
Supplementary 1: Time as relative dimension in space 

This supplemental attempts to explain by analogy section 3.2 to 4.2 of the main paper. Section numbers are 

non-sequential as their numbers relate to the equivalent sections of the main paper. References are largely 

left to the main text except where other sources are used for illustration here and the main paper should be 

referenced in preference to this supplement. 

3.1 Is space made of dimensions or locations? 

Intuitively we tend to ignore the air around us. We might refer to a jar as empty even though we 

know it is in fact filled with air. Whilst today wind or breath seem self-evidently to be movement 

of air the idea was not always obvious, as this passage from Pneumatics (1stC AD), by the Greek 

philosopher Hero of Alexandria observes “Vessels which seem empty to the common man are 

not empty as they suppose, but full of air” [1]1. The distinction is perhaps mute unless one wishes 

to know the properties of air i.e. what it is and what it does.  Indeed it was not until 1644 that 

Torricelli demonstrated the idea of a vacuum [2] and not until 1996 that the Casimir effect was 

measured [3] showing that not only is a vacuum not actually empty but this has macroscopic 

effects. These are of course physical properties with which a conceptual space, waiting to be filled 

with theoretical objects such as geometric shapes, need not be endowed.  The concept of space 

seems similarly intuitive until we wish to know the properties of that space. In particular how 

consistently and precisely objects might be positioned therein i.e. until we wish the space to 

contain locations. But can such a space be filled with locations? 

3.2.1 Imprecise locations on uncertain dimensions 

Section 1 of the main paper focused on the question of what address system to use to locate objects 

precisely. Here we take this discussion into two further questions (a) what does it really mean to 

say we have information about where something is in space i.e. what is an information-space and 

(b) how does information about when something is relate to where it is?  

Generally, one starts with a space in which information is to be mapped and assign some of it 

addresses via a set of coordinates. The problem is that one cannot do so perfectly precisely, there 

is always some measurement error and some limit to coordinate precision. For example when 

someone reads a sign stating “you are here” it really means “you are close enough to here to read 

this sign” i.e. within some radius of it. If there were two such signs near to one another one might 

use that radius to decide which one applies. But if the radii overlap, are both signs correct? When 

there was only one such sign we knew where we were, now we are not so sure. The signs are 

more useful if their area of relevance is unique. 

That threshold of uniqueness becomes a sphere in 3D representing where a measured position 

might really be which inevitably leaves a substantial portion of the space unaddressed because 

 
1 Hero was not the first to realise this, Anaximander of Miletus (610 – c. 546 BC) appears to have 

understood it half a millennia earlier [4]. 



these sphere’s don’t completely pack together, just as one cannot stack oranges without leaving 

space in between. But if the oranges were small as a speck of dust or a fleck of mud, then perhaps 

it is not so intuitive whether the result is a solid mass or still has spaces in between those specks? 

Can we address all of space with these infinitesimal specks and if not what does it mean to have 

a spatial continuum of locations?  

The following thought experiment reverses the endeavor. It starts with a sufficient set of 

addresses for everywhere and asks how the underlying space might be reconstructed from them. 

These addresses are not coordinates or names, but simply a notion of ordinal relations (a sequence 

of waypoints). From this it creates a graph across which there is a measure of relative travel time 

and that is then converted to spatial distances between origin and destination. These distances 

need to be “puzzled” together to find a spatial arrangement in common. The final step is to then 

appreciate that depending on what routes are taken the arrangement looks different but by taking 

lots of combinations, over time, all routes are eventually mapped. 

3.2.2 Locations as relations  

The simplest logical building blocks are those which we cannot break down into combinations of 

other ideas. For example a spatial dimension can be broken down into an origin and a direction 

(which doesn’t mean much unless there are other independent directions for comparison). A 

length along that direction must be defined by some scale consisting of a unit, e.g. 1 meter, and a 

position relative to the origin e.g. the 9th meter away. Position can be broken down into an ordinal 

sequence of relations; steps along the way e.g. the place between the 8th meter and the 10th meter. 

Relations between objects can be broken down into the idea that two things are discernably 

different but connected, if only because they are next to one another in the sequence.  

This will be our basic building block, called a natural number, it is simply the idea that objects 

may be conceived which can be arranged in a sequence such that to get from A to C one must 

pass B. This is illustrated in Figure S1, each object is a circle and the lines define the sequence. 

From now on we will call the circles ‘nodes’, the lines ‘edges’ and the sequence a ‘graph’. 

 
Figure S1 A “triad” of three nodes. 

 

3.2.3 Ordered paths can emerge from random relations 

We will start with some amount of these nodes and edges, and will connect them together entirely 

at random over and over again until the result is a single sequence such that every node has only 

two neighbours connected by edges. We can arrange them geometrically how we want, in a curvy 

or straight line. The sequence remains the same. We have a graph (Figure S2): 



 
Figure S2 Triads are “chained” to 

build larger networks (graphs) 

 

3.2.4 Paths become circles  

If the last node has an edge that connects back to the first node then anyone stepping along the 

sequence will find themselves back where they started, going around in circles as it were even if 

the path is not arranged as a literal circle. So, if a node starts swapping its position in the same 

sequence it will achieve the same effect as were the whole graph rotated back to its original 

position. In a sense, the same effect occurs even if the order of the swapping of nodes is not in the 

original sequence but the same number of steps leads to the same result. In that sense we have 

system which can revolve by rearranging into a symmetric version of itself (technically an 

automorphism) (Figure S3). 

 
Figure S3 By swapping position with neighbours a node can make a complete circuit of the 

graph (even if it is not arranged in a circle) when all nodes have done so this defines a 

“revolution” of the entire graph. 

 

Rotating like clockwork 

Analogously, a clock measures time in revolutions, be they an hour of the minute hand or 12 

hours of the hour hand. Clock time is simply a subdivision of the daily revolution of the earth, 

and its annual revolution around the sun. So, by identifying one “revolution” (technically an 

‘orbit’) of the graph we implicitly identify a unit of time which can be subdivided in a similar way 

since a fraction of the nodes could rearrange representing a fraction of a full revolution. Unlike 

our usual conception of time however, we do not need to reference some real event such as the 

ticking of a clock or the daily rotation of the earth. One revolution of this system does not occur 

‘over time’; it defines one unit of its own time. To avoid confusion we will call this Topological 

Time.  
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3.2.5 Topological gears 

Two processes of topological rearrangement can happen at different relative “rates” depending 

on how big a fraction of one revolution they represent, like gears in a clock. One can think of the 

revolution of the whole graph as a “fly wheel” which determines the maximum change possible, 

but this change can be expended differentially with parts of the graph changing at different rates 

(Figure S4): 

 
Figure S4:  A complete revolution of the graph can be considered a unit of “time” 

independent of any external clock; all topological changes less than a complete revolution are 

thus a fraction of this unit. 

 

Each flip in position is like one “tick” of the second hand on our topological clock. So for an 

independent observer of that second hand, who had their own normal clock ticking along, it 

would appear the second hand in the topological clock was varying in speed depending on how 

many node position swaps occur. This fixes the maximum amount of change that can occur at 

any one ‘time’, an effect analogous to conservation of momentum as each set of changes must 

first “borrow momentum” from the common pool of one complete revolution. If process (a) takes 

allot of moves, the topological clock ticks onward quickly, making process (b) appear slower. 

What this does is produce clusters of change (Figure S5):  

  
Figure S5 Left: The topological clock ticks once for each change in connection. Right: Various 

paths are created but most paths are via nodes 4, 9 and 8 creating a cluster. 
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As the edges randomly flip between nodes some regions in the graph have, through sheer chance, 

more changes happening than others. So these areas take up more of the available “momentum” 

and because the nodes in this region are reconnecting relatively quicker, it is more likely that they 

will connect with others in that region than “colder” or “slower” parts of the graph, effectively 

forming a subgraph with higher connectivity. Again, not a physical process but simply an 

emergent cluster over topological-time (iterations). It is this process we shall use to try and build 

a continuum. To make the logic easier to grasp, we will replace the nodes with road junctions and 

the edges with roads, access to which can be flipped on and off by traffic lights each change of 

which represents one “tick” of the topological clock. 

3.2.6 Topological clocks as a measure of distance 

Manhattan has a famously gridded street plan with a numbered naming convention, with streets 

running in one direction and avenues cutting perpendicular across these. In a sense the street 

numbers are coordinates and it is common practice to refer to positions by these intersections, 

e.g. “Let’s meet at 5th and 42nd” meaning the intersection of 5th Avenue and 42nd Street. They are 

not scalar coordinates, but they do combine to define a location.  

  
Figure S6 A Manhattan street sign showing the intersection between an Avenue and a Street. 

(Wikicommons). Right: An early plan for the Manhattan street grid (Wikicommons) 

 

In our thought experiment a visitor knowing nothing of Manhattan is driven, blindfold, around 

the city at random. The driver announces the names of the intersections as they pass but does not 

use the official numbers, replacing them with letters in the order in which it is reached, e.g. 5th 

and 42nd might be junction “C” if it happens to be the third junction reached. The sneaky driver 

also gently changes speed so that all adjacent junctions are exactly the same travel time apart 

regardless of distance and turns corners as gently as possible so the passenger loses all sense of 

direction. 

The passenger must then draw a map of the city based on what they know, which is only the 

junction letters reached repeatedly via various routes. By considering the sequence in which 

different junctions were passed, the passenger can figure out two things (a) which junctions are 

next to which and (b) that the junctions are not all in one straight line because some can be reached 

via two different sequences of junctions with only one junction letter in common (Figure S7).  



 

Figure S7 : Mapping an approximate route from junction order. Note, it is possible to establish 

two loops as C and A are both reached from different places on the outward and homeward 

journeys. 

With enough thought the passenger could figure out the pattern of all the junctions over a 2D 

map (like a classic London Underground map), but could not give it a scale (there is ordinal 

position, some places are more stops away than others). Now let us add a complicating factor. 

The driver still maintains the same time interval between junctions, but each junction has traffic 

lights. So because the driver has to wait at the lights the passenger, unaware of what speed they 

are going, gets the impression some junctions are further apart. We can add the conservation of 

momentum idea in by stating that only a certain number of lights in the city can be on green at 

any given time. Each change in the lights is a “tick” of the topological clock because it changes 

the graph2. But in some parts of town the lights change to green often and other parts of town 

only occasionally. Our New York cab driver only needs a tiny window of green to drive through, 

so the areas where the lights change often afford more opportunities and the taxi moves more 

quickly over all. To the passenger, unaware of the stops and starts, it seems like some areas of the 

city are smaller because the junctions are passed more quickly. The passenger can now draw a 

map such as Figure s8. 

 

 
2 When all lights have been lit in all possible combinations that is a full revolution of the graph. 



Figure S8 Mapping the apparent relative positions of waypoints based on travel time. 

 

3.2.7 Breaking away from the grid 

Adding dimensions  

Of course, the 2D spatial layout is still underpinning the information reaching the passenger to 

some extent. So let us make the taxi fly. Now it can take any route across town, it does not need 

to visit the nodes sequentially by road, but it does need to observe the traffic lights at those 

junctions it passes over. The passenger still manages to correctly position all the different nodes 

with the correct travel times between each pair using just 2D, in effect the passenger is projecting 

the 3D route onto 2D in the same way hills are projected onto a 2D walking map.  

But the taxi no longer needs to take the street network; it can go directly between two distant 

nodes. So what does the passenger make of the arrangement of the city when any node can be 

connected to any other node in the same amount of time? Our passenger can map out the graph 

of these lines, but to position in them in 2D space it seems that the city is a sort of circle (Figure 

S9a). With only the routes via “A” completed it seems to have a diameter of 2 junctions with A 

the center but as each node becomes the point of departure, they also seem to be the center (Figure 

S9b).  

 

 

Figure S9 Mapping the apparent relative positions of way points when travel time between 

them all is equal (a) starting at intersection A (b) Adding intersection K... each letter moves to 

the center of its own set of paths. 



With all routes completed it appears as if all points are equidistant from each other. Our confused 

passenger can only map it as a zero-dimensional point (Fig S10 a).  However when the taxi must 

wait for a green light it takes longer to travel over certain parts of the city. To make the travel 

consistent with a (perceived) constant speed of movement certain sets of nodes which have slow 

traffic lights on many of the routes between them need to be further away from each other. An 

area “balloons” out of the dot on our passenger’s map as each junction becomes differentiated in 

its distance to all the others (Figure S10b). 

 

Figure S10 (a) When all distances are equal the projected space collapses to a point (b) 

differentiation in travel time between intersections results in projected space expanding. 

Depending on what route the taxi takes the passenger may be able to map it as 1D (the taxi takes 

a single snaking route over all the junctions) or in 2D (the taxi loops back through the same point) 

or perhaps may realize they need 3D to make all the distances work as one big puzzle. The 

important point is that a (relative) scalar field has emerged for our passenger to map. It is not at 

all obvious to our passenger that the original junction layout is a grid. Nor does it actually matter, 

the nodes could simply be in a graph with no spatial arrangement at all but the passenger 

travelling around that graph will still map them to the same emergent space based on the travel 

times, which are determined by the traffic lights not the distance (Figure S11): 

 



 

Figure S11: Mapping a discreet set of relationship as a continuous set of relative distances based 

on relative travel time assuming a constant speed. 

Key Observation 1: A smooth space emerged from entirely discreet concepts. Time is 

discretized by the changes of traffic light colour. But spatial position is not based on a single 

such journey, it is based on the travel time ratios between two or more such journeys. Ratios 

of integers can be infinitely precise, thus relative distance based on this may also be infinitely 

precise. 

3.2.8 Mapping relative position to a universal precision 

Just because any arrangement of relative position can be encoded into the travel times of the taxi, 

does not mean they all could be mapped precisely in 2D or 3D. The measurement uncertainty our 

passenger faces is from their own estimation of the relative time taken between stops. Once it is 

projected into 3D space that uncertainty becomes a sphere as to potential error in relative distance 

between nodes. If two nodes have overlapping spheres it would be uncertain they were not in 

fact in the same place. Thus the spheres must be hard, which limits the density with which they 

can be packed and how many nodes the passenger can locate in one frame of reference. This point 

might well require some unpacking! 



 

Figure S12 (a) A graph of relations with no metric. (b) A graph of relations where the circles 

represent uncertainty as to time of departure/arrival but edges have yet to be given a defined 

metric for travel time (c) A graph of relations where edges represent one time unit and circles a 

constant uncertainty radius of half a time unit. 

Figure S12a shows the graph for routes between five neigbouring nodes (no longer on a grid). In 

S12a these are in no particular spatial arrangement, each edge has the same time value “1 unit” 

but the lines are not drawn to that scale.  In S12b the circles are to scale for the measurement error. 

Not all nodes have the same (perhaps the car moved at varying speed at the start and end of its 

journey). The circles on the graph represent this easily without overlap because the edges are not 

to the same scale. But maps define precision to a certain constant scale, and to achieve this must 

assume measurement error is symmetric and equal for all locations. By averaging out the car’s 

speed, the different uncertainties are averaged to a constant radius (r2) around each node (Figure 

S12c).  

From the route AECDA it is established that all journeys are the same distance, exactly 1 time 

unit, making the uncertainty in position bisect each exactly half way. So the map can be projected 

to the green nodes in S12c.  Adding in the journey ABD, it is established B is also one unit from 

both A and D. This can also be projected as B1. Then the journey EBC is made and it is established 

that B is also 1 unit from E and C. The most likely projection is now a circle with B at the center 

(B2). The graph tells us they are all exactly 1 unit +/- half a unit from each other, so all are definitely 

in distinct locations. But mapped to a grid, the error margins overlap and B is no longer 1 unit 

from the other nodes.  The problem is the inability to represent this arrangement in a square 

lattice. One needs a 3rd dimension making a pyramid, but then the unit is no longer a grid in 3D, 

rather it has become a triangular lattice3. 

 
3 Lattice: A regular mesh of points and edges. In this context the points are spheres, like beads on a string. 



Key Observation 2: The emergent geometry cannot be guaranteed to be perfectly represented 

in a lattice, matrix or other system measured by independent dimensions at a universal 

precision. 

4.2 Addressing the in-between  

Instead of considering the nodes as points in a path with no direction of time, consider point B as 

a “stepping stone” in a path between the other nodes over time.  This provides the rationale for 

an additional dimension into which the (now) spheres can all pack. It makes point B not a place 

the taxi stops at and restarts from but a place it passed through half way between origin and 

destination, an inferred point offset in the vertical dimension (time) and interstitial to the other 

nodes in space.  By this reasoning B can fit “around” a vector of travel, representing the 

uncertainty as to actual route left by the packing of the lattice (Figure S13a). Over many paths, 

these offset points build up inter-leaven layers of spatial coordinates as time progresses (Figure  

S13b). 

 

Figure S13 (a) A ‘fuzzy’ vector whereby the uncertainty of the path in between time points 

(green) is represented by a ring of points (yellow). (b) A packing which positions in-between 

“time slices” by alternately offsetting layers overtime. (c) Illustrating how one way of packing 

space with addresses may still result in multiple vectors having intersections that do not fall 

exactly onto any address in common (d) Fuzzy coordinates represent at a larger spatial scale 

two vectors- one which is a probable path (but meanders) the other which involves fewer nodes 

(but the probability of their connecting is low) such that both map to a common fuzzy vector. 

Discussion up to here shows that a field emerges based on relative travel time between nodes but 

this cannot all be mapped onto a suitable lattice. However, what is needed is only a relative 

addressing of positions between the graph nodes, not from them to every other point in space 

regardless of whether anything is located there or not. The best lattice to project a specific set of 



nodes and vectors onto depends on where those nodes are relative to one another. So for different 

subsets of the graph there are different ideal packings (Fig S13c).  

One can intuitively imagine that routes with faster traffic lights will represent the most important 

routes through the network (the ones most likely to consistently deliver a minimum travel time) 

which thus define the minimum relative distance between all the nodes. These key routes will 

roughly map out the extent of the latent4 field. Of course it is entirely possible that a line of slow 

traffic lights turn green in just the right sequence making another route much shorter – but only 

occasionally. If one includes the effect of these less likely routes, the ideal lattice changes a little. 

There is a tradeoff between addressing key vectors onto a lattice and addressing as many vectors 

as possible. 

As the underlying process changes (i.e. the traffic lights change frequency) the key routes change 

and so too does the best lattice packing. So we see that there is a latent space of relative distances 

which is in principle genuinely continuous (any set of travel times is possible). This latent travel 

time space can be partially projected into multiple different mappings, so in 3D space the 

coordinate system becomes fuzzy from overlaying competing best projections (Fig S13d). 

Multiple views (such as across scales or over several time steps) can place a lattice address at any 

and every location in a continuous space. But a single view/instance at single precision radius 

cannot. 

As the crow (probably) flies 

Having established that is not possible to address all locations simultaneously, one is then faced 

with the question of what objects, tracks, edges and points look like in a fuzzy space-time? The 

shortest route is no longer the geometric straight line (which may not exist at any one instant) but 

the most probable shortest path. Fortunately we already have a way to describe this 

mathematically via a ‘Feynman path integral’ (invented by the physicist Richard Feynman to 

describe statistically how subatomic particles move). In this context integral might be considered 

to mean “when all taken together” or “net result of”, so when all possible paths are weighed 

together given their respectively likely hoods, what is the most likely path? Equation 9 in the 

main paper just relates the probability that a topological path exists on the graph to that of a 

particle taking a straight line between the same two points. Anecdotally an object moving along 

a path integral vector might look something like Figure S13a if the highest packing density is 

hexagonal.  

 

 
4 Latent: the underlying or concealed phenomenon, in this case travel time underlies how “close” places are. 



 

 

Figure S14 Face Centered Cubic Packing in ‘4’D (to illustrate a vector is chosen over X and Y). 

The red arrow represents a path such as from an airplane taking off, moving straight down the 

runway and gradually rising (in Z) over time. Green spheres represent position at each time 

step, yellow spheres its position in between each time step. 

The price paid for a higher packing density than the Cartesian lattice, is that one cannot rotate the 

orientation of the packing so that a vector becomes a perfectly packed straight line along one axis. 

To move in one direction it is necessary to also weave to and fro in the perpendicular direction. 

This is why in section 4 of the main paper it is considered that, by using the 4th Dimension as time 

in a 4D hexagonal packing, time and space become “conjugate” i.e. one cannot move in one 

dimension without also moving in the other. Timeless paths are conceivable but arguably they 

are not meaningful.  If nothing changes time is not measurable, if change takes no time distance 

is not measurable. Consequently, between any two points there is always “halfway” in both space 

and time. Fuzzy coordinates can represent that, but are inconvenient when one needs a single, 

crisp, map. The Face Centered Cubic Packing approximates this principle in a regular lattice by 

defining “halfway” as the alternate layers in two interleaved and offset cubic lattices creating one 

triangular lattice (S14)5. Although still not entirely space filling, FCCP at least provides a means 

to explicitly represent the incompleteness inherent to measurements of spatial change over time, 

representing the possible “half way” points. The key difference in using FCCP rather than simply 

doubling the resolution in Cartesian coordinates (cubic packing) is that higher resolution only 

redistributes the uncertainty of “in-between” at a smaller scale while FCCP explicitly represents 

it. 

 
5 In the supermarket trays of eggs are often stacked this way, each layer offset atop the one below. It is almost as 
efficient as a hexagonal packing but each layer is a convenient grid. 



2.1.8 Summary 

This section showed how a set of discrete relations (measured in time) can be represented as a 

truly continuous set of spatial relations with well defined (im)precision. It has also shown why, 

despite this being so, when one seeks to map (project) these spatial relations as absolute locations 

in Euclidean dimensions, relations between distinct positions in relative terms can become 

indistinct.  In particular it can become unclear exactly where “half way” points along a relation 

actually are, either because the uncertainty in their true position overlaps the uncertainties of both 

start and end point or because there is no coordinate available  to address the halfway point. One 

solution is to explicitly recognize that start and end points are at different positions in time, this 

opens up packing space for halfway points, offset in both space and time, creating a spatio-

temporal Face Centered Cubic Packing. 
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