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Abstract: Street greenness visibility (SGV) is associated with various health benefits and positively
influences perceptions of landscape. Lowering the barriers to SGV assessments and measuring the
values accurately is crucial for applying this critical landscape information. However, the verified
available street view imagery (SVI) data for SGV assessments are limited to the traditional top-down
data, which are generally used with download and usage restrictions. In this study, we explored
volunteered street view imagery (VSVI) as a potential data source for SGV assessments. To improve
the image quality of the crowdsourced dataset, which may affect the accuracy of the survey results,
we developed an image filtering method with XGBoost using images from the Mapillary platform
and conducted an accuracy evaluation by comparing the results with official data in Shinjuku, Japan.
We found that the original VSVI is well suited for SGV assessments after data processing, and the
filtered data have higher accuracy. The discussion on VSVI data applications can help expand useful
data for urban audit surveys, and this full-free open data may promote the democratization of urban
audit surveys using big data.
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1. Introduction
1.1. Background

The visibility of greenery or the amount of vegetation that can be viewed has been
positively associated with various health benefits, such as restorative effects [1,2], patients’
recovery from surgery [3,4], and physical activity promotion [5,6]. As a critical landscape
element in urban environments, the visibility of street greenness is also believed to posi-
tively influence people’s perception of the landscape, thus contributing to the attractiveness
and walkability of streets [7–10]. Accurately measuring street greenness visibility (SGV)
is crucial in providing statistical evidence to understand the impact of sensory functions
of urban greenery on areas such as health and landscape perception. Furthermore, the
efficiency and lower barriers for the measurements are also important for the applica-
tions in various scenarios, such as research on understanding the effects and greening
programming assessments.

However, previous studies on the associations between urban greenery and the pos-
sible impacts on citizens use less SGV assessment; this is partly due to the difficulty
of quantifying visibility, especially in data collection and value computation at a large
scale. For instance, subjective measures such as questionnaire and audit surveys are often
time-consuming and expensive [11–14]; the application of viewshed analyses is limited
by the unavailability of high-resolution spatial data and computationally intensive mea-
sure [15,16]. These previous studies often focused on measures relying on more-easily
accessed area-level data to grasp the greenery situation, using indices such as the green
space ratio and normalized difference vegetation index [17–19]. However, these aerial-view
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measurements do not fully capture all the greenery elements that humans experience (such
as the green wall and shrubs under trees). Some statistical results further confirm the
difference between results from the different perspectives [5,20,21], thus highlighting the
particularity and indispensability of SGV assessments in urban greenery studies.

With the proliferation of street view imagery (SVI) platforms, advances in computer
vision and machine learning, and availability of computing resources, SV-based greenness
visibility measures have become increasingly common [22]; indeed, these machine-based
methods have been proven to be in close agreement with human perception [23]. However,
the current methods for measurements use limited types of SV data (Table A1), which has
also restricted the applications of these methods. Most of the studies conducting greenness
visibility measurements rely on data collected by certain companies or government agencies
(which can be called top-down type data) [22,24]. Even though the top-down data collection
method has advantages in controlling data quality and coverage, there are several barriers to
data download and usage for users who are consumers rather than producers. For example,
bulk downloading is often prohibited (e.g., Bing Streetside or Apple Look Around), and
other SVI services like Google Street View (GSV) allow bulk downloads but usually charge
a fee after a certain amount of free downloads.

Furthermore, obtaining historical imagery is not allowed by these SVI services, and
they often have usage restrictions (some restrict the extraction of greenness information
from imagery; e.g., [25,26]). These restrictions present issues when conducting research at a
large scale or through temporal analyses. Thus, discussions on the possibility of applying
open SV data in measurements are significant for the applications.

With the emergence of the Web 2.0 era, which has fostered the potential for individuals
to contribute and access information through multiple resources [27], crowdsourcing has
been applied to data collection in various domains, including volunteered geographic
information [28], which involves large numbers of individuals in geographic information
creation (e.g., OpenStreetMap or Wikimapia). The proliferation of location-aware devices,
especially photography equipment, has also facilitated the collection of SVI in a short time
and at a low cost and provides the opportunity to obtain fully free open data. For example,
Mapillary (https://www.mapillary.com/ (accessed on 27 December 2022)) and KartaView
(named OpenStreetCam until November 2020) (https://kartaview.org/landing (accessed
on 27 December 2022)) collect panoramic or regular street-level photos contributed by their
users with any GPS-enabled camera or smartphone devices from all over the world. Images
from them are provided under CC BY-SA 4.0 license, meaning the data is free to use, even
for commercial purposes. In this study, we assumed that these crowdsourced mapping data
might be a potential in situ data source with a lower usage barrier for SGV assessments
and other urban environmental audits.

For SV-based SGV measurements, the visibility value of a location is often defined
based on the proportions of greenery pixels in images taken at those locations [29], thus
creating high sensitivity to the environmental conditions while photographing (e.g., it is
difficult to have a clear view of greenery at night or from an obstructed view). Therefore,
researchers often choose to apply imagery data taken in well-controlled shooting environ-
ments (such as GSV, which usually collects pictures in good weather and during the day) to
SGV assessment. Furthermore, to ensure these values correspond to the human perspective
closely, researchers often try to cover the full view of the surrounding vegetation [28,30].
Alternatively, some surveys measure greenness from the usual viewing angles that people
experience, as the behaviors of local residents can be regarded as a stereotype that does
not change too much [31]. It is believed that their views generally follow the street layouts,
and they do not look up into the sky frequently [32]. For instance, Ye et al. [32] used GSV
pictures in four directions (the front, rear, left-hand, and right-hand) at the horizontal level
to measure street greenery. Other cases are street greenery surveys by some of Japan’s local
governments, where front pictures (parallel to street segments) at the human-eye height
are used for greenness calculations [33,34].

https://www.mapillary.com/
https://kartaview.org/landing
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However, the variety of crowd data sources for volunteered street view imagery
(VSVI) data collection has also led to the uncertainty of the photography method, which
hinders the application of this novel type of data to SGV measurements or other urban
audit surveys regarding proportional calculations. For instance, contributors who share
photos may not struggle to avoid shooting environments such as low-light and obstructed
views that are unsuitable for streetscape observations (Figure 1). Moreover, the camera
angle is usually inconsistent, especially while walking and cycling, owing to the lack of
professional photography equipment, leading to some pictures that are largely different
from the general pedestrian view (e.g., pictures with too much ground or sky) (Figure 2).
SGV values calculated based on the original VSVI data may not be able to reflect what
people experience or guarantee comparability among locations.
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Figure 2. Examples of VSVI with too much ground (left) and sky (right). Data are from the
Mapillary platform.

In this study, we assumed that SGV calculation only based on the appropriate photos
from the original data would obtain more accurate results. However, image processing
methods for this purpose have not been discussed in studies on SGV measurements
and related urban audit surveys due to the predominant data type of panorama and
images taken under certain requirements through field surveys. In addition, developing an
automatic image filtering method would make the application more efficient. Although
image classification methods have thrived in computer science through machine learning
techniques, no application has been conducted for the specific purpose of images for
streetscape monitoring. To improve the accuracy and efficiency of SGV measurements
based on VSVI data, the application of automatic image classification techniques should
be discussed.

1.2. Objectives and Research Structure

As the first attempt to apply VSVI in SGV measurement, this study examines the
possible low accuracy problems from image quality issues by applying image classification
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techniques to filter appropriate images from the original datasets. The results are expected
to promote the development of efficient, high-accuracy, and low-barrier SGV assessment
methods. Notably, a streetscape monitoring method that considers the ability to reflect the
human perspective and the limitations of non-panoramic images with a single view (most
VSVI are not panoramas) and includes pictures taken in an ideal environment, with the
front view parallel with the street segment, and at the horizontal level (Figure 3). To do
so, the following objectives were defined: (1) develop a framework to screen out qualified
images from the VSVI dataset; and (2) evaluate the accuracy performance of the VSVI data
in SGV measurements.
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The remainder of this study is organized as follows. A description of the data sources
and the applied research methods, including the image filtering method, are introduced
in Section 2. Section 3 demonstrates the results of SGV measurements and the statistical
analyses, which is followed by a discussion in Section 4 and conclusions in Section 5.

2. Materials and Methods
2.1. Overview of the Analysis and Study Area

This study proposed an image filtering method to improve the quality of VSVI data for
SGV assessment and conducted an accuracy evaluation using a case study assessment. The
imagery data used in this study were downloaded from the Mapillary platform, which is
the first platform to provide crowdsourced SV services. Since the inception of Mapillary in
2014, user-submitted images have reached over 41 million in Japan as of 2020 [35]. Shinjuku
was chosen as the study area considering the availability of Mapillary imagery data (which
is incomplete in Japan) and the existing reference SGV data for accuracy evaluations.
Shinjuku, located in Tokyo, is regarded as one of the hotspots of Mapillary activity. In terms
of reference data, while GSV is widely believed to provide reliable imagery data in SGV
assessment, using applications “to analyze and extract image information” has recently
been prohibited recently [25]. This limits the application, particularly in districts where
there are no fair use exceptions for copyright infringement (including the districts in Japan).
The local government in Shinjuku conducted greenness visibility surveys twice (1984 and
2016) to understand the current situation and the changes in greenery along streets to create
the basic data for green policy planning. The images used in these surveys were captured
under strict and consistent criteria that are similar to the definition of suitable images in
the current study [33]. The detailed methods, results, and imagery data of the latest survey
have been published and can be used as reference data to accurately evaluate the results
from the VSVI data.

Shinjuku is a centrally located ward in Tokyo (Figure 4) with an area of 18.22 km2

and a population of 340,877 (as of 1 April 2022). This city is dominated by residential and
commercial land use, and the area around Shinjuku Station is Tokyo’s largest commercial
and amusement area with many high-rise buildings on the west side (Nishi-Shinjuku).
Shinjuku has a green coverage of 17.98%, which is primarily provided by parks, schools,
and public facility areas. The major green spaces include the Shinjuku Gyoen Garden
and Meiji Jingu Shrine Gaien (Outer Garden) in the South, Shinjuku central park in Nishi-
Shinjuku, and the Toyama Park in the North (Figure 4). According to the SGV survey
results, the mean value is 18.12%, which ranges from 14.38% to 22.69% across districts [33].
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2.2. Data Description and Extraction
2.2.1. Mapillary Imagery Data

The metadata of Mapillary imagery can be accessed via Mapillary’s official application
programming interface (API), through which attributes such as the image id, coordinates,
is_pano, captured_at, and url for the downloaded image can be retrieved. By setting the
parameters of the API query, Mapillary allows developers to search for images close to
specified locations by inputting the coordinates of that locations and search distance. The
coordinates of sample intersections applied in this study were determined with the road
center line data from a digital map published by the Geospatial Information Authority of
Japan generated in 2019. Data used in this study were images of less than 10 m (considering
the road width and GPS error) from the sample intersections in Shinjuku until 3 November
2021. The normal non-panoramic images are predominant in the Mapillary dataset due
to the lack of widespread availability of panoramic cameras for the crowd. For the data
preprocessing, we first screened out panoramic images, making use of the attribute is_pano
(if it is a panoramic image) as this study focuses on normal images. Following this, we also
excluded images captured within fall foliage seasons, which may affect the discussion on
greenery assessment accuracy, using the attribute captured_at. After the preprocessing, the
final dataset contained 1049 photos from the original Mapillary data set.
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2.2.2. Reference Data for Accuracy Evaluation

A reference SGV value dataset with high accuracy is needed to evaluate the accuracy
of survey results based on the aforementioned crowdsourced data. In Shinjuku, street
imagery data for SGV calculation were collected through field surveys from 27 September
to 7 October 2016. During these field surveys, the street pictures were always taken in
the direction of the roads, with a 35 mm lens (35 mm equivalent focal length) and from a
height of 1.5 m. For the sample locations, the Shinjuku area was divided into equal size
grids (230 m × 230 m), and the intersections nearest the nodes of these grids were selected
as sample points. The results published in the report are based on 937 photos taken from
287 intersections in every direction of roads from these intersections. The percentage of
greenery pixels within each picture was calculated with the software Photoshop and defined
as the SGV value, and the mean SGV value for all images from the same intersections was
used as the SGV value for that intersection. The report published the SGV values for the
sample intersections, imagery data, and calculated values for each image [33].

2.3. Image Filtering Method

Images uploaded to the Mapillary platform can be taken by any user, using any
method, at any time, and from any location (even indoors), resulting in a significant large
difference in image quality. Owing to the complexity and variety of urban environment,
features related to the criteria for suitable images defined in this study (Section 1.2; such as
the perspective, light condition, shooting object, and the presence of obstacles) are difficult
to fully extract automatically without large amounts of training data. Thus, we chose to
achieve an automatic image screening process by specifying some related image features of
images using multiple computer vision techniques and classifying them using ensemble
methods. More specifically, the Extreme Gradient Boosting (XGBoost) method, an ensemble
learning method developed by Chen and Guestrin [37], was used in this study due to its
effective performance in many machine learning tasks. Figure 5 depicts an overview of the
image filtering methods, which are divided into three sections: setting, image labeling, and
model training.
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Feature setting is based on the observation of Mapillary pictures and shooting methods
adopted by the Shinjuku government [33]. First, to evaluate the greenness visibility of
the streetscape, the places photographed are generally along ordinary roads other than
highways, railways, and tunnels, or in some indoor places. As the distinct difference
between these pictures and the desired ones in the composition of image elements (such
as the rarely seen sky elements in pictures taken indoors and inside tunnels and train
elements in pictures of railways), the semantic segmentation method (we used PSPNet
model [38]) trained by Cityscapes dataset [39] in this study) to identify the pixels’ object
classes was used for the image elements extraction. For the photographing method, the
Shinjuku government chose to take pictures aimed in the direction of the roads and level
with the horizon, which can be distinguished by whether the position of the vanishing
point (detected by a 3-line RANSAC VP model [40]) is close to the center point in a picture.
Notably, the shooting height (1.5 m) and the angle of view were ignored due to the nuanced
differences between the different values. Moreover, imagery data from the Shinjuku
government demonstrate the requirements for sufficient-light situations, which can be
reflected in the brightness value (by OpenCV [41]) and an unobstructed view that can be
seen from the obstacle elements. Finally, we added the clarity feature (by OpenCV) for the
commonly seen blurry pictures taken by users, especially while walking and cycling.

Before the image classifier training, it is necessary to establish an imagery dataset
with specific classification results. Labeling unsuitable pictures for those taken along
some unwanted types of roads (e.g., highways and tunnels) may be easy based on the
visual information but not for those depending on some qualitative characteristics without
clear thresholds; for instance, it is hard to determine what level of darkness would make
an image unsuitable. To resolve this, the image classification was based on the existing
perceivable differences in quantifying streetscape elements between the pictures to be
labeled and the hypothetical suitable pictures capturing the same streetscape. To achieve
objective results, experiments were conducted involving multiple people to select results
from most of the participants. Five participants from the University of Tsukuba were
selected using the snowball method for efficiency; notably, none were from the research
group. These experiments took place from 2–3 November 2021, for each participant.
To ensure the understanding of participants, the experiments were conducted offline
using an introduction file (Appendix B) containing some examples of suitable images,
which are from the Shinjuku survey, and some unsuitable representative images from the
Mapillary platform (no duplication with images from the training data) to explain the
aims of classification. Data for the experiments were 500 pictures randomly selected from
an imagery dataset downloaded via the Mapillary API and the locations of 200 random
intersections in Shinjuku (72 of them with available Mapillary data; Figure 6). Participants
were asked to divide these images into two folders on a computer. Finally, the pictures were
grouped as suitable if three or more people labeled them so. Among these 500 pictures, 20
were removed due to high similarity, and then the labeled dataset consisting of 480 pictures
was used as a training set for XGBoost classifier training.

This study built the XGBoost model using Python software along with the “sklearn”
package and “XGBoost” package. The training set was randomly split into training (80%)
and testing (20%) data sets. The parameters of XGBoost were tuned using the Grid Search
for model optimization, and the final parameters were determined while reaching a suf-
ficiently high precision. The model we built contained 100 decision trees (n_estimator),
the learning rate (learning_rate) was 0.03, and the minimum loss reduction required to
make a further partition (gamma) was set to 0. In addition, the minimum sum of instance
weight needed on a leaf node for a further partition (subsample) was set to 0.8. The above
parameters helped reduce model complexity and prevented overfitting.
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2.4. Accuracy Evaluation

To examine the accuracy for SGV measurements using Mapillary data, this section
compares the performance of SGV survey results with the reference data (Section 2.2.2)
using the original and filtered Mapillary datasets, respectively. The comparison was
conducted at the level of road direction rather than the intersection, which is due to the
incompleteness of Mapillary images. The study intersections were determined with the
help of point distribution maps and the available imagery data in the report to ensure the
investigation points were consistent with the reference data. Among the 287 intersections,
nine were excluded as they could not be located, one was excluded due to a lack of
complete SGV values for each image, and five were excluded to avoid duplication with
the intersections for the training set. The images were assigned road directions where the
difference between the angle of the image and the road is minimum, making use of the
compass angle retrieved from the image metadata. The SGV value for each Mapillary image
was determined with the PSPNet model trained by the Cityscapes dataset, and the average
of SGV values of images viewed from the same road direction was defined as the road
value. The following statistical evaluation metrics were used to assess the accuracy of the
SGV results: Spearman’s ranking correlation coefficient (r), root-mean-square error (RMSE),
and relative bias (RB; to measure the tendency of overestimation or underestimation).

3. Results
3.1. Image Classification Method

In total, 18 image features were extracted with the PSPNet model, OpenCV software,
and VP detection model reflecting the characteristics of photographing place, environment,
and method; these features were selected for the classifier construction and are illustrated
in Table 1. A 480-picture dataset consisting of 214 suitable and 266 unsuitable pictures
was formalized as 18-dimensional feature vectors and used as training data for XGBoost
classifier implementation. The model was optimized using Grid Search. An out-of-sample
set of 20% dataset (96 pictures) was kept to test our model’s predictive power, of which
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42 were suitable and 54 were unsuitable. As the confusion matrix illustrated in Table 2
demonstrates, the model diagnosed 36 suitable and 60 unsuitable pictures, which achieved
an accuracy of 87.5%, precision of 91.7%, and recall of 78.6%.

Table 1. Image features for classification.

Features Description Extraction Method

1. Image elements (the ratio of roads,
sidewalks, buildings, walls, fences, sky,
riders, cars, buses, trains, motorcycles,
and bicycles within the images)

To distinguish the photographing place
To recognize obstacles

PSPNet model trained by
Cityscapes

2. VP position (vertical and horizontal
distance to the center point of the image)

To ensure images are level with the horizontal
position and aimed at the road direction 3-line RANSAC VP detection model

3. Brightness (brightness value) To avoid pictures taken in low-light situations
such as night and rainy days OpenCV

4. Clarity (clarity value) To recognize blurry pictures OpenCV

Table 2. Confusion Matrix for XGBoost model.

Predicted Class

Suitable Unsuitable

Actual class
Suitable 33 9

Unsuitable 3 51

3.2. Accuracy Evaluation

The coordinates of a total of 272 intersections in Shinjuku with reference SGV data
were input into the Mapillary API query, and 2122 photographs were retrieved from
96 intersections that make up the original Mapillary imagery dataset. These images were
then formalized as 18-dimensional feature vectors, which were then input to the established
XGBoost classifier. After removing panoramas and pictures taken in the fall foliage seasons,
a total of 1082 images remained for further analyses, and these images were matched
with 123 road directions based on the compass angle attribute. However, 213 (19.7%) of
these images were found with the wrong compass angle and matched to the wrong road
direction, possibly due to GPS sensor issues on devices (all these images are from only two
power users). The road direction these images assigned were revised, referring to imagery
used in reference data. In addition, we also removed five roads (matched with 33 images)
with reference images that were taken without following rules (e.g., taking pictures in
front of greenery rather than the center for the reason of traffic safety). After these steps,
1049 images were left for further study consisting of the original imagery dataset, and 282
were identified as suitable images with the developed image classification model to make
up the filtered Mapillary imagery dataset.

The mean SGV value of Shinjuku based on the original Mapillary dataset is 10.72%
(SD = 10.91%, n = 114) and ranges between 0.00% and 52.89%. Meanwhile, the mean value
based on the filtered Mapillary dataset is 12.81% (SD = 12.03%, n = 75) and ranges between
0.00% and 52.89%. The reference SGV values from the survey report demonstrate a mean
value of 14.66% (SD = 14.68%, n = 114) and a range from 0.00% to 55.47%. The frequency
distribution of these results is displayed in Figure 7. Generally, the results based on the
three datasets do not have a normal distribution and demonstrate a higher frequency of
values close to 0. After the image filtering process, the SGV values demonstrate a lower
frequency of samples with low values (less than 10%), which is closer to the distribution of
reference data.
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Figure 7. Frequency histograms of the SGV values.

Figure 8 shows two scatterplots of the two Mapillary datasets and the reference data,
indicating that the deviation values decreased after the image filtering method and these
SGV values were closer to the 45◦ line. Two logarithmic scatterplots (Figure 9) were used
to better visualize the data distribution of values close to zero. SGV values calculated using
the original Mapillary imagery dataset had an RMSE of 0.11, which slightly improved
after image filter processing (0.09) at a rate of 22.4%. The RB result shows that the original
Mapillary data underestimated the SGV values by 26.89%, and the underestimated trend
decreased when using the filtered data (RB = −16.77%).
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Spearman’s rank correlation coefficients were used to measure agreement between
these three sets of SGV values, and the results are illustrated in Table 3. The highest
correlation (0.919, p < 0.01) appears between values based on the original and filtered
Mapillary data. A strong correlation (0.740, p < 0.01) was found between the original
Mapillary values and the reference values, and the performance was further improved
(0.829, p < 0.01) after the image filtering process.
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Table 3. Spearman’s rank correlation of SGV values.

1 2 3

1 Values based on the original Mapillary dataset (n = 114) 1
2 Values based on the filtered Mapillary dataset (n= 75) 0.919 ** 1
3 Reference values (n = 114) 0.740 ** 0.829 ** 1

** = p < 0.01.

4. Discussion

In this study, we proposed using VSVI data to assess the visibility of greenery along
streets. Considering the low-quality pictures in crowdsourced data, which may affect the
ability to reflect human perspective accurately, an image filtering model applying multiple
computer vision techniques and XGBoost was developed to process the original VSVI
data. Finally, the accuracy of the SGV values based on the VSVI data was evaluated using
the reference data published by the local government, and the application of the filtering
process demonstrated a modest improvement in SGV monitoring accuracy.

Our automatic image filtering method is a feasible and efficient tool to distinguish
suitable street-level images for SGV surveys. In this image classification task, we made
requirements for some attributes (such as shooting environment and method) based on
the streetscape perception ways of citizens. Considering the diversity of the urban envi-
ronment, which made it difficult for models to discover the key features, related variables
were specified manually with some computer vision techniques. An XGBoost model was
applied for the high effectiveness in dealing with a limited amount of training data and the
advantages of being easy to use and efficient. Consequently, the established image filtering
model achieved a high precision of 91.7%, even with limited training data (500 pictures).
The model can also be used in image preprocessing for other urban audit tasks regarding
streetscape element proportion calculations, such as the sky ratio. Furthermore, model
design ideas have reference significance for classifying images with complex requirements
and too much distracting information.

The results of our research demonstrate that VSVI data can be useful in SGV as-
sessments, and the results can have a relatively higher accuracy after appropriate data
processing. Unlike the commonly used panoramas used in previous studies [5,28], most of
the VSVI are normal pictures with a fixed view angle of streets that require unique data
processing methods. Furthermore, the variety of the data sources from the crowd casts
doubt on the reliability of the survey results. After seasonal filtering and road matching,
the assessment results show a slightly smaller RMSE (from 0.11 to 0.09), a moderately lower
RB (from −26.89% to −16.77%), and a slightly stronger correlation (from 0.740, p < 0.01,
to 0.829, p < 0.01), confirming the high accuracy of the results. The difference between the
VSVI and reference data results may be explained by unavoidable factors, such as plant
growth in different months (Figure 10) and years (Figure 11), as well as different shooting
positions (Figure 12).
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Figure 11. Comparison of a reference picture taken in 2016 (left) and a Mapillary picture taken in
2021 (right). Data are from the Mapillary platform.
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path along the same road (right). Data are from the Mapillary platform.

VSVI has received increasing attention from the research domain in recent years [35,41–45]
and has been used in various surveying tasks such as road information extraction [46,47],
building observation [48], and crop monitoring [49]. Using full-free open VSVI data in SGV
surveys can help to expand the types of useful data in streetscape monitoring research and
facilitate the democratization of urban audit surveys using big data. This largely facilitates
urban audit studies particularly in districts where the use of traditional top-down data is
restricted. Verifying the possibility of using alternative open data greatly expands the data
users to some groups, such as the government for evidence-based policy planning, private
companies for application development, and individuals for private use.

However, there are some issues that need to be resolved in the development of the
image filtering method, as well as some limitations in accuracy evaluation. The first concern
is about the image filtering method. The feature extraction process involves the use of
multiple models, thus increasing the workload and resulting in lower accuracy due to
accumulated errors. Furthermore, the areas used in this study for training data retrieval
and assessment applications were both Shinjuku, which may lead to higher accuracy due
to the urban environment’s similarity. Future research should look into the generality of
this image classification model. The accuracy evaluation has limitations due to the choice
of reference data and the size of the data volume. The reference SGV data for this study are
based on images taken under rules formulated by the Shinjuku government at a specific
point in time, rather than the widely used gold standard. Future research will need to look
into comparisons with more recognized data. Furthermore, due to the limited number
of sample sites with reference data and the lack of Mapillary images in some of these
sample sites, the analysis of this study was limited to 114 samples. This calls the accuracy
assessment’s credibility into question. Future research should assess the accuracy of using
VSVI data with a larger sample size.

Finally, while this study confirms the reliability of VSVI data in streetscape monitoring
studies, it also identifies some limitations that may hinder its dissemination. First, the
incompleteness of the VSVI data affects the application. Only 96 intersections (49 after the
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filtering process) out of 272 have available data, and only a small number of intersections
have pictures from all road directions. Even though the amount of Mapillary imagery data
in Japan has surpassed 40 million [35] and is growing at an exponential rate, complete
coverage of roads and directions remains difficult for VSVI data contributed by the crowd,
even in some data-rich countries [44]. The evaluation of the completeness of this dataset
and discussion of the strategy for improving data coverage are critical to the promotion
of its application. The uncertainty in the accuracy of image attributes was discovered
as a second issue. During the road matching process, we discovered some errors in the
orientation attributes of these crowdsourced images, which complicate data preprocessing
(the orientation of images was checked manually in this study). Even though the errors
only occurred in images submitted by two users, these images accounted for nearly 20% of
the retrieved dataset because these two were power users. To improve the reliability and
efficiency of its application, methods to check and revise the orientation and other related
attributes of crowdsourced imagery data should be discussed in future research.

5. Conclusions

Facing the usage restriction of the commonly used SVI data, this study applied the
representative VSVI data of Mapillary data to SGV assessment and attempted to improve
accuracy by quality improvement via an image filtering model. The study area for data
retrieval was Shinjuku, Japan, and with the help of computer vision science and machine
learning techniques, a high-quality model was developed using limited training data. Even
though some shortcomings of the VSVI data (incompleteness and attribute errors) were
found, the results demonstrated that the VSVI data are qualified for assessing street green-
ery, and the filtering method can further improve the accuracy of the assessment results.

As a new product of the Web 2.0 era, the VSVI database has quickly become valuable
worldwide and is expected to flourish in the future with the development of the digital
city. Even though the differences with reference data seem to lower the correlations in
this study, the VSVI data were also excellent at delivering multi-perspective and multi-
temporal environmental information, owing to the variety of data sources from the crowd.
For a long time, the widely used SVI data (e.g., GSV, Baidu Total View) in urban audit
studies have been providing the setting view of the streets (mostly from the car views) and
restricting users from fetching historical data. The novel type of SVI data could provide
the opportunity for more complex urban audit tasks involving perceptive and temporal
characteristics. This study can be viewed as an extension of available SVI data in the field
of urban studies and provides building blocks for person-centered and dynamic streetscape
monitoring in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijgi12030108/s1, Figure S1: suitable images; Figure S2: unsuitable
images; Table S1: prediction result; Table S2: feature data; Table S3: imageid lookup table; Model S1:
image filtering XGBoost model; Code S1: OpenCV; Code S2: PSPNet; Code S3: vpdetection.

Author Contributions: Conceptualization, Xinrui Zheng and Mamoru Amemiya; methodology,
Xinrui Zheng and Mamoru Amemiya; software, Xinrui Zheng and Mamoru Amemiya; validation,
Xinrui Zheng and Mamoru Amemiya; formal analysis, Xinrui Zheng and Mamoru Amemiya; in-
vestigation, Xinrui Zheng; data curation, Xinrui Zheng; writing—original draft preparation, Xinrui
Zheng; writing—review and editing, Xinrui Zheng and Mamoru Amemiya; visualization, Xinrui
Zheng; supervision, Mamoru Amemiya; funding acquisition, Mamoru Amemiya All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by MEXT KAKENHI Grant Number 21H01558.

Data Availability Statement: The data presented in this study, which are available in the Supplemen-
tary Materials, consist of (1) a “Feature data” file; (2) an “imagefiltering_xgboostmodel” model file;
and (3) the “prediction_result” data files, which include a “prediction_result” file and the classified
Mapillary images (which are released under a CC BY-SA license); (3) “source python code” python
files, which include an ”OpenCV” file, a “PSPNet” file, and a “vpdetection” file; and (4) an “imageid

https://www.mdpi.com/article/10.3390/ijgi12030108/s1
https://www.mdpi.com/article/10.3390/ijgi12030108/s1


ISPRS Int. J. Geo-Inf. 2023, 12, 108 14 of 19

lookup table” file matching id prepared in this study and in the Mapillary platform. Further data that
support the findings of this study are available from the corresponding author on request.

Conflicts of Interest: The Mapillary images used in this study are all licensed under the Creative
Commons Attribution-ShareAlike 4.0 International License.

Appendix A

Table A1. Summary of the Literature Review.

Authors Year Study Area Purpose Imagery Data Panorama Data Collector

Yang et al. [21] 2009 Berkeley,
United States

To develop the Green View Index (GVI)
to evaluate the visibility of urban forests - No researcher

Li et al. [29] 2015 New York,
United States

To propose a modified GVI formula
using GSV images GSV 1 Yes company

Li et al. [50] 2015 Hartford,
United States

To explore the distribution of street
greenery and its association with
residents’ socioeconomic conditions

GSV Yes company

Long and
Liu [51] 2017 245 major

Chinese cities

To propose an automatic method to
determine street greenery and analyze
the distribution of street greenery

TSV 2 Yes company

Jiang et al. [18] 2017
The
Midwestern
United States

To assess associations among two
remotely sensed and three eye-level tree
cover density measures

- Yes researcher

Seiferling
et al. [52] 2017

New York and
Boston, United
States

To test a novel application of computer
vision to quantify urban tree cover at the
street-level

GSV Yes company

Dong, Zhang,
and Zhao [53] 2018 Beijing, China

To quantify street greenery in study area,
analyze the relations with road
parameters, and compare the visual
greenery of different road types

TSV Yes company

Lu, Sarkar, and
Xiao [54] 2018 Hong Kong,

China

To develop methods and tools to assess
the availability of eye-level street
greenery and investigate the effect of
street-level greenery on
walking behavior

GSV Yes company

Villeneuve
et al. [6] 2018 Ottawa,

Canada

To assess associations between
greenness, walkability, recreational
physical activity, and health (comparing
the NDVI with the GSV measure
of vegetation)

GSV Yes company

Zhang and
Dong [55] 2018 Beijing, China To investigate the impacts of street

visible greenery on housing prices TSV Yes company

larkin and
Hystad [19] 2019 Portland,

United States

To evaluate GSV-based green space
exposure measures as new approach for
health research

GSV Yes company

Lu [56] 2019 Hong Kong,
China

To assess both the quantity and quality
of street greenery and investigate the
association between them and
physical activity

GSV Yes company

Yang et al. [57] 2019 Hong Kong,
China

To examine the associations of urban
greenery and older adults’
physical activity

GSV Yes company

Ye et al. [58] 2019 Shanghai,
China

To measure the potential economic effect
of street greenery BTV 3 Yes company

Ye et al. [32] 2019 Singapore
To propose an approach for quantifying
the daily exposure of urban residents to
eye-level street greenery

GSV Yes company

Chen et al. [59] 2020 Shenzhen,
China

To explore the influence of greening
factors on the use of shared bicycles TSV Yes company



ISPRS Int. J. Geo-Inf. 2023, 12, 108 15 of 19

Table A1. Cont.

Authors Year Study Area Purpose Imagery Data Panorama Data Collector

Kumakoshi
et al. [61] 2020 Yokohama,

Japan

To propose an improved greenery
visibility indicator (standardized GVI)
and quantify the relation between sGVI
and other green metrics

GSV Yes company

Tong et al. [62] 2020 Nanjing, China To assess street greenery using
multiple indicators TSV Yes company

Wang et al. [63] 2020 Shenzhen,
China

To explore the relationship between
eye-level greenness and
cycling behaviors

TSV Yes company

Wu et al. [64] 2020 Beijing, China
To investigate the effect of street
greenery on active travel considering
road classification

BTV Yes company

Zang et al. [65] 2020 Hong Kong,
China

To explore the relationship between
urban greenery and walking behaviors
of older adults

BTV Yes company

Ki and Lee [66] 2021 Seoul, Korea

To examine GVI (the difference with
traditional greenery variables) and
explore its associations with
walking activities

GSV Yes company

Li [67] 2020 New York,
United States

To map and analyze the spatial
distribution and temporal change in
the GVI

GSV Yes company

Xia et al. [68] 2021 Osaka, Japan

To develop a method to determine the
greenery amount of street view images
and propose the Panoramic View Green
View Index for measuring the visible
street-level greenery

GSV Yes company

Yang et al. [69] 2021 Hong Kong,
China

To examine the effects of streetscape
greenery on the walking behavior of
older adults

GSV Yes company

Yang et al. [70] 2021 Hong Kong,
China

To develop a novel method to assess
both the quantity and quality of park
greenery from eye-level photographs of
parks and explore the associations with
park usage

- No researcher

Zhang, Tan,
and Richards
[71]

2021 Singapore
To examine the associations of different
indicators of urban green spaces
with health

GSV Yes company

He et al. [72] 2022 Shanghai,
China

To examine the complex relationship
between urban density, urban greenery,
and older people’s life satisfaction

BTV Yes company

Xue et al. [73] 2022 Guangzhou,
China

To introduce Visible Difference
Vegetation Index for GVI calculation and
explore the spatial distribution of street
greenery in Guangzhou

BTV Yes company

1 Google Street View. 2 Tencent Street View. 3 Baidu Total View.

Appendix B

Image Classification Experiment

Not all pictures are suitable for streetscape monitoring in the crowdsourced street-
level imagery dataset. Before implementing an effective image classification model for
quality improvement, it is necessary to create training data containing images that are
labeled objectively. This experiment was designed to label images objectively and classify
images from multiple participants. Please help us to divide the provided 500 images into
two folders, suitable and unsuitable. The requirements for suitable images for streetscape
monitoring are shown below:
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1. Pictures of ordinary roads;
2. Pictures with the front view parallel with the street segment and taken at the

horizontal level;
3. Pictures taken in an ideal environment for streetscape elements observation.
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