ) is
2 kmMonths that is equivalent to 60 kmDays or 1440 kmHours. It is also equivalent to
0.16667 kmYears of traffic amount. Even if the time unit in τ can be larger than the sampling
period, such extrapolation should be used with caution.

For practical uses of TC metrics, such as comparing TC amounts among multiple cities,
it may be necessary to summarize TC amounts (τ) hourly, daily, monthly, or even annually.
In this case, it is necessary to set a base unit of distanceTime to work with. Suppose
mileHour is used for a base unit, and a city experiences 2 miles of congestion consecutively.
Then, the city’s TC amount (τ) is 2 mileHours hourly, 48 mileHours daily, 1440 mileHours
monthly, and 17,280 mileHours annually. Once TC amounts are grouped into temporal
units, secondary statistics may be derived from them, such as average daily mileHours.

2.3. Weighted Congestion Distance

When calculating traffic congested road distances, a binary, dichotomous delineation
of congestion events was assumed so far; however, TC occurs at varying intensity levels
in the real world. If intensity levels are available at varying degrees in a road network,
congested road distances can be calculated using the intensity levels as weighting values
to the distance. Suppose intensity levels (w) range, w = [0.0–1.0], where 0.0 is free-flow
condition and 1.0 is full, maximum congestion. Then, the weighted congestion distance
is dweighted = w × d, at each road section. For a regional road network, the total weighted
congestion distance in a snapshot is the sum of weighted distances, as Equation (3):

dweighted = ∑n
i=1(widi ) (3)
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where n is the total road segments in a snapshot, and w is congestion intensity levels ranging
from 0.0 to 1.0. Multiple existing metrics for measuring TC intensity may be referenced for
weighting values, such as speed reduction index (SRI), volume–capacity ratio, speed perfor-
mance index, travel rate index, and congestion severity index. Among them, SRI appears
to be a good choice because it represents varying speed levels very well on a continuous
scale. It was also recommended as the most appropriate congestion measure by Bruwer
and Andersen [30]. The SRI represents the ratio of the decline in speeds from free-flow
conditions [5]. SRI can be applied to individual freeway segments, entire routes, and even
entire urban areas. SRI is calculated as SRI = (1.0—operatingSpeed/freeFlowSpeed) × 10
and ranges from 0 to 10. Without the scalar multiplication of 10, SRI ranges from 0.0 to 1.0,
which may work well as weighting values, as in Equation (4):

w =

(
1 − Sm

S f

)
(4)

where w is the congestion weight at a road segment, Sm is the measured speed, and Sf is
the free-flow speed. Interestingly, researchers found that congestion occurs when the SRI
exceeds 0.4, corresponding to a 40% reduction in speed from free flow, the point at which
road users become aware of congestion [2,3,30].

2.4. Normalized Congestion Metrics

When conducting comparisons of TC amounts among multiple places, it is not mean-
ingful to directly compare TC amounts (τ) when the road network distances are significantly
different. Such comparisons will only be meaningful after normalizing TC amounts. One
way of normalizing TC amounts is to use the maximum congestion amount possible in the
network (τmax) as the denominator, as shown in Equation (5), where τmax is the product of
total road length and the duration of measurement:

τnormalized(%) =
τ

τmax
× 100 (5)

For example, suppose cities A and B have congestion amounts of 20 and 300 mileHours
for 24 h in a day and the cities’ total road lengths are 50 and 500 miles, respectively.
Then, their maximum possible congestion amounts (τmax) become 1200 mileHours and
12,000 mileHours, respectively, by multiplying total distance and the duration of 24 h, i.e.,
50 × 24 and 500 × 24. The percent congestion amounts of two cities, then, are 1.67% and
2.50%, respectively. Simply comparing the percent values indicates that city B is more
congested. Even if the normalized congestion amounts allow for comparisons among cities,
they need to be used with caution in real-world applications because significantly different
population sizes, road types and capacities, road densities, city densities, and areal sizes
may also affect the normalized values.

2.5. Data Collection and Processing

To test the applicability of the metrics for summarizing traffic congestion amount in an
area and further making comparisons with other areas, the proposed metrics were applied
to six metropolitan areas in the U.S. (Figure 2)—Atlanta (ATL), Chicago (CHI), Dallas and
Fort Worth (DFW), Washington, D.C. and Baltimore (DC), Los Angeles (LA), and New York
and vicinity (NY). They were chosen considering geographic locations and metropolitan
area sizes, and their administrative boundaries were not used to clip the areas. Rather, the
rectangular shapes in Figure 2 were used.
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Figure 2. Case study areas and sample snapshot images. The images show the extent of six study
areas and their traffic intensity levels identified with the Google Traffic Layer API at 5:00 p.m. (local
time) on Friday, 22 April 2022. The map scales are not the same. (a) Atlanta, GA, USA; (b) Chicago,
IL, USA; (c) Washington, DC, USA and Baltimore, MD, USA; (d) Dallas and Fort Worth, TX, USA;
(e) Los Angeles, CA, USA; (f) New York, NY, USA.

The Google Traffic Layer (GTL) API [31] was used to collect traffic information be-
cause its applicability for TC research has been demonstrated by multiple researchers
recently [32–34]. Traffic information from GTL was sampled every 10 min for six months
(April through September) in 2022. Samples were not collected on 14 days due to technical
issues (05/11, 05/12, 05/13, 05/24, 05/25, 05/26, 06/14, 06/15, 06/16, 06/17, 07/13, 07/14,
08/09, 08/10). Since GTL visualizes congestion severity using green, orange, red, and dark
red colors for no traffic delays, medium amount of traffic, traffic delays, and heavy traffic,
respectively, the number of color-coded pixels was counted along roads from each image.
Road network lengths were calculated from the GTL road images using GIS, and total road
pixels were counted along road centers. Then, pixel sizes were calculated from dividing
the total road network length by the number of road pixels.

Figure 3 summarizes the overall workflow of data processing and analyses. As indi-
cated in the figure, three TC metrics were calculated by applying Equations (2), (3), and (5).
For the non-weighted congestion amounts described in Equation (2), the GTL’s dark-
red-coded pixels were used as the indicator of congestion. Particularly, daily congestion
amounts (τdaily) in mileHours were calculated as follows:

τdaily = 24 × P × C ×
−
N (6)

where P is pixel size in meters, C is the meter to mile conversion factor (i.e., 0.00062137),

and
−
N is the average number of congestion pixels from 144 10 min samples a day. The

value 24 was multiplied to calculate a daily congestion amount with the mileHours unit.
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Daily weighted congestion amounts were also calculated using GTL’s color-coded
pixels. The empirical weighting values of 0.25, 0.5, and 1.0 were assigned to orange, red,
and dark red colors, respectively, after reviewing the literature about GTL [31–34]. From

144 10 min samples for each day, average numbers of orange (
−
Norange), red (

−
Nred), and

dark red (
−
NdarkRed) pixels were calculated. Then, daily weighted congestion amounts

(τweightedDaily) in mileHours were calculated as follows:

τweightedDaily = 24 × P × C ×
(

0.25 ×
−
Norange + 0.5 ×

−
Nred + 1.0 ×

−
NdarkRed

)
(7)

From daily congestion amounts, average daily congestion amounts were calculated
as long-term congestion indicators. Finally, the average daily congestion amounts were
normalized by the maximum possible daily congestion (i.e., 24 h × total road length). The
normalized values are unitless and indicate the ratio of congestion amount out of maximum
possible congestion amount. The ratio values of the six areas were scaled to percent values.

3. Results and Discussion

Table 1 shows the congestion amounts of the six metropolitan areas calculated from
daily mileHours. The DC area had the longest road length, followed by CHI, DFW, NY, LA,
and ATL. The pixel sizes ranged from 20.14 m (ATL) to 27.24 m (LA) and were different
among cities because of different GTL zoom levels and map projection effects. Items E
and F in Table 1 will be useful when analyzing congestion amounts of a city or a road
section. However, they cannot be used for comparison with other cities because of different
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road network lengths. As a denominator for normalizing the congestion amounts, the
maximum possible daily congestion amount (Item G) was calculated by multiplying the
total road length (Item C) and 24 h because the target congestion unit was daily mileHour.
The normalized average daily congestion (Item H) shows that the NY area had the highest
level of heavy congestion during the study period, followed by the LA area. Interestingly,
ATL and CHI show less than half of the heavy congestion of NY and LA. DC and DFW
show the lowest heavy congestion. When all congestion levels were considered (Item I),
the LA area shows the highest congestion ratio, followed by NY. Three metropolitan areas,
ATL, CHI, and DC, show similar congestion ratios. DFW shows the lowest congestion ratio.
Items H and I show that the normalized mileHours and their normalized derivatives are
effective in comparing multiple cities.

Table 1. Traffic congestion metrics of six U.S. metropolitan areas.

Metrics ATL CHI DC DFW LA NY

A. Number of road pixels 250,481 319,232 375,210 267,291 219,642 278,153
B. Total road length (meters) 5,044,678 8,041,366 8,926,347 7,219,155 5,982,216 6,408,844
C. Total road length (miles) 3135 4997 5547 4486 3717 3982

D. Pixel size (meters) 20.14 25.19 23.79 27.01 27.24 23.04
E. Average daily heavy
congestion (mileHours) 171 245 220 188 433 558

F. Average daily weighted
congestion (mileHours) 1744 2720 2790 1842 3516 3260

G. Maximum possible daily
congestion (mileHours) 75,231 119,920 133,118 107,658 89,212 95,574

H. Normalized average daily
heavy congestion (%) 0.23 0.20 0.17 0.17 0.48 0.58

I. Normalized average daily
weighted congestion (%) 2.32 2.27 2.10 1.71 3.94 3.41

From daily congestion amounts, various other congestion characteristics can also be
derived. For example, congestion amounts can be summarized by temporal or geographic
units. Table 2 shows a summary of daily heavy congestion amounts by weekdays. In Table 2,
inter-city comparison is not meaningful because the numbers are not normalized. All six
cities show significant differences among weekdays. Either Thursday or Friday shows the
largest congestion in each city, while Monday, Saturday, and Sunday are relatively smaller.
When the Sunday congestion is compared with its peak day (ex., 318.93/785.90 × 100 for
NY), NY shows 41%, followed by DC (32%), Chicago (26%), Atlanta (22%), LA (18%),
and DFW (8%), which implies that Sunday mobility seems to be associated with urban
destinations that people may visit during weekends.

Table 2. Average daily heavy congestion amounts by weekday (units: mileHours).

Weekday ATL CHI DC DFW LA NY

Monday 134.08 182.12 166.13 184.28 319.03 459.32
Tuesday 203.31 277.88 275.26 245.02 546.92 593.38

Wednesday 229.42 285.67 293.93 256.07 592.60 669.13
Thursday 231.20 336.53 301.31 261.19 642.73 748.90

Friday 223.45 384.15 283.55 259.33 623.05 785.90
Saturday 148.82 178.22 157.61 93.56 274.84 392.03
Sunday 51.96 100.37 96.68 51.09 112.68 318.93

Table 3 shows a summary of heavy congestion amounts by months and is another
example of deriving additional information out of daily congestion amounts. Like Table 2,
the numbers in Table 3 are not normalized so direct inter-city comparisons are not mean-
ingful; it, however, shows congestion trends over months. Interestingly, July shows the
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lowest congestion in all cities. The highest congestion appears in September in most cities,
except DC in June. When the congestion was analyzed against the U.S. Regular-grade
retail gas prices (USD) of (4.109, 4.444, 4.929, 4.559, 3.975, 3.700) per gallon from April to
September [35], respectively, correlations were strong in ATL, LA, and DFW, while those
with DC, CHI, and NY were very weak, as shown in Figure 4. Considering that DC, CHI,
and NY have dense urban areas and public transit systems, it appears that congestion
amounts are also affected by the availability of public transportation systems.

Table 3. Average daily heavy congestion amounts summarized by month (units: mileHours).

Month ATL CHI DC DFW LA NY

April 175.96 169.80 225.29 226.16 456.04 493.68
May 165.29 251.63 198.87 166.02 400.16 585.98
June 144.23 285.19 251.58 159.74 393.79 668.54
July 140.63 204.73 178.03 131.20 318.48 447.64

August 191.96 248.05 220.03 185.69 478.76 476.87
September 202.25 314.86 224.80 250.53 535.55 686.58
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Once the average daily congestion amount is calculated, it can be used for calculating
the annual average daily congestion (AADC), as the annual average daily traffic (AADT)
amount is calculated from daily traffic amounts. If the case study samples cover an entire
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year, Items E and F in Table 1 can serve as AADC amounts. Considering the study period of
six months, they become semi-annual average daily congestion amounts. Likewise, Items H
and I in Table 1 serve as AADC ratios. AADC amounts are intuitive by providing mileHours,
and AADC ratios are also easy to understand because they deliver percent congestion.

When the TC rankings of the metropolitan areas in Table 1 were compared to the 2022
INRIX Global Traffic Scorecard rankings [10], INRIX ranks CHI first, followed by NY, LA,
DC, ATL, and DFW in order, while Table 1 (Item I) ranks LA first, followed by NY, ATL,
CHI, DC, and DFW. The difference in rankings seems to be attributed to multiple factors.
First, INRIX measures the hours lost from multiple origin–destination travel time records,
different from the distanceTime metrics used in this research. Second, INRIX used 1-year
data while this research used 6-month data. Considering that monthly variations are quite
significant in Table 3, the 6-month data may not represent the whole year accurately. Third,
the different sizes of study areas among metropolitan cities may affect the rankings. When
more uncongested rural roads are included in a study area, it is likely that TC amount
would decrease. Last, the distanceTime metrics are calculated from entire roads, while the
INRIX Hours Lost is calculated from samples. In this context, it is difficult to compare
INRIX rankings with Table 1 rankings side by side.

Another aspect that needs attention is the interpretation of the distanceTime unit.
Because the unit is the product of distance and time, it does not mean exclusively one or the
other. For example, suppose an imaginary area’s daily heavy congestion is 240 mileHours.
It could mean 240 miles of congestion for an hour, 10 miles of congestion for 24 h, or
anything in between. If the area’s afternoon rush hour (ex. 3:00 p.m.–7:00 p.m.) congestion
amount is 50% of the average daily congestion amount, then 120 mileHours congestion is
expected for four hours, which means 30 miles of congestion, on average, each hour during
the afternoon rush hour. In this way, congested road lengths may be estimated from an
average daily congestion amount and a temporal congestion pattern.

In this research, samples were collected every 10 min considering that traffic congestion
would last at least 10 min, particularly in traffic-heavy metropolitan areas. It, however, is
common that traffic congestion lasts much longer. It appears to be necessary to test the
effectiveness of different sampling time intervals. In addition, along with the increasing
availability of FCD big data, it is necessary to research about using raw FCD data instead
of using categorized traffic congestion maps. Specifically, considering that a limitation of
this research is the reliance on the color-coded traffic congestion levels of which calculation
methods are not published, the FCD data may be a better alternative for more accurate
traffic congestion measurements. In this context, research is needed to refine the weighting
methods that were described in Section 2.3.

Overall, the case study with six metropolitan areas demonstrates that the congestion
amount in distanceTime, calculated from a space-time cube, is very effective in summa-
rizing and analyzing congestion characteristics. It also satisfies multiple attributes for a
congestion measure suggested by researchers, including Lomax et al. [2] and Aftabuz-
zaman [36], because it demonstrates clarity and simplicity, describes the magnitude of
congestion, allows for comparison across metropolitan areas, and provides a continuous
range of values.

The new metrics presented in this paper may contribute to broad fields where trans-
portation matters. For example, transportation planners in metropolitan planning organi-
zations (MPOs) may quantify traffic congestion amounts by traffic analysis zones (TAZs),
cities, or counties for transportation planning. Transportation engineers may also use the
metrics to simulate traffic congestion with different road design scenarios. Geographers
may use the metrics to study accessibilities, place characteristics, and geographic effects
of congestion. Furthermore, the metrics may help estimate various resources wasted by
traffic congestion.
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4. Conclusions

Measuring traffic congestion amounts that are dynamic and voluminous has been
challenging to transport researchers and practitioners. Numerous methods have been
developed, but no approaches have been attempted to combine the three components
of traffic congestion—intensity, extent, and duration. Considering that traffic congestion
is a physical phenomenon that has geographic and temporal dimensions, this research
proposed a method to combine them using the space-time framework, researched from
a geographic perspective. Multiple metrics were developed to represent the amount of
traffic congestion that occurs along one-dimensional linear road features. Particularly, dis-
tanceTime unit, average congestion amount, weighted congestion amount, and normalized
congestion amount were developed. These metrics were then applied to six metropoli-
tan areas to demonstrate their applicability in real-world scenarios. Google Traffic Layer
datasets were used for the case study, and the amounts of heavy congestion, weighted
congestion, and normalized congestion were calculated. Results showed that the metrics
were effective in summarizing congestion amounts, particularly using the average daily
congestion amounts in the mileHours unit. When comparing six metropolitan areas using
the normalized average daily heavy congestion amounts, New York and its vicinity showed
the largest congestion, but Los Angeles and its vicinity showed the largest congestion when
all congestion levels were included in the average daily weighted congestion amounts. The
proposed metrics were also useful for further investigation of weekday traffic patterns,
monthly traffic patterns, as well as the relationship between traffic amounts and other
factors such as gas prices. Furthermore, the new metrics may be used for estimating the
total distance of congested roads using past congestion amount information if the hourly
congestion pattern is known. Like AADT, the new metrics, including, but not limited to,
annual average daily congestion amounts, may help transportation planners, researchers,
and practitioners by providing an effective toolset for summarizing congestion amounts
intuitively and effectively.
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