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Abstract: Location-based social networks (LBSN) allow users to socialize with friends by sharing
their daily life experiences online. In particular, a large amount of check-ins data generated by LBSNs
capture the visit locations of users and open a new line of research of spatio-temporal big data,
i.e., the next point-of-interest (POI) recommendation. At present, while some advanced methods
have been proposed for POI recommendation, existing work only leverages the temporal informa-
tion of two consecutive LBSN check-ins. Specifically, these methods only focus on adjacent visit
sequences but ignore non-contiguous visits, while these visits can be important in understanding
the spatio-temporal correlation within the trajectory. In order to fully mine this non-contiguous visit
information, we propose a multi-layer Spatio-Temporal deep learning attention model for POI recom-
mendation, Spatio-Temporal Transformer Recommender (STTF-Recommender). To incorporate the
spatio-temporal patterns, we encode the information in the user’s trajectory as latent representations
into their embeddings before feeding them. To mine the spatio-temporal relationship between any
two visited locations, we utilize the Transformer aggregation layer. To match the most plausible
candidates from all locations, we develop on an attention matcher based on the attention mechanism.
The STTF-Recommender was evaluated with two real-world datasets, and the findings showed that
STTF improves at least 13.75% in the mean value of the Recall index at different scales compared with
the state-of-the-art models.

Keywords: point-of-Interest; recommendation; embedding; transformer; spatio-temporal

1. Introduction

With the development of information communication and mobile technologies, location-
based Social Networks (LBSNs) become increasingly popular in people’s daily life. LBSNs
provide users with unique ways to share their data, providing new data sources for data
mining and machine learning. Specifically, these data include users’ locations, views, pho-
tos, and comments, and spatio-temporal big data gathered from these platforms have been
widely used in different applications, such as the study of individual activity patterns [1],
next point-of-interest (POI) recommendation [2], etc. In particular, users’ check-ins are
captured as a set of visit locations (i.e., trajectories) by the LBSNs when users go to a
certain POI. On the one hand, these check-ins contain rich information about users’ daily
movement by recording visited POIs, as well as specific visiting times and visit frequency
of a POI for each user. By analyzing a user’s historical trajectories, we can roughly un-
derstand the user’s movement patterns and living habits. On the other hand, multiple
users’ check-in frequency and check-in time of a certain POI can provide more accurate
information to describe the temporal visit patterns of the users. By analyzing the historical
trajectories of all users in LBSNs, such POI information and their inherent spatio-temporal
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relationship can be mined by incorporating machine learning algorithms, such as deep
learning methods [3].

Recent work in POI recommendation with LBSNs data primarily focuses on identi-
fying where specific users went and when. This information is of great significance for
individual travel planning, business site selection, and urban planning [4]. Individual users,
even in unfamiliar cities, can find places suitable for their interests and hobbies, which
facilitates and enriches people’s lives. For businesses, the POI recommendation research
can help understand customer needs and therefore plan more targeted advertisements
for specific user groups, which can significantly improve the efficiency of advertising and
save publicity costs while gaining customer visits more effectively and achieving revenue
growth. For the government, this research can enable urban planners to understand the
users’ movement patterns of the whole city from an overall perspective, which can help im-
prove urban transportation, plan urban road networks, and monitor abnormal movement
behaviors of citizens and traffic more timely. As a result of these societal benefits, much
effort and progress have been made in POI recommendation research [5]. Specifically, early
research mostly focused on non-deep learning-based methods, requiring handcrafted fea-
ture engineering [6], and cannot properly utilize the spatio-temporal information contained
in LBSNs. With the recent advancement of machine learning techniques, a large number
of deep learning-based POI recommendation models, such as Recurrent Neural Network
(RNN) and Convolutional Neural Network (CNN), have been developed.

However, most of the current research only focuses on adjacent POI visits and ignores
non-contiguous visits. In fact, these non-contiguous visits are very helpful in understand-
ing users’ movement behavior and capturing long-term preferences of user trajectory
sequence. In particular, the spatio-temporal relationship between LBSNs can be explored
from two aspects: spatio-temporal aggregation and long-term preferences of user trajectory
sequence. Spatio-temporal aggregation refers to aggregating relevant visited locations from
spatio-temporal relationships between user visits. The long-term preferences denote a
user’s general interests mined from her/his historical trajectories, which are usually stable.
Unfortunately, most deep learning-based approaches for modeling user preferences are
unable to model the relations between two nonconsecutive POIs, as they can only model
consecutive activities in the user’s check-in sequence. Moreover, many existing models fail
to fully leverage spatial and temporal patterns of POI visits while mining these temporal
and spatial data. For example, Sun et al. [7] proposed a geo-dilated RNN model to aggre-
gate the most recently visited locations, but only for spatial preferences. In terms of spatial
patterns, POI recommendations need to consider the distance between two locations, which
may not appear sequentially in previous users’ POI visit sequences but may be visited
together due to their proximity. In terms of temporal patterns, different from shopping
behavior patterns with having a likely non-continuous sequence, POI visits often present
aggregation in time. Examples of trajectories with the relation between non-consecutive
visits and non-adjacent locations are shown in Figure 1. Examples of trajectories showing
the relation between non-consecutive visits and non-adjacent locations. The map shows
the spatial distribution of visited locations, which are numbered from 1 to 5. Solid marks 1,
2, and 3 indicate the user’s usual weekday check-ins, and hollow marks 4 and 5 indicate
weekend check-ins. These visits show correlations between non-adjacent locations and
non-contiguous visits, which are spatially distant and temporally regular. However, many
existing models only recommend locations that are adjacency to previously visited POIs,
which may impact the results. In order to learn the spatio-temporal relationship between
users’ visits, we encode the information in the user’s trajectory as latent representations
into their embeddings before feeding them into other modules. This embedding method
can better reflect users’ spatial preferences and discover temporal periodicity.
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Figure 1. Examples of trajectories showing the relation between non-consecutive visits and non-
adjacent locations, the markers 1 through 5 are the most frequently visited locations by a user. 
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• We further explore the regularity of spatio-temporal in LBSN by constructing differ-
ent aggregation modules to make a personalized recommendation. Consequently, 
the accuracy of recommendations can be further improved.  

• We evaluate the performance of our model on two real data sets, including NYC [8] 
and Gowalla [9]. The results show that our model improves by at least 13.75% in the 
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Figure 1. Examples of trajectories showing the relation between non-consecutive visits and non-
adjacent locations, the markers 1 through 5 are the most frequently visited locations by a user.

Much of the previous work only used explicit spatio-temporal intervals between
two successive visits in a recurrent layer and ignored discontinuous visits, which would
prevent the model from learning the long-term preference of the user trajectory sequence [8].
STRNN [9], for example, applies the spatio-temporal interval directly between successive
visits in an RNN. DeepMove [10] combines the attention layer with the recurrent layer
to learn the multi-level periodicity of sequences from relevant trajectories, respectively.
However, none of these models can directly capture the dependencies between any two
visits. In order to solve the above problems, we propose a recommender model, Spatio-
Temporal Transformer Recommender (STTF-Recommender). We apply the Transformer
aggregation layer for sequence processing. The Transformer aggregation layer can result
in a global receptive field, accurately capture long-term and short-term preferences in
POI recommendation, and efficiently compute in a parallel way [11]. In addition, we
develop an attention matcher based on the attention mechanism [12] to match the most
plausible candidate locations by updated representations of check-ins. To promote the
reusability of this work, we have published the model code and part of the data in this
project on the Internet at https://github.com/skmxu/STTF-Rec/tree/master (accessed on
19 February 2023).

In summary, we make the following contributions:

• We propose a multi-layer Spatio-Temporal attention model for the next location rec-
ommendation by mining the spatio-temporal relationship between visited locations
(STTF-Recommender for short), including multi-layer Transformer aggregation and
an attention matcher.

• We exploit the Transformer aggregation layer for processing sequence data, which
can directly compute the correlation of two visits in a parallel way, and better capture
long-term preferences in sequence data so that the patterns of non-adjacent locations
and non-contiguous visits in LBSNs can be better discovered.

• We develop an attention matcher based on the attention mechanism by updating
representations of check-in to match the most plausible candidate locations.

• We further explore the regularity of spatio-temporal in LBSN by constructing different
aggregation modules to make a personalized recommendation. Consequently, the
accuracy of recommendations can be further improved.

• We evaluate the performance of our model on two real data sets, including NYC [8]
and Gowalla [9]. The results show that our model improves by at least 13.75% in the
mean value of the Recall index at different scales compared with the state-of-the-art
models and outperforms the best baseline by 4% in the Recall rate.

2. Related Works

In Section 2.1, we briefly review the related work of sequential recommendation, which
is mainly to mine patterns in user interaction sequences. Next POI recommendation is an
important branch of sequential recommendation, which will be described in Section 2.2.

https://github.com/skmxu/STTF-Rec/tree/master
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2.1. Sequential Recommendation

Early work on sequential recommendation mainly employs Markov Chains (MCs) to
capture sequential patterns from users’ historical interactions. For example, Shani et al. [13]
formalized the recommendation result as a sequence optimization problem and addressed
it by using Markov Decision Processes (MDPs). Later, Rendle et al. [14] combined the
functions of MCs and Matrix Factorization (MF), sequence behavior, and general interests
are modeled by Factorizing Personalized Markov Chains (FPMC). In addition to first-order
MCs, higher-order MCs can consider more user previous activities for recommendation [15].

Recently, RNN and its variants, such as Gated Recurrent Unit (GRU) [16] and Long
Short-Term Memory (LSTM) [17], have been increasingly applied in the modeling of user
behavior sequences. The basic idea of these methods is to encode the user’s historical
records into a vector to represent the user’s preferences for prediction. These methods
include various recurrent architectures and loss functions, such as session-based GRU
(GRU4Rec) [18], Dynamic REcurrentbAsket Model (DREAM) [19], etc., as well as new loss
functions (such as BPR-max and TOP1-max) and improved sampling strategy. In addition
to RNN, many other deep learning models have also been introduced into a sequential
recommendation, such as CNN, Graph Neural Network (GNN), etc.

The attention mechanism shows great potential in sequence data modeling and has
made considerable achievements in image classification and text processing. Recently, some
researchers have attempted to utilize attention mechanisms to improve the performance
and interpretability of recommendation models. For example, Li et al. [20] incorporate
an attention mechanism into GRU to capture the continuous behavior and preferences
of users in session-based recommendations. However, the sequence recommendation
method mentioned above is not designed for the Next POI recommendation and ignores
the spatio-temporal relationship in the LBSNs data sequence.

2.2. Next POI Recommendation

The Next POI recommendation techniques evolve with the development of sequential
recommendation methods. Early Next POI recommendation models were mainly based on
feature engineering and non-deep learning-based models, such as the Markov Chain model,
Matrix Factorization (MF) model, etc. [21–26]. While having been extensively studied [21],
stochastic models based on Markov chains are difficult to model non-contiguous POI
visits generated from LBSNs due to the sparsity of such datasets. Subsequently, a model
based on MF [22] was proposed and solved this problem. The MF model was used for
modeling the Next POI recommendation [23]. In order to obtain better performance, some
researchers adopted the Bayesian personalized classification (BPR) model [24]. Other non-
deep learning-based models, such as support vector machine (SVM) [25], Collaborative
Filtering [26], Gaussian Modeling [27], and Transitive Dissimilarity, have been also used
for personalized Next POI recommendations in various works. However, all of these
models rely on handcrafted features, which require sufficient domain expertise. With the
unprecedented increase of LBSNs data, however, it becomes more difficult to design and
extract data features. In recent years, the deep learning-based model can automatically
extract features and therefore gradually replace most traditional models.

Deep learning-based models, such as CNN or RNN, perform well in automatic feature
extraction and eliminate the difficulty of handcrafted feature design. In addition, the
deep learning-based approach excelled in modeling the relationships between structured
and unstructured data, which helped automatically extract data features in the Next
POI recommendation. In the past few years, many efforts have been committed to the
Next POI recommendation based on deep learning techniques, especially at some top
computing conferences, such as the AAAI Conference on Artificial Intelligence (AAAI) and
Proceedings of the ACM Web Conference (WWW) [7]. Different deep learning techniques,
such as CNN, RNN, LSTM, and GRU, greatly improved the performance of the Next POI
recommendation model.
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Attention mechanism [12] is a practical technique widely used in artificial intelligence
and deep learning tasks. The attentional mechanism improves the accuracy of the model
by imitating human behavior and making the model focus dynamically on the information
in the input data, which is helpful to the current machine learning task, and therefore
can largely solve the problem of missing features in the long sequences [3]. The self-
attention mechanism is also used in the Next POI recommendation system [8,28], which not
only improves the performance of the model but also allows parallel processing of input.
However, in the task of spatio-temporal data processing and the Next POI recommendation,
previous models did not consider well the spatio-temporal relationship between non-
adjacent locations and non-contiguous visits. Models, such as TMCA [29], capture spatial
and temporal dependencies [3] among historical check-in activities by using LSTM [17] and
three types of attention [30]. However, these models have not explored the potential of the
attention mechanism. As such, the recommendation accuracy and recall rate of these models
were still low. Alternatively, GT-HAN [31,32] captures great variation in geographical
influence in the check-in list by using Bi-LSTM [33] and the attention mechanism. Our STTF-
Recommender learns more complex spatio-temporal patterns by stacking Transformer
layers and directly calculates the correlation between two visits, and therefore better mine
and leverage the spatial-temporal relationship between non-adjacent locations and non-
contiguous visits of user trajectory sequence for much-improved model performance.

3. Preliminaries

This section provides basic concepts and problem definitions, the main notation are
shown in Table 1. We denote the set of user, location, and time as: U = {u1, u2 . . . uU},
P = {p1, p2 . . . pP}, T = {t1, t2 . . . tT}.

Table 1. Table of main notation.

Notation Description

ui User i

pk Location of Check-in k

tk Time of Check-in k

rk
Check-in k, which is represented as a tuple

rk = {ui, pk, tk}
seq(ui) trajectories sequence of ui

e∗ The dense vectors of ∗
E(∗), E∗ Set of erj , rj ∈ seq(∗)

l, L A random layer, and number of layers

hl
i Hidden representations of visit i in the layer l

Hl A matrix of hl
i stacks

Q, K, V Query, keys, values [12]

h Number of head

headi Projection matrices of each head, i ∈ [1, h]

WQ
i Projections matrices for headi

A(u), Ai
The probability set that each candidate location becomes

the next location for user ui

3.1. User Trajectory

The trajectory of a user ui is temporally ordered check-ins. Each check-in rk of the
user ui is represented as a tuple rk = {ui, pk, tk}, where pk, tk is the location and times-
tamp of the check-in, respectively. Each user ui may have a variable-length trajectory
tra(ui) = {r1, r2 . . . rmi}, and mi is the trajectory length of user ui. Inactive users with too
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few check-ins (less than 10) are discarded. Next, we transform each trajectory into a fixed-
length sequence seq(ui) = {r1, r2 . . . rn}, with n as the maximum length we consider. If
mi > n, we only consider the most recent n check-ins. If mi < n, we pad 0 to the right until
the sequence length is n and mask off the padding items during calculation.

3.2. Definition of Problem Mobility Prediction

Given the user trajectory (r1, r2 · · · rm) and the location candidates P = {p1, p2 . . . pP},
our goal is to find the desired output p ∈ rm+1.

4. The STTF-Recommender Model

This section will detail STTF-Recommender, which makes recommendations according
to the user trajectory sequence. As shown in Figure 2, the model is mainly divided into three
layers with seven steps, from 1© to 7© (As for the specific parameters of the model, please
refer to Section 5.1.3. In this section, we will focus on the structural design of the model):
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Figure 2. The framework of the proposed STTF-Recommender. Spatio-Temporal embedding layer is
used to encode user, location, and time from the historical trajectory into latent representations 1©.
Transformer aggregation layer is exploited to gather the locations of visits 2© and update the hidden
representation of each visit by stacking the Transformer layers so that our model can better mine the
spatio-temporal relationship between non-adjacent locations and non-contiguous visits in the user
trajectory sequence. Output layer is further divided into two modules: attention matcher and balance
sampler, where attention matcher calculates the probability of each candidate location becoming the
next visit location according to candidate location 3©, 4© and hidden representation of each visit 5©.
The balance sampler then calculates the cross-entropy loss using one positive sample and multiple
negative samples 6©, 7©.

4.1. Spatio-Temporal Embedding Layer

Built upon the spatio-temporal trajectory embedding method in the STAN model [8],
a Spatio-Temporal Self-Attention Network for the next location recommendation, we de-
signed our user trajectory embedded layer. The STAN model consists of four components:
the first component, a multi-modal embedding module that learns the dense representa-
tions of user, location, time, and spatio-temporal relationship; the second component, a
self-attention aggregation layer that aggregates important relevant locations within the
user trajectory to update the representation of each check-in; the third component, an
attention matching layer that calculates softmax probability from weighted check-in rep-
resentations to compute the probability of each location candidate for next location; the
fourth component, a balanced sampler that use a positive sample and several negative
samples to compute the cross-entropy loss. In this spatio-temporal embedding layer,
the user, location, and time in the trajectory are encoded into latent representations as
eu ∈ Rd, ep ∈ Rd, et ∈ Rd, respectively, and transform the scalars into dense vectors to
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reduce computation and improve representation. We divide the continuous timestamp
into 7× 24 = 168 h to represent the exact time of the week, which maps the original time
to 168 dimensions. This time division reflects the periodicity of the trajectory (Section 5.3
will discuss the impact of different time decomposition methods). The output of the user
trajectory embedding layer for each check-in r is the sum er = eu + ep + et ∈ Rd. For
the embedding of each user trajectory sequence seq(ui) = {r1, r2 . . . rn}, we denote as
E(ui) = {er1 , er2 , . . . , ern} ∈ Rn×d. The corresponding input dimensions of the embedding
eu, ep, et are U, P, 168.

4.2. Transformer Aggregation Layer

Inspired by BERT4Rec [11], we built a Transformer aggregation layer to consider
spatio-temporal patterns and update the representation of each visit. We input the user
trajectories sequence E(u) ∈ Rn×d into the Transformer layer as a starting layer H0. Next,
we iterate the hidden representations hl

i of each visit eri simultaneously on the layer l, and
then stack hl

i ∈ Rd together into a matrix Hl ∈ Rn×d to compute the attention functions at
all positions simultaneously and capture long-term dependencies [11]. We set the layer
number L = 2, and conduct comparative experiments with different numbers of L in
Section 5.3. This layer is divided into two sub-layers: multi-head self-attention network
sub-layer and the position feedforward network sub-layer. We abbreviate each Transformer
unit structure to Trm, as shown in Figure 3.
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Figure 3. Transformer unit structure.

Multi-Head Self-Attention: The attention mechanism pays attention to the input
weight, which can capture the dependencies from different representation subspaces at
different positions without considering the distance limit between representation pairs
in the sequence. Specifically, we first linearly project Hl into h subspaces with different
learnable linear projections, then apply h attention functions to generate outputs in parallel,



ISPRS Int. J. Geo-Inf. 2023, 12, 79 8 of 15

and then re-connect these outputs to generate output representations. We set the head
number h = 8 as long sequence datasets to benefit from a larger h [12].

MH
(

Hl
)
= [head1; head2; . . . ; headh]WO

headi = Attention
(

HlWQ
i , HlWK

i , HlWV
i

) (1)

where headi denotes the projection matrices of each headi i ∈ [1, h], WQ
i ∈ Rd×d/h, WK

i ∈ Rd×d/h,
WV

i ∈ Rd×d/h, are learnable parameters. The attention function is the Scaled Dot-Product Attention:

Attention(Q, K, V) = so f tmax

(
QK>√

d/h

)
V (2)

where Q, K, V are projected from the same matrix Hl with different learned projection
matrices, and the temperature

√
d/h is introduced to avoid extremely small gradients [12].

Position-wise Feed-Forward Network: As mentioned above, the self-attention sub-
layer is primarily based on linear projections. In order to make the model nonlinear
and interactional between different dimensions, we apply a Position-wise Feed-Forward
Network to the outputs of the self-attention layer separately and equally at each position.
It consists of two affine transformations in which the Gaussian error linear unit (GELU)
is activated:

PFFN
(

Hl
)
=

[
FFN

(
hl

1

)>
; . . . ; FFN

(
hl

n

)>]>
FFN(x) = GELU

(
xW(1) + b(1)

)
W(2) + b(2)

GELU(x) = xΦ(x)

(3)

where Φ(x) is the cumulative distribution functions of the standard Gaussian distribution,
W(1) ∈ Rd×4d, W(2) ∈ Rd×4d, b(1) ∈ R4d, and b(2) ∈ Rd are learnable parameters that are
shared across all locations.

The self-attention mechanism captures the check-in interaction across the entire user
trajectory. Stacking the self-attention layer can better learn the transformation process dur-
ing check-in interaction (see Section 5.3 for details) and learn more complex spatio-temporal
patterns. However, as the network deepens, training becomes more difficult. Therefore,
we use a residual connection around each of the two sub-layers and then perform layer
normalization (LN). In addition, we apply Dropout to the output of each sub-layer before
it is normalized. As such, the output of each sub-layer is LN(x + Dropout(sublayer(x))),
where the sublayer(·) is the function implemented by the sub-layer itself and LN is the
layer normalization function. We use LN to normalize the input of all hidden cells in the
same layer to stabilize and speed up network training.

In summary, the hidden representation of each layer l is treated as follows:

Hl = Trm
(

Hl−1
)

, ∀i ∈ [1, . . . , L]

Trm
(

Hl−1
)
= LN

(
Al−1 + Dropout

(
PFFN

(
Al−1

)))
Al−1 = LN

(
Hl−1 + Dropout

(
MH

(
Hl−1

))) (4)

where the Al−1 is the output of sub-layer Multi-Head Self-Attention, the Hl = Trm
(

Hl−1
)

is the output of sub-layer Position-wise Feed-Forward Network, i.e., the output of layer l.

4.3. Output Layer

This layer is divided into two parts, an attention matcher and a balance sampler. The
attention matcher selects the most reasonable candidate locations, and the balance sampler
solves the imbalance of positive and negative sample sizes.
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Attention matcher: This part is based on the attention mechanism, which can se-
lect the most reasonable candidate locations from all potential locations by updating the
representation that matches the user trajectory. According to the updated trajectory repre-
sentation S(u) = HL ∈ Rn×d in Section 4.2 and the recommendation of candidate locations
E(p) =

{
ep

1 , ep
2 , . . . , ep

P

}
, the probability that each candidate location in this layer becomes

the next location is shown as follows:

A(u) = Matching(E(p), S(u)) (5)

Among them:

Matching(Q, K) = Sum

(
so f tmax

(
QK>√

d

))
(6)

Here, the Sum operation is a weighted sum of the last dimension, converting the
dimension of A(u) to be RP. All the updated representations of check-ins participate in
the matching of each candidate location, as shown in Equation (5).

Balanced sampler: Due to the imbalance scale of positive and negative sample sizes in
A(u), the optimization of cross-entropy loss is no longer effective. General cross-entropy
loss for each positive sample ak needs to calculate P− 1 negative samples, which will lead
to an imbalance problem. As such, we only use random ne negative samples for each
calculation, where ne is a hyperparameter we set to 10.

Given the sequence seq(ui) of users i, for the matching probability aj ∈ A(ui) of each
location j ∈ [1, P], the cross-entropy loss of labels k in the location set P is written as:

−∑
i

∑
mi

log σ(ak + ∑
(j1,j2...jne)∈[1,P],ji 6=k

log
(
1− σ

(
aj
)) (7)

where mi is the length of user ui trajectory and other symbols are defined as before.

5. Performance Evaluation

This section presents the experimental design and empirical results of our model to
make it fairly compared with other models. We present a table of our experimental data set
and a table of the comparative results at the Top@k recall rate. In addition, we also conduct
an ablation study on key components of our model to demonstrate the effectiveness of
these key components.

5.1. Experiment

This section introduces our experimental setup, including the data set, baseline models,
and model implementation details.

5.1.1. Datasets

We evaluated the models on two real datasets as Table 2 shown: The Gowalla
dataset [9], and the NYC dataset [8]. First, we preprocess each dataset to filter out trajecto-
ries with invalid time and place, and only select users whose check-in sequence length is
greater than five for the experiment. According to the previous research 8, the experiment
is divided into training, validation, and test datasets. For each user who has m check-in,
the length of the training set is m− 3. The first m′ ∈ [1, m− 3] check-in data are used as
input, and the [2, m− 2]− nd check-in data are used as labels; the validation set uses the
first m− 2 check-ins as input, the (m− 1)− st check-in data as a label; the test set uses the
first m− 1 check-ins as input and the m− th check-in data as the label.
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Table 2. Basic dataset statistics.

Dataset User POIs Check-Ins

Gowalla 10,162 24,250 456,988

NYC 1064 5136 147,939

5.1.2. Baseline Models

We compared our model with several baseline models below.

• STRNN [9]: A RNN model with invariance, which incorporates spatio-temporal
features among consecutive visits.

• LSTPM [7]: A model based on LSTM. It uses two LSTMS to capture users’ long- and
short-term preferences and uses geographic extended RNN to simulate discontinuous
geographic relationships among POIS.

• DeepMove [10]: A prediction model that uses GRU to deal with short-term dependence
and attention to capture historical activities.

• STAN [8]: A model using a self-attention mechanism to deal with spatio-temporal
data relation.

5.1.3. Evaluation Method

To evaluate the proposed recommender, we first download and use the open-source
codes of four baseline models. While running the proposed and baseline models, the
embedding dimension, learning rate, dropout rate, and training period of the dataset are
set to 50, 0.003, 0.2, and 50, respectively. Meanwhile, our model uses two Transformer
layers with a dropout rate of 0.2, the head number h is 8, the number of layers L is 4, an
embedded dimension of 50, an Adam optimizer, and a check-in sequence length of 100.

We use the TOP recall rate Recall@K, the probability that there are correct POIs in
the first K recommended POIs, to evaluate the model recommendation performance. The
closer the Recall@K is to 1, the better the effect. In the evaluation, we directly use the output
results in the attention matcher module of the output layer for evaluation.

5.2. Results

We first compare our model with the baseline models. Table 3 shows that our model
performs better than other baseline models at Recall@5 and Recall@10. Each model runs
10 times with different data sets as well as different tops, and we use the average perfor-
mance of each model for evaluation. The results indicate that, at Recall@5 and Recall@10,
our model is improved by at least 4% compared with the best baseline models, demonstrat-
ing the feasibility and effectiveness of our model.

Table 3. Recommendation Performance Comparison with Baselines.

Gowalla NYC

Recall@5 Recall@10 Recall@5 Recall@10

STRNN [9] 0.16 0.25 0.24 0.28

LSTPM [7] 0.20 0.27 0.27 0.35

DeepMove [10] 0.19 0.26 0.32 0.40

STAN [8] 0.30 0.39 0.46 0.59

STTF-
Recommender 0.35 0.43 0.53 0.65

Improvement 13.75% 13.75% 20.75% 24.5%
The Bold Entries Highlight Our Results.
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In our baseline models, the performance of STRNN is significantly lower than that of
other models. This is because the general RNN-based models can only capture short-term
sequence rules and cannot capture long-term dependencies well. LSTPM is better than
STRNN because it uses LSTM to model the user’s long-term trajectory and short-term
trajectory, respectively. LSTPM considers the long-term preference, while it still cannot
completely solve this problem. DeepMove takes long-term dependence into account and
uses an attention mechanism to learn the periodicity of human activities in trajectory mod-
eling, which also improves the model performance. STAN uses the double-layer attention
structure to gather the spatio-temporal correlation of the track sequence, which solves the
long-term dependence of the sequence to some extent, leading to better performance.

Our STTF-Recommender adopts a double-layer Transformer aggregation layer to
aggregate the trajectory, which can directly calculate the correlation between the two visits
without regard to their distance in the sequences. As such, it better captures the long-
term dependence of sequences and improves the experimental performance. Compared
with STAN, the results showed that our STTF-Recommender improved recommendation
performance by about 5%. This is because our model employed both a multi-head attention
layer and a location feed-forward network. In particular, multi-head attention allows
the model to jointly attend to information from different representation subspaces at
different positions, and the position-based feed-forward networks can also improve the
performance of the model, as we show in Section 5.3 by performing experiments on the
relevant components.

5.3. Ablation Study

We perform ablation experiments over the aggregation layer in order to better under-
stand their impacts, and we designed five different variants of the STTF:

• STTF-R used recurrent layers as the aggregation layer, which only can model consec-
utive activities in the user’s check-in sequence while it cannot learn the features of
discrete visits.

• STTF-A only used a self-attention as the aggregation layer, which can capture long-
term dependency and assign different weights to each visit within the trajectory.

• STTF-M adopted the multi-head self-attention, which mapped the input to different
subspaces through a random initialization to capture the dependencies from different
representation subspaces.

• STTF-S used a single-layer transformer, which added Position-wise Feed-Forward
Network over the STTF-M as the aggregation layer.

• STTF-T stacked three transformer layers, which investigated whether more trans-
former layers can further improve the recommendation performance.

Figure 4 illustrates the performance of the STTF compared to the five variants, and it
was clear that the STTF performed better than most of its variants in the recall. STTF-R used
recurrent layers as the aggregation layer, not effectively considering the correlations be-
tween non-adjacent locations and non-contiguous visits. STTF-A only used a self-attention
as the aggregation layer. STTF-M adopted the multi-head self-attention and mapped the
input to different subspaces through a random initialization, which can improve the model
computation speed through parallel computing but can hardly improve the recommenda-
tion performance. The STTF-S used a single-layer transformer, which added a feedforward
network sub-layer on the basis of a multi-head attention sub-layer. The single-layer trans-
former can automatically adjust each position in the sequence through feedforward and
consequently yielded an increase of 8% on different recall@k. Considering Transformer
networks can be multi-layered, we stacked a layer on top of a single Transformer layer to
build STTF, and the results showed that this approach improved recommendation perfor-
mance by about 5%, indicating that a deeper Transformer network facilitates learning data
patterns. STTF-T stacked three transformer layers but did not achieve much improvement,
and continued stacking would lead to overfitting.
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5.4. The Impact of Different Time Scale

In the previous experiment, time embedding was performed every hour of every
week. To examine the impact of time embedding scales, we evaluated time embedding
every three hours of every week, every three hours of every month, and every one hour of
every month. The experimental results are shown in Figure 5, where 8 and 24 represent the
calculation times of every day, and 7 and 30 represent the embedding cycle. The Rec@5
values of the 24 × 7, 8 × 7, 24 × 30, and 8 × 30 on the NYC dataset were 0.53, 0.51, 0.50,
and 0.50, respectively. Three-hour intervals are more difficult to predict, and therefore the
results of hour intervals are embedded better than those of three-hour intervals. Since most
people have relatively regular movement patterns in terms of sequential cycles, the results
of experiments on a monthly scale are not as good as those on a weekly scale.
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6. Conclusions

In this paper, we study the recommendation of the next POI of users’ check-in in social
networks and propose a spatio-temporal attention model based on deep learning, which
uses a multi-layer attention network to compute the spatio-temporal relationship between
non-adjacent locations and non-contiguous visits from the user trajectory sequence, and
updates the representation of each visit that matches the user trajectory to make a personal-
ized recommendation, as the Figure 6 shown. The performance of our model is evaluated
on two real-world datasets (NYC and Gowalla). Experimental results demonstrate that the
proposed STTF-Recommender is effective and significantly superior to existing methods.
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Figure 6. The sample map shows a sequence of locations that our model outputs. By examining the
exact location in the Google Map, we found that location 2 is the New York Academy of Photography,
other locations are very suitable for photography, for example, locations 1, 3, and 4 are parks, and
location 5 is a Fine Arts Gallery. Although these locations are not adjacent to each other on the map,
our model exploits the correlation between these locations.

Next, several future research directions can be explored. One direction is to incorporate
rich influential factors that affect the Next POI recommendation (e.g., social influence,
semantic information) into STTF. Another potential direction would be to introduce spatial
distances to reflect the spatial preferences of users.
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