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Abstract: Gridded gross domestic product (GDP) data are a crucial land surface parameter for
many geoscience applications. Recently, machine learning approaches have become powerful tools
in generating gridded GDP data. However, most machine learning approaches for gridded GDP
estimation seldom consider the geographical properties of input variables. Therefore, in this study, a
geographically weighted stacking ensemble learning approach was developed to generate gridded
GDP data. Three algorithms—random forest, XGBoost, and LightGBM—were used as base models,
and the linear regression in stacking ensemble learning was replaced by geographically weighted
regression to locally fuse the three predictions. A case study was conducted in China to demonstrate
the effectiveness of the proposed approach. The results showed that the proposed GDP downscaling
approach outperformed the three base models and traditional stacking ensemble learning. Meanwhile,
it had good predictive power on county-level GDP test data with R2 of 0.894, 0.976, and 0.976 for the
primary, secondary, and tertiary sectors, respectively. Moreover, the predicted 1 km gridded GDP data
had a high accuracy (R2 = 0.787) when evaluated by town-level GDP data. Hence, the proposed GDP
downscaling approach provides a valuable option for generating gridded GDP data. The generated
1 km gridded GDP data of China from 2020 are of great significance for other applications.

Keywords: gross domestic product (GDP); gridded GDP; ensemble learning; geographically weighted
regression; China

1. Introduction

Gross domestic product (GDP) is one of the most crucial economic indicators to
measure regional economic development status worldwide [1–3]. GDP is widely used in
discovering economic development inequality, identifying poverty, evaluating disaster
risk assessment, and allocating resources [4–8]. Traditional GDP data are often collected
through statistical tables of censuses, and they can be spatially linked to administrative
boundaries to obtain specific knowledge regarding GDP distribution. However, traditional
GDP data are limited by their spatial scale inconsistency with other data and unknown
spatial distribution within each administrative unit [2,6,9]. The conversion of traditional
GDP data into gridded GDP data (termed as GDP downscaling or GDP spatialization) is
a way to address these limitations and enable the application of GDP data to a variety of
geoscience fields [3,10–15].

GDP downscaling often takes gridded auxiliary data as covariates to improve the
quality of gridded GDP data. With the rapid development of remote sensing technology
and social sensing technology, various land surface variables can be obtained to reflect up-
to-date socioeconomic information [8,16–18]. Remote sensing images provide a relatively
low-cost way to map the main physical features of our world in a wide range [19–22]. There
are three main categories of remote sensing data in GDP downscaling. Night-time lights
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(NTL) data, which includes the Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP/OLS) and the visible infrared imaging radiometer suite (VIIRS),
are often used to generate gridded GDP data [6,13,14]. NTL data have the capability to
describe the features in the secondary and tertiary sectors of GDP but limited capability
to reflect the attributes in the primary sector of GDP [10,23]. Land cover data extracted
from remote sensing images are able to provide spatial distribution information relevant
to the primary sector of GDP (e.g., farmland) for estimating gridded GDP [23,24]. Digital
elevation model (DEM) and its derived variables (e.g., slope) are also applied to estimate
gridded GDP for the primary sector because they are related to the spatial distribution
of agricultural activities [10,25]. Although remote sensing data have achieved relatively
satisfactory performance in GDP downscaling, they usually fail to capture socioeconomic
attributes and human dynamics when estimating gridded GDP [10,16]. Social sensing data
have been proven to successfully reflect socioeconomic attributes [8,16]. A variety of social
sensing data is used for gridded GDP estimation, such as the density of roads [24], points of
interest (POIs) [10], digital footprint of human activities [2], and footprint of buildings [26].
The combined usage of remote sensing data and social sensing data has been a popular
way to generate gridded GDP data in recent years [2,10,23–27].

Many GDP downscaling approaches have been developed in recent decades, includ-
ing traditional statistical methods and machine learning algorithms. Traditional statistical
methods contain linear regression [6,13,23], exponential model [9,28], and quadratic poly-
nomial regression [25]. Traditional statistical methods have limited capability to identify
the complex relationship between GDP and its relevant auxiliary data. In recent years,
machine learning algorithms have been increasingly applied to produce gridded GDP
using geospatial big data as they enable data-driven knowledge discovery in relation to
GDP [10,11,24,27]. Common machine learning algorithms that have been employed in
generating gridded GDP data involve gradient boosting ([24], neural networks [27], and
random forest regression [10]. They have demonstrated their capability in exploring the
complex relationship between GDP and its related covariates [10,24,27]. Individual ma-
chine learning algorithms usually have their merits and shortcomings. Overfitting and
instability are critical shortcomings of various machine learning algorithms. A popular
way to address these shortcomings is to develop ensemble learning approaches. Ensemble
learning intends to fuse the predictions from two or more machine learning algorithms.
Ensemble learning involves bagging, boosting, blending, and stacking [29]. Bagging and
boosting attempt to combine machine learning algorithms with the same type, whereas
blending and stacking aim to integrate different types of machine learning algorithms [7,29].
Blending and stacking can combine not only traditional different types of machine learning
algorithms but also the bagging and boosting approaches [7,30,31]. Bagging and boosting
fuse the predictions in a relatively simple way (e.g., mean of predictions in regression),
while blending and stacking often combine the predictions using global linear regres-
sion [7,30,31]. Compared to blending, stacking requires a more robust training mechanism
for fusing the predictions, and it often outperforms blending [7,32].

Geospatial variables often demonstrate certain geographical properties [33–36], such
as spatial dependence, spatial heterogeneity, etc. Most of the machine learning algorithms
that are used for GDP downscaling seldom consider the geographical properties of the used
variables [37–39]. Moreover, the fusion of predictions in ensemble learning fails to consider
the geographical properties. A spatially local model may be better than a global model in
many scenarios [37–39]. For instance, Huang et al. [2] used a local model—geographically
weighted linear regression model (GWR)—to estimate gridded GDP and proved that
GWR performed better than global linear regression. However, GWR only establishes
local linear regression for each spatial unit and fails to explore the nonlinear relationship
between GDP and its covariates. Thus, given the current GDP downscaling methods lack
the combined consideration of the geographical characteristics of input variables and the
nonlinear complex relationship between GDP and its covariates, a more effective GDP
downscaling method is urgently required.
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To fill the above research gaps, this study aimed to develop a geographically weighted
stacking ensemble learning approach to locally fuse the predictions of base models using
GWR to generate gridded GDP. In this study, a novel geographically weighted stacking
ensemble learning approach (GWSE) is proposed for GDP downscaling, which can encap-
sulate both geographical properties and nonlinear relationship in GDP downscaling. The
effectiveness of the proposed GWSE was substantiated by generating 1 km gridded GDP
data of China from 2020.

2. Study Area and Data
2.1. Study Area

China has been experiencing rapid economic development and is the second largest
economy in the world. Gridded GDP maps therefore have crucial applications nationally.
In this study, mainland China with 31 provinces was selected as the study area. Hong
Kong, Macao, and Taiwan were excluded because of the difference in currencies.

2.2. Data

Two types of datasets were used in this study. The first type was county-level statistical
GDP dataset for the year of 2020 from the 2021 yearbook of China, which was regarded as
the dependent variable. The second type was the 1 km gridded auxiliary data, which were
considered as covariates (i.e., independent variables).

2.2.1. County-Level Statistical GDP Data

The county-level statistical GDP data of 2020 of mainland China were collected to
generate the gridded GDP data. Four county-level indicators—the primary sector (GDP1),
the secondary sector (GDP2), the tertiary sector (GDP3), and the total GDP—were collected
from the 2021 yearbook of China and the 2021 yearbook of provinces in mainland China.
Finally, there was a total of 2848 counties with four GDP indicators in mainland China, as
shown in Figure 1.

2.2.2. Gridded Auxiliary Data

Auxiliary datasets are essential to generate gridded GDP data in the process of GDP
downscaling. Inspired by previous studies [2,10,23,25,27], we collected eight types of 1 km
gridded auxiliary data in relation to GDP, as shown in Figure 2.

NTL is widely used for generating gridded GDP as it is related to the secondary and
tertiary sectors of GDP. Thus, the annually composited VIIRS NTL image with saturation
correction from 2020 was collected [40]. The original VIIRS NTL image at the spatial
resolution of 500 m was aggregated to 1 km VIIRS NTL image for the two sectors, as shown
in Figure 2a.

POIs are places of human activities and are relevant to the secondary and tertiary
sectors of GDP. We collected over six million POIs related to the secondary sector of GDP
and over 54 million POIs related to the tertiary sector of GDP from one of the largest online
maps in China (i.e., AutoNavi Maps). The number of POIs in each 1 km grid cell was
calculated by the Point Density tool in ArcGIS for the secondary and tertiary sectors, as
shown in Figure 2b,c.

The 10 m global land cover data produced by Esri Inc. were collected to yield the
1 km land cover proportion map of each class [41]. The original Esri land cover data have
10 classes: water, trees, grass, flooded vegetation, crops, scrub/shrub, built area, bare
ground, snow/ice, and clouds. Water and snow/ice were combined as a single class of
water. Grass and flooded vegetation were also combined as a single class of grass. The class
of clouds was excluded in this study. The land cover map (see Figure 2d) with seven classes
(i.e., water and snow/ice, trees, grass and flooded vegetation, crops, scrub/shrub, bare
ground, and built area) was aggregated by a window of 100 × 100 pixels to produce 1 km
land cover proportion maps. The class of built area is related to the secondary and tertiary
sectors of GDP and was therefore used to generate gridded GDP data for these sectors. The
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other six classes are associated with the primary sector of GDP and were therefore used for
gridded GDP estimation of this sector.
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The 30 m DEM data, ALOS World 3D 30 m (AW3D30), were collected to yield the
1 km DEM and its slope data, as shown in Figure 2e,f, respectively. The AW3D30 DEM data
were resampled to the spatial resolution of 1 km and the slope data were generated from
the 1 km DEM. The 1 km DEM and slope data were adopted for downscaling the primary
sector data of GDP.

The 1 km road density image (i.e., road length within a 1 km grid) was calculated
in Figure 2g using the road network data from the online map of AutoNavi Maps. The
road density image is associated with the secondary and tertiary sectors of GDP and was
therefore used in these two sectors.

The 1 km Tencent user positioning density images were collected from 1 January to
12 June in 2019, and all the density images were averaged to yield a final Tencent user
density image, as shown in Figure 2h. The Tencent density user positioning data, provided
by the biggest social media company in China, can effectively characterize a proxy of
human activities for the secondary and tertiary sectors of GDP, so they were used for these
two sectors.

Longitude and latitude were calculated for each grid to account for the geographi-
cal properties.
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There were 19 final covariates as independent variables for downscaling the statistical
GDP in mainland China, as shown in Table 1. A total of 11 covariates were used in the
primary sector of GDP, and 8 covariates were adopted for the other two GDP sectors.

Table 1. Covariates for the GDP downscaling of China.

Auxiliary Data
Variable Description Data Source Time Use in Sectors

NTL VIIRS night-time light data
VIIRS NTL image (https://eogdata.mines.

edu/nighttime_light/annual/v20/,
accessed on 1 January 2022.)

2020 GDP2 and GDP3

POI density for
GDP2

Number of POIs within each
grid related to GDP2

AutoNavi Maps (https://amap.com/,
accessed on 31 December 2020.) 2020 GDP2

POI density for
GDP3

Number of POIs within each
grid related to GDP3

GDP3

Water Water and snow/ice
proportion. Esri 10-m global land cover data

(https://www.arcgis.com/apps/instant/
media/index.html?appid=fc92d38533d440

078f17678ebc20e8e2, accessed on
27 December 2021.)

2020

GDP1

Tree Tree proportion GDP1

Grass Grass and flooded vegetation
proportion GDP1

Crops Crop land proportion GDP1
Scrub/shrub Scrub and shrub proportion GDP1
Bare ground Bare ground proportion GDP1

Built area Built area proportion GDP2 and GDP3
DEM Digital elevation of each grid ALOS World 3D-30 m (AW3D30)

(https://www.eorc.jaxa.jp/ALOS/en/aw3
d30/data/index.htm, accessed on

1 July 2022.)

- GDP1

Slope Slope of each grid GDP1

Road density Road length within each grid AutoNavi Maps (https://amap.com/,
accessed on 31 December 2020.) 2020 GDP2 and GDP3

Tencent user
density

Average positioning density of
Tencent users

Tencent user positioning data
(https://heat.qq.com/, accessed on

12 June 2019.)
2019 GDP2 and GDP3

Percentage of
GDP1

Percentage of the primary
sector in total GDP The 2021 yearbook of China

(https://data.cnki.net/Yearbook/Single/
N2022040099, accessed on 13 April 2022.)

2020
GDP1

Percentage of
GDP2

Percentage of the secondary
sector in total GDP GDP2

Percentage of
GDP3

Percentage of the tertiary
sector in total GDP GDP3

Longitude Longitude of the grid center Centroid of grids - All three sectors
Latitude Latitude of the grid center All three sectors

https://eogdata.mines.edu/nighttime_light/annual/v20/
https://eogdata.mines.edu/nighttime_light/annual/v20/
https://amap.com/
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://amap.com/
https://heat.qq.com/
https://data.cnki.net/Yearbook/Single/N2022040099
https://data.cnki.net/Yearbook/Single/N2022040099
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3. Methodology
3.1. Procedure of GDP Downscaling

Figure 3 illustrates the procedure of GDP downscaling, which consisted of the follow-
ing four processes.
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(1) The county-level GDP data in Figure 1 and 1 km covariates in Table 1 were prepro-
cessed. The Albers equal-area conic projection was adopted as the coordinate system
of the GDP data and covariates. The county-level covariates were also calculated us-
ing the mean of covariates within each county and were combined with county-level
GDP data for subsequent training.

(2) GWSE was built and trained to estimate gridded GDP density. Random forest,
XGBoost, and LightGBM were employed as base models, and the longitude and
latitude were considered as covariates in the three models to account for spatial
homogeneity. To consider spatial heterogeneity, GWSE replaced linear regression
with GWR to locally fuse the predictions of the three base models in stacking en-
semble learning. As each GDP sector has different spatial distribution and related
covariates [10,23,27,28,42], three GWSE models were trained for each GDP sector to
estimate the gridded GDP density of each GDP sector. The county-level GDP data
and county-level covariates were divided into training data and test data. Training
data accounted for 80% of all county-level data in training GWSE for each GDP sector.
The best-trained GWSE was selected for each GDP sector after 10 iterations.

(3) Gridded GDP data was predicted using trained GWSE models. According to previous
GDP downscaling studies [2,9,10,23,24], the trained GDP downscaling models on
administrative-level data were directly used to estimate the gridded GDP data. Using
1 km gridded covariates as inputs, each trained GWSE model on county-level data
was employed to forecast the 1 km gridded GDP density of each GDP sector. The
predicted gridded GDP density was adjusted to generate gridded GDP data for each
sector, and the sum of the three adjusted gridded GDP data was computed as the total
gridded GDP data.
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(4) The accuracy of the gridded GDP data was evaluated. Statistical town-level GDP data
from the yearbook were adopted as ground truth data to evaluate the corresponding
town-level GDP data aggregated from the estimated gridded GDP data to further
evaluate the performance of GWSE.

3.2. Preparing GDP and Auxiliary Data

The county-level GDP density was calculated by dividing the GDP in a county by
the area of the corresponding county for each GDP sector. The logarithm of GDP density
was used as the dependent variable in GWSE training. The county-level covariates were
aggregated by the Zonal Statistics tool in ArcGIS from 1 km gridded covariates to spatially
align with the county-level GDP data and were employed as independent variables in
GWSE training.

3.3. Building GWSE

Ensemble learning combines the results of different algorithms, and it can obtain better
results than those obtained from any individual algorithm [29]. Blending and stacking
usually combine different types of algorithms. Stacking theoretically outperforms blending
as it has a robust training mechanism [32]. Therefore, this study focused on stacking
ensemble learning. Ensemble learning is usually made up of base models and a metamodel.
Base models are regarded as the individual algorithm while the metamodel aims to fuse
the predictions of base models. Random forest is a typical bagging-like ensemble learning
approach, and it fuses the results of several decision-tree algorithms of the same type [10].
XGBoost [43] and LightGBM [44] are gradient-boosting ensemble learning methods, and
they fuse the results of the same type of decision trees as well. Thus, random forest,
XGBoost, and LightGBM were employed as base models. Linear regression is often used
as the metamodel to fuse the predictions of the base models. GWR has been theoretically
proven to perform better than linear regression in dealing with geographical variables as
it considers geographical properties [37] Therefore, the proposed GWSE aims to locally
fuse the predictions of the three base models of random forest, XGBoost, and LightGBM.
Figure 4 shows the structure of the proposed GWSE. During the fitting process of GWSE,
the three base models were first fitted using county-level data. Then, the three county-level
predictions of the base models were employed as independent variables and the county-
level GDP data as and the dependent variable to fit GWR and linear regression in stacking
ensemble learning.
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3.3.1. Base Models

Random forest is a combination of the same type of decision trees so that each tree
depends on the values of a random vector sampled independently and with the same
distribution for all trees in the forest. As the number of trees in a forest increases, the
generalization error converges asymptotically to a limit [29].

XGBoost is a scalable and effective use of Friedman’s gradient boosting technology. A
tree learning algorithm and an effective linear model solver are included [43].

LightGBM is a gradient-boosting framework that uses decision trees and is designed
to be distributed and efficient [44]. Two innovative strategies are included in the LightGBM
algorithm, namely, gradient-based one-side sampling and exclusive feature bundling.

3.3.2. Meta Model

Geographically weighted regression (GWR) is a spatial analysis tool [37]. It mainly
intends to indicate where nonstationarity is taking place in space, allowing the relation-
ships between the independent and dependent variables to vary by locality. GWR is a
modification of the typical linear regression. The basic form of GWR is as follows:

yi = βi0 + ∑m
k=1 βikxik + εi (1)

where yi is the dependent variable at location i; xik is the kth independent variable at
location i; m ∈ {1, 2, 3} is the number of independent variables and the outputs of the three
base models are used as independent variables in this study; βi0 is the intercept parameter
at location i; βik is the local regression coefficient for the kth independent variable at location
i; and εi is the random error at location i.

We used GWmodelS (V1.0.3) software developed by Lu et al. [45] to realize the
GWR process of the proposed GWSE for bandwidth selection, coefficient estimation,
and prediction.

3.3.3. Stacking

A metamodel is trained in stacking ensembles using CV on the base models’ out-of-
fold predictions. Figure 5 illustrates the specific learning process of stacking ensemble
learning. In this study, a 5-fold CV was adopted to divide the training set into two parts.
Predictions were made with the final fold after fitting each base model using four folds.
Each of the 5 folds went through the process again. Then, the metamodel (i.e., GWR) was
fitted using the predictions from all base models.

3.4. GDP Downscaling

After the training of GWSE for each GDP sector, the 1 km gridded GDP density of
each sector can be estimated as follows:

gk(j) = e fθ(xj) (2)

where fθ(xj) is the estimated logarithm of GDP density for grid j, xj is the covariates for
grid j, and k ∈ {1, 2, 3} is the index of GDP sectors. The estimated logarithm of GDP density
was obtained by the trained GWSE for each GDP sector. GWSE first input the 1 km gridded
covariates to the three trained base models, and the fitted GWR then carried out their
predictions to estimate the gridded GDP density. Note that each county had individual
GWR coefficients for the three predictions of the base models, whereas there was no GWR
coefficient for each grid. Thus, referring to previous GDP downscaling studies [2,9,10,23,24],
the GWR coefficient of a county was employed as the GWR coefficient of all grids within
the county.
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To maintain GDP coherency within each county, the gridded GDP density of each
sector was adjusted by multiplying the ratio between the actual GDP and the sum of
estimated GDP grids within a county as follows:

AGk(i) = gk(i)
AGk(i)

∑j∈i gk(j)
(3)

where AGk(i) is the actual GDP within county i for sector k.
The total GDP for grid j can be computed as follows:

AG(j) = ∑3
k=1 AGk(j) (4)

3.5. Accuracy Assessment Metrics

In order to evaluate the effectiveness of the proposed GWSE in predicting gridded
GDP data, actual town-level GDP data were adopted to compare with the corresponding
town-level GDP data aggregated from the estimated 1 km gridded GDP data. Three
metrics—mean absolute error (MAE), root mean square error (RMSE), and the coefficient
of determination (R2)—were adopted. Their formulas are as follows:

MAE =
1
M ∑M

i=1

∣∣∣AG(i)− ÃG(i)
∣∣∣ (5)

RMSE =

√
1
M ∑M

i=1

(
AG(i)− ÃG(i)

)2
(6)

R2 = 1−
∑M

i=1

(
AG(i)− ÃG(i)

)2

∑M
i=1
(

AG(i)− AG
)2 (7)

where AG(i) is the actual GDP for town i, ÃG(i) is the estimated GDP for town i, AG is
the mean of actual GDP for all towns, and M is the number of towns.
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4. Results
4.1. Model Performance and Comparison

Random forest, XGBoost, and LightGBM were adopted as not only the base mod-
els in stacking but also comparison algorithms. The common metamodel of linear re-
gression in stacking ensemble learning was also compared with the proposed GWSE.
Three metrics—R2, MAE, and RMSE—were used to evaluate the performance of the five
methods for each GDP sector on test data, as shown in Table 2. Higher R2 and lower
MAE and RMSE indicated better performance. The three metrics showed that the five
methods performed the best for the tertiary sector, then for the secondary sector, and the
worst for the primary sector. The three typical machine learning algorithms of random
forest, XGBoost, and LightGBM had comparable performance for each GDP sector because
they had almost the same R2, as shown in Table 2. The two stacking ensemble learning
approaches performed better than any of the base models for each GDP sector. Specifically,
the average R2 of the two stacking ensemble learning approaches was 0.035, 0.011, and
0.010 higher than that of the three base models for the primary, secondary, and tertiary
sectors, respectively. The proposed GWSE performed the best in the three GDP sectors
according to the three metrics in Table 2, which demonstrated the effectiveness of the
proposed GWSE. Hence, the trained GWSE models were adopted to generate the gridded
GDP data in the case study area of mainland China for the year of 2020.

Table 2. Performance comparison of different methods on test data.

Model R2 MAE RMSE

GDP1

Random forest 0.857 0.367 0.531
XGBoost 0.851 1.404 1.889

LightGBM 0.865 1.476 1.998
Stacking (LR) 0.892 0.345 0.497

Stacking (GWR) 0.894 0.348 0.502

GDP2

Random forest 0.963 0.296 0.402
XGBoost 0.963 0.291 0.394

LightGBM 0.968 0.263 0.367
Stacking (LR) 0.975 0.256 0.345

Stacking (GWR) 0.976 0.253 0.329

GDP3

Random forest 0.965 0.266 0.378
XGBoost 0.964 0.283 0.380

LightGBM 0.967 0.274 0.403
Stacking (LR) 0.975 0.253 0.330

Stacking (GWR) 0.976 0.243 0.322

4.2. Gridded GDP Maps

Figure 6 shows the 1 km gridded total GDP map of China. It indicates that relatively
high-value GDP grids were dominantly distributed in the Huanghuaihai Plain, Sichuan
Basin, the eastern coastal region, and the capital cities of provinces. The GDP spatial
distribution was further examined using four representative zoomed-in regions: Chengdu-
Chongqing, Beijing–Tianjin–Hebei, Pearl River Delta, and Yangtze River Delta. These are
China’s four biggest urban agglomeration regions. The city centers of Beijing, Shanghai,
Guangzhou, and Shenzhen exhibited more high-value GDP grids (over 750 million RMB)
than other city centers. The spatial distribution of the gridded total GDP data was logically
consistent with the fundamental knowledge of GDP in mainland China, suggesting the
validity of the proposed GWSE.
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4.2.1. Gridded GDP Map of China for the Primary Sector

Figure 7 displays the 1 km gridded GDP map for the primary sector in China. It shows
that the gridded GDP for the primary sector was distributed throughout China and its
distribution was similar to that of the land cover of crops. It makes sense that the primary
sector was mainly related to agricultural activities. Meanwhile, it is reasonable that there
were more low-value (less than five million RMB) GDP grids in city centers and more
high-value GDP grids in rural areas in the four zoomed-in regions. However, most GDP
grids for the primary sector had relatively low value than those in the gridded total GDP
map in Figure 6.
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4.2.2. Gridded GDP Map of China for the Secondary Sector

Figure 8 shows the 1 km gridded GDP map for the secondary sector in China. Its
spatial distribution was mainly scattered around big cities. The relatively high-value GDP
grids for the secondary sector were clustered in urban suburbs. The four zoomed-in regions
indicated that the Pearl River Delta had the most high-value GDP grids, followed by the
Yangtze River Delta and the Beijing–Tianjin–Hebei region, and the Chengdu–Chongqing
region had the least high-value GDP grids in visual examination for the gridded GDP of the
secondary sector. Even so, the Yangtze River Delta presented a more even distribution than
the other three zoomed-in regions, indicating more balanced development of the secondary
sector of GDP there.
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4.2.3. Gridded GDP Map of China for the Tertiary Sector

Figure 9 presents the 1 km gridded GDP map of China for the tertiary sector. The
overview showed they were also scattered around big cities and the relatively high-value
GDP grids for the tertiary sector were clustered in urban centers. When focusing on the
four zoomed-in regions, high-value GDP grids were mainly located in eight city centers
(i.e., Chengdu, Chongqing, Beijing, Tianjin, Guangzhou, Shenzhen, Nanjing, and Shanghai).
It is reasonable that the city center had a more clustered population and service activities
relevant to the tertiary sector of GDP.

4.3. Accuracy Assessment

There were 284 town-level total GDP data collected for the accuracy assessment of
the gridded total GDP data at a fine scale. As can be seen from Figure 10, R2 reached
a high value (0.787), indicating the 1 km gridded GDP data had a high accuracy at the
town-level scale. The MAE and RMSE of the gridded total GDP result within the 284 towns
were 2.65 billion and 4.66 billion RMB, respectively, implying a relatively low error of the
estimated gridded GDP. This further proves the effectiveness of the proposed GWSE and its
value for generating gridded GDP data in other regions. Although the generated gridded
total GDP result evaluated by town-level GDP data had a relatively high accuracy, there
was a significant distinction. As shown in Figure 10, most towns with less than 5 billion
RMB had relatively lower errors as they were closely distributed along the fitted regression
line. On the contrary, some towns with over 5 billion RMB were scattered on both sides of
the fitted regression line. This means that the estimated GDP result may have relatively
larger error in high GDP grids and relatively smaller error in low GDP grids.



ISPRS Int. J. Geo-Inf. 2023, 12, 123 13 of 17

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 14 of 19 
 

 

4.2.3. Gridded GDP Map of China for the Tertiary Sector 
Figure 9 presents the 1 km gridded GDP map of China for the tertiary sector. The 

overview showed they were also scattered around big cities and the relatively high-value 
GDP grids for the tertiary sector were clustered in urban centers. When focusing on the 
four zoomed-in regions, high-value GDP grids were mainly located in eight city centers 
(i.e., Chengdu, Chongqing, Beijing, Tianjin, Guangzhou, Shenzhen, Nanjing, and Shang-
hai). It is reasonable that the city center had a more clustered population and service ac-
tivities relevant to the tertiary sector of GDP. 

 
Figure 9. The 1 km gridded GDP map of China for the tertiary sector. 

4.3. Accuracy Assessment 
There were 284 town-level total GDP data collected for the accuracy assessment of 

the gridded total GDP data at a fine scale. As can be seen from Figure 10, R2 reached a 
high value (0.787), indicating the 1 km gridded GDP data had a high accuracy at the town-
level scale. The MAE and RMSE of the gridded total GDP result within the 284 towns were 
2.65 billion and 4.66 billion RMB, respectively, implying a relatively low error of the esti-
mated gridded GDP. This further proves the effectiveness of the proposed GWSE and its 
value for generating gridded GDP data in other regions. Although the generated gridded 
total GDP result evaluated by town-level GDP data had a relatively high accuracy, there 
was a significant distinction. As shown in Figure 10, most towns with less than 5 billion 
RMB had relatively lower errors as they were closely distributed along the fitted regres-
sion line. On the contrary, some towns with over 5 billion RMB were scattered on both 
sides of the fitted regression line. This means that the estimated GDP result may have 
relatively larger error in high GDP grids and relatively smaller error in low GDP grids. 

Figure 9. The 1 km gridded GDP map of China for the tertiary sector.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 10. Accuracy of gridded total GDP data evaluated by town-level GDP data. 

5. Discussion 
5.1. Difference in Performance of GDP Sectors 

As each GDP sector had different distributions and related covariates, separate meth-
ods were built and trained with different covariates for each GDP sector. Table 2 shows 
that the five methods performed the best in the tertiary sector and the worst in the primary 
sector and that the secondary and tertiary sectors had comparable performance. Specifi-
cally, the average R2 values of the primary, secondary, and tertiary sectors were 0.8718, 
0.969, and 0.9694; the average MAE was 0.788, 0.2718, and 0.2638; and the average RMSE 
was 1.0834, 0.3674, and 0.3626. It is likely that the accuracy of the covariates relevant to 
the primary sector was lower than those of the secondary and tertiary sectors. For in-
stance, six land cover classes were used for the primary sector while only one land cover 
class was used for the other two sectors, and the limited accuracy of the six land cover 
classes would have impacted the performance. 

Comparing the four zoomed-in regions in Figures 7–9, there were distinct spatial dis-
tribution differences among the three sectors. The primary sector had more low-value 
GDP grids and they were mainly located in rural areas. The secondary sector had more 
high-value GDP grids, and they were dominantly distributed in urban suburbs. The ter-
tiary sector had more high-value GDP grids in urban centers. The tertiary sector had rel-
atively more high-value grids than the sector in the four zoomed-in regions. The spatial 
distribution difference of the three gridded GDP data was consistent with the reality of 
GDP distribution. 

5.2. Scale Uncertainty in Estimating Gridded GDP Density 
Most current GDP downscaling studies use administrative-level GDP data and co-

variates to fit the GDP downscaling methods because the real gridded GDP data are hard 
to collect [2,9,10,23,24]. Fitted GDP downscaling methods using administrative-level GDP 
data are often adopted to estimate gridded GDP data with gridded covariates as inputs. 
Therefore, similar to previous GDP downscaling studies, there was a scale uncertainty 
when the county-level trained GWSE was directly used to estimate the gridded GDP den-
sity in this study. Although the estimated gridded GDP data in mainland China demon-
strated the effectiveness of the proposed GWSE, the scale uncertainty when downscaling 
GDP remains. 

5.3. Advantages and Disadvantages 
Compared to previous GDP downscaling studies, the proposed GWSE had several 

characteristics and advantages in terms of the estimated gridded GDP data. First, it 

Figure 10. Accuracy of gridded total GDP data evaluated by town-level GDP data.

5. Discussion
5.1. Difference in Performance of GDP Sectors

As each GDP sector had different distributions and related covariates, separate meth-
ods were built and trained with different covariates for each GDP sector. Table 2 shows
that the five methods performed the best in the tertiary sector and the worst in the primary
sector and that the secondary and tertiary sectors had comparable performance. Specifically,
the average R2 values of the primary, secondary, and tertiary sectors were 0.8718, 0.969, and
0.9694; the average MAE was 0.788, 0.2718, and 0.2638; and the average RMSE was 1.0834,
0.3674, and 0.3626. It is likely that the accuracy of the covariates relevant to the primary
sector was lower than those of the secondary and tertiary sectors. For instance, six land
cover classes were used for the primary sector while only one land cover class was used for
the other two sectors, and the limited accuracy of the six land cover classes would have
impacted the performance.

Comparing the four zoomed-in regions in Figures 7–9, there were distinct spatial
distribution differences among the three sectors. The primary sector had more low-value
GDP grids and they were mainly located in rural areas. The secondary sector had more
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high-value GDP grids, and they were dominantly distributed in urban suburbs. The
tertiary sector had more high-value GDP grids in urban centers. The tertiary sector had
relatively more high-value grids than the sector in the four zoomed-in regions. The spatial
distribution difference of the three gridded GDP data was consistent with the reality of
GDP distribution.

5.2. Scale Uncertainty in Estimating Gridded GDP Density

Most current GDP downscaling studies use administrative-level GDP data and covari-
ates to fit the GDP downscaling methods because the real gridded GDP data are hard to
collect [2,9,10,23,24]. Fitted GDP downscaling methods using administrative-level GDP
data are often adopted to estimate gridded GDP data with gridded covariates as inputs.
Therefore, similar to previous GDP downscaling studies, there was a scale uncertainty when
the county-level trained GWSE was directly used to estimate the gridded GDP density in
this study. Although the estimated gridded GDP data in mainland China demonstrated the
effectiveness of the proposed GWSE, the scale uncertainty when downscaling GDP remains.

5.3. Advantages and Disadvantages

Compared to previous GDP downscaling studies, the proposed GWSE had several
characteristics and advantages in terms of the estimated gridded GDP data. First, it
performed better than the three base algorithms according to the metrics in Table 2, which
implied that the advantages of each base algorithm were encapsulated in the proposed
GWSE. Second, GWSE took the geographical properties into account and thus generated
gridded GDP data with higher accuracy compared to traditional stacking ensemble learning
because GWSE replaced linear regression with GWR to fuse the predictions of base models.
Third, the proposed GWSE could consider the simple relationship between GDP data and
covariates as well as the nonlinear complex relationship in GDP downscaling.

This research has some disadvantages as well. High-quality covariates are critical
for generating highly accurate gridded GDP data. The quality of a few covariates used
in this study was limited, and this influenced the gridded GDP data. For instance, the
used POIs as points only provided the quantity information instead of the area of each
POI, which is more valuable than points for generating gridded GDP. Meanwhile, only
three widely used algorithms were employed here as base models and the learning ability
of the proposed GWSE was therefore limited by the skills of those base models. Further,
GWSE is similar to previous GDP downscaling methods, and it has the scale uncertainty
in estimating gridded GDP density. When fitting GWSE in the GWR process, there is no
multicollinearity problem. However, the multicollinearity problem is an intrinsic problem
of stacking ensemble learning in fusing the predictions of base models. GWSE is no
exception, and it may encounter the multicollinearity problem when using different base
models in other GDP downscaling applications.

5.4. Future Work

Further improvements to this research can be made in the future. High-quality co-
variates can be further collected, which may improve the results of the trained GWSE
and the subsequent gridded GDP data. Meanwhile, there were a total of 19 covariates
for generating gridded GDP data in this study, and other covariates relevant to GDP can
be added to the proposed GWSE in future studies. In this case study, only three base
models were used in GWSE to downscale GDP data. Various combinations of other base
models can be investigated to examine the performance improvement of GWSE in future.
The scale uncertainty of GWSE in estimating gridded GDP data is worth addressing by
some potential techniques, such as the scale transformation methods [46]. Additionally,
GWSE may encounter the multicollinearity problem and the penalized GWR can be used
to address this problem [47].
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6. Conclusions

Gridded gross domestic product (GDP) data are highly desired in many applications.
In recent years, machine learning approaches have become robust tools in generating
gridded GDP data. This paper presents a novel GDP downscaling approach by considering
geographical properties of variables. Three algorithms were used as base models, and
geographically weighted regression was adopted to locally fuse the predictions of the
base models in stacking ensemble learning. The case study was conducted in mainland
China to demonstrate the effectiveness and ability of the proposed approach. The results
indicated that the proposed GDP downscaling approach outperformed the four existing
machine learning algorithms. Meanwhile, it had good predictive power on county-level
GDP data with R2 of 0.894, 0.976, and 0.976 for the primary, secondary, and tertiary sectors,
respectively. Furthermore, the estimated 1 km gridded GDP data had a high accuracy
(R2 = 0.787) evaluated by town-level GDP data. Additionally, the generated 1 km gridded
GDP data of China from 2020 can be valuable for other applications in China.
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