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Abstract: Land use and land cover changes driven by urban sprawl has accelerated the degradation
of ecosystem services in metropolitan settlements. However, most optimisation techniques do not
consider the dynamic effect of urban sprawl on the spatial criteria on which decisions are based.
In addition, integrating the current simulation approach with land use optimisation approaches to
make a sustainable decision regarding the suitable site encompasses complex processes. Thus, this
study aims to innovate a novel technique that can predict urban sprawl for a long time and can be
simply integrated with optimisation land use techniques to make suitable decisions. Three main
processes were applied in this study: (1) a supervised classification process using random forest (RF),
(2) prediction of urban growth using a hybrid method combining an artificial neural network and
cellular automata and (3) the development of a novel machine learning (ML) model to predict urban
growth boundaries (UGBs). The ML model included linear regression, RF, K-nearest neighbour and
AdaBoost. The performance of the novel ML model was effective, according to the validation metrics
that were measured by the four ML algorithms. The results show that the Nasiriyah City expansion
(the study area) is haphazard and unplanned, resulting in disastrous effects on urban and natural
systems. The urban area ratio was increased by about 10%, i.e., from 2.5% in the year 1992 to 12.2% in
2022. In addition, the city will be expanded by 34%, 25% and 19% by the years 2032, 2042 and 2052,
respectively. Therefore, this novel technique is recommended for integration with optimisation land
use techniques to determine the sites that would be covered by the future city expansion.

Keywords: machine learning; urban growth prediction; UGBs; ANN-CA; random forest; Iraq

1. Introduction

In recent decades, urban sprawl has become a common phenomenon worldwide,
accelerating the process of land use–land cover change (LULCC) at an unprecedented rate.
LULCC leads to dramatic changes in the planning criteria on which various urban activities
are spatially distributed [1]. Therefore, making decisions regarding the location selection
process for either new industrial zones or new settlements necessitates the estimation of
future environmental risk scenarios based on land use dynamics [2]. Although multiple
research communities are actively investigating this topic, which has resulted in different
approaches, including integration optimisation and simulation land use techniques, further
research is needed to develop this integration [3].

Land use optimisation approaches are a powerful strategy to maximise advantages
in urban land use planning. Although several techniques promote land use planning,
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a geographic information system and multicriteria decision making (GIS-MCDM), GIS-
MCDM is one of the primary decision-making issues that seeks to identify the optimal
option by considering more than one factor throughout the selection process [4]. Meanwhile,
the integration of GIS and machine learning (GIS-ML) is preferred by most scholars to
conduct spatial analysis and to optimise the location [5]. However, both approaches neglect
LULCC dynamics due to urban growth when making decisions based on multicriteria.
Therefore, a suitable simulation technique that can be straightforwardly integrated with
the MCDM and is spatially applicable should be developed.

Several simulation models, such as SLEUTH cellular automata (CA), Markov-FLUS [6],
CA coupled with Markov chain, artificial neural network coupled with MC, ANN-CA and
random forest (RF), have been used to simulate transition potential paths and LULCC and
to predict urban growth [7,8]. Each model takes a distinct approach to address complex
dynamic LULCC. Among these techniques, the CA model is preferred over other techniques
because of its capacity to predict urban growth at a local scale in an efficient and acceptable
manner [9]. In general, the basic work of CA comprises four fundamental parameters: cell,
cell space, cell size and shape and transition rule and cell neighbour; it also covers state and
time [10–12]. However, for modelling of urban expansion, the CA simulation technique
applies similar transition rules for all cells in the model space. Thus, the model ignores
spatial heterogeneity change, which indicates that such systems are prone to over- or
under-simulation. Therefore, many conversion-rule mining techniques have been merged.
These methods are categorized into three types: logistic regression (LR), Markov chain (MC)
and artificial intelligence (AI) [13]. However, they still lack standard methods for defining
transition rules [14]. Therefore, a new model, namely, landscape-driven patch-based
CA (LP-CA), was recently proposed by Lin et al. (2023) by simultaneously considering
landscape similarity and cell-by-cell agreement [15].

The first category, LR, makes it difficult to show how land use changes are not always
linear. Conversion rules made with this method are often inaccurate, and conversion
rules established using this technique are frequently erroneous [16]. The second category
(CA-MC) is the most utilised model for providing spatiotemporal information on dynamic
LULCC. The Markov chain model can simulate time, and the CA model can simulate
space; as a result, combining the CA and MC models provides a robust simulation model
with temporal and spatial land cover change dynamics [17]. The third category (CA-AI)
contains a tree-based decision [18], support vector machine (SVM), ant colony algorithm
(ACO), genetic algorithm (GA) and ANN [19]. However, according to the literature review,
CA-ANN is a scientific approach for mining cell transformation rules that improve the
accuracy of land use and land cover simulations.

In contrast to MC, ANN can properly express nonlinear spatial uncertain land use
transitions; thus, the accuracy of CA model transformation rules could be enhanced [20].
CA-ANN is a useful tool for sustainable development research that requires urban growth
simulation. The CA-ANN has taken advantage of combining GIS and RS to enhance the
monitoring process of LULCC over time and improve urban development forecast pro-
cesses [21]. However, integrating the CA approach with land use optimisation approaches
to make a sustainable decision regarding a suitable site for various activities encompasses
complex processes [3]. It requires multiple operations to be conducted in sequential steps
in each task of choosing a suitable location for a specific activity, e.g., downloading Landsat
images, classification of land use land cover (LULC) and urban growth simulation. In
addition, most prediction techniques have restrictions to predict more than three decades
with acceptable accuracy.

How to turn this complicated procedure into a simple training model must be explored.
Thus, this study aims to innovate a simple technique that can predict urban sprawl for a
long time while being easily integrated with optimisation land use techniques to make
suitable decisions. It presents urban growth boundaries (UGBs) as a simple tool to manage
urban sprawl. Each UGB line describes city expansion in a specific year, thus creating
multilines for successive periods that can train ML algorithms to predict urban growth.
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UGBs were proposed by many scholars to be an effective tool for assisting urban planners
in guiding the trajectory of urban growth, particularly in high-growth regions, such as
metropolitan districts [22]. It is widely considered to be an excellent tool for monitoring
urban expansion and limiting urban sprawl [23]. Given that the CA model was used to
delineate urban growth boundaries (UGBs) to manage urban sprawl [24], the present study
adopts CA-ANN.

In this study, four suitable ML algorithms, namely, linear regression (LR), K-nearest
neighbour (KNN), AdaBoost (AB) and RF, are selected by testing different algorithms on
validation datasets. In addition, several other factors are considered, i.e., interpretability,
dataset size, data linearity, data format and training and prediction times. The three
algorithms, i.e., KNN, AB and RF, are implemented to evaluate the model dataset, and the
LR algorithm’s role is to forecast urban growth for the subsequent decades.

One of the advantages of the new model is that it does not require using ANN-CA for
more than one experiment for any region to delineate UGBs to train the ML algorithms on
the urban growth trends and driving factors. Meanwhile, the trained ML model can be a
permanent decision support tool (DST) for any site-selection task in this region. Another
advantage of this technique is the capability to predict urban expansion for a long time
and detect the changes in land use land cover, which may occur for any plot that may be
assigned for the construction of industrial projects or other activities.

To apply the novel technique spatially, Nasiriyah City, Iraq was chosen as the study
area. Therefore, Landsat images from 1992–2002, 2012 and 2022 coupled with ANN-CA
were used to forecast UGBs for 2032, 2042 and 2052. UGBs were combined with driving
forces to create a model dataset for training an ML ensemble. Given that the industrial
sector is vulnerable to LULCC trends, a sample of six factories was selected to detect the
dynamics of LULC that have occurred and may occur in the future. The list of acronyms is
presented in Table 1.

Table 1. List of acronyms.

Acronym Full Name Acronym Full Name

LULCC Land use–land cover change DST Decision support tool
GIS Geographic information system PCC Proximity to urban centre
RS Remote sensing PWP Proximity to water pipelines

MCDM Multicriteria decision making PSN Proximity to sewage networks
ML Machine learning PMR Proximity to main roads
CA Cellular automata PD Population density
MC Markov chain GDP Gross domestic product

ANN Artificial neural network PR Proximity to the river
RF Random forest S Slope
AI Artificial intelligence DEM Elevation

LR Logistic regression SCP Semi-automatic classification
plugin

UGBs Urban growth boundary(s) IES Iraqi environment standards
KNN K-nearest neighbour WWTPs Wastewater treatment plant(s)
AB AdaBoost R2 Coefficient of determination

OC Overall accuracy

2. Driving Forces of Urban Growth

Understanding the mechanism of urban growth is exceedingly complicated because
dynamic expansion is influenced by natural and man-made variables. Analysing those
factors and exploring LULCC patterns have long-term consequences for urban sustain-
ability [25,26]. Spatial analysis of driving factors helps describe the historical LULCC and
generate future transition potential paths on which any kind of land use would be changed
into urban use in each transition [27,28]. Driving forces change land use in any area on the
basis of potential transition paths, which are critical for enhancing LULCC efficiency [29].
Detecting and anticipating urban expansion and its driving variables would therefore aid
in the formulation of optimal land use practices and strategies for achieving the desired
sustainability goals [19,30].
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In general, neighbourhood, socioeconomic and natural factors have a considerable
influence on LULCC. Neighbourhood factors include proximity to a particular urban
land type, proximity to major roads, proximity to an urban boundary and proximity to
urban area centres [9,10]. Socioeconomic factors include population and gross domestic
product [17,22]. Natural factors include topography and environmental parameters, i.e.,
elevation, slope and aspect [9]. However, the driving variables of LULC and urban growth
rates vary regionally throughout the globe; thus, different driving variables are used to
generate transition potential routes on the basis of the characteristics of each region. On
the basis of the literature review and local experts’ opinions, several driving forces were
selected, as explained in the subsequent sections.

2.1. Neighbourhood Factors

Urban areas spread over regions near districts with good infrastructures [31]. Proxim-
ity to urban centres (PCCs) has a considerable effect on urban growth. It coordinates with
other forces and functions in a spatiotemporal manner to drive urban growth throughout
the city [32]. Urban centres are attractive features to establish businesses and construct
new settlements [28]. New houses are usually constructed around these urban areas to
maximise the available infrastructures and facilities; thus, the proximity to existing wa-
ter pipelines (PWPs) and sewage networks (PSNs) are attractive geographic features for
urban growth [33]. In addition, road accessibility is a common spatial variable selected
for predicting urban growth. Proximity to main roads (PMRs) is a key factor for develop-
ment direction; thus, a city is usually expanded towards major roads. Given that the road
network controls access, development across empty areas may occur rapidly along major
highways, where access to urban infrastructure and amenities is good. In addition, main
roads foster a ‘developed’ urban structure and spread on the city’s outskirts [34]. Therefore,
changes in road landscape patterns and highway entrances and exits have considerable
geographical proximity consequences [35]. New buildings tend to be near road networks
to access city services [31]. Therefore, this study hypothesised that the land use change
ratio somewhat decreases with the increase in distance from those geographic features.
Therefore, PMR, PCC, PWP and PSN were adopted as driving factors in this study.

2.2. Socioeconomic Factors

Population density (PD) and gross domestic product (GDP) are the critical socioeco-
nomic factors affecting LULCC worldwide [36]. Population growth increases land demand;
thus, substantial effects on LULC are expected to occur [37]. Meanwhile, given that most
of a country’s GDP comes from cities, urban areas tend to grow and change more rapidly
than rural areas [38]; as a result, urban areas are estimated to have more than tripled by
2050. Consequently, GDP and PD were adopted as the socioeconomic driving factors that
lead to future expansion in the study area.

2.3. Natural Driving Factors

Elevation, slope (S) and proximity to the river (PR) are the most common natural
factors used to predict urban growth [9,22]. They share with other driving forces for
LULCC [33]. Given that the construction cost is raised in low regions due to the require-
ment for large amounts of backfilling, lowland areas are less prone to urbanisation [28].
Meanwhile, regions with a steep slope have a lower tendency to become urban [39]. In ad-
dition, PR is a vital driving factor for city expansion, especially in semi-arid regions, where
rivers are crucial for urban development [32,33,35]. Urban areas are usually expanded
along rivers, considering that the proximity to water supports the establishment of various
activities necessary for urban communities and sustainable development [40,41]. Therefore,
elevation, S and PR were adopted as natural driving factors in this study.
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3. Materials and Methods

The practical basis of this study depended on the capabilities of ML algorithms to
develop a land use simulation technique. Thus, this study proposed a simple, novel
technique to improve spatial decisions made by optimisation land use techniques that seek
optimal sites for various human activities. Several techniques were applied to achieve this
goal: (1) Nasiriyah City, Iraq was chosen as the study area; (2) Landsat images for three
periods, i.e., 1992, 2002, 2012 and 2022, were downloaded; (3) the supervised classification
technique using RF was applied to classify Landsat images for the years 1992, 2002, 2012
and 2022; (4) the ANN-CA simulation technique was used to predict the city expansion for
the next three decades (2032, 2042 and 2052); (5) the UGB technique was delineated using
simulated maps; and (5) a dataset model was generated using UGBs to train ML algorithms
on urban-growth trends. Figure 1 shows the overall flowchart of the methodology.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 22 
 

 

2.3. Natural Driving Factors 
Elevation, slope (S) and proximity to the river (PR) are the most common natural 

factors used to predict urban growth [10,23]. They share with other driving forces for 
LULCC [35]. Given that the construction cost is raised in low regions due to the 
requirement for large amounts of backfilling, lowland areas are less prone to urbanisation 
[30]. Meanwhile, regions with a steep slope have a lower tendency to become urban [33]. 
In addition, PR is a vital driving factor for city expansion, especially in semi-arid regions, 
where rivers are crucial for urban development [34,35,37]. Urban areas are usually 
expanded along rivers, considering that the proximity to water supports the 
establishment of various activities necessary for urban communities and sustainable 
development [41,42]. Therefore, elevation, S and PR were adopted as natural driving 
factors in this study. 

3. Materials and Methods 
The practical basis of this study depended on the capabilities of ML algorithms to 

develop a land use simulation technique. Thus, this study proposed a simple, novel 
technique to improve spatial decisions made by optimisation land use techniques that 
seek optimal sites for various human activities. Several techniques were applied to achieve 
this goal: (1) Nasiriyah City, Iraq was chosen as the study area; (2) Landsat images for 
three periods, i.e., 1992, 2002, 2012 and 2022, were downloaded; (3) the supervised 
classification technique using RF was applied to classify Landsat images for the years 1992, 
2002, 2012 and 2022; (4) the ANN-CA simulation technique was used to predict the city 
expansion for the next three decades (2032, 2042 and 2052); (5) the UGB technique was 
delineated using simulated maps; and (5) a dataset model was generated using UGBs to 
train ML algorithms on urban-growth trends. Figure 1 shows the overall flowchart of the 
methodology. 

 
Figure 1. Flowchart of the methodology. 

  

Figure 1. Flowchart of the methodology.

3.1. Study Area

The administrative region of Nasiriyah City, South Iraq was selected as a case study to
predict the urban growth of the city (Figure 2). The area is located at 31◦16′00′′ N–30◦47′00′′ N,
46◦00′00′ ′ E–46◦28′00′ ′ E. The region is 145,000 ha, of which 46,000 ha was assigned as
the future expansion of Nasiriyah City. This region has historical importance because it
includes the archaeological ruins of Ur Ziggurat (4000 BCE). According to the local census
of the year 2021, the population is more than 720,000. Most residents are affected by the
remnants of wars occurring in the 1990s and 2000s. In addition, they have suffered from
the severe effects of pollution. In the future, these pollution sites may be surrounded by
urban communities driven by rapid urban growth, a rising population, economic activities
and uncontrolled urbanisation. Therefore, predicting urban growth is useful for decision
makers of this city and also other cities worldwide.



ISPRS Int. J. Geo-Inf. 2023, 12, 76 6 of 21

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 6 of 22 
 

 

3.1. Study Area 
The administrative region of Nasiriyah City, South Iraq was selected as a case study 

to predict the urban growth of the city (Figure 2). The area is located at 31°16′00′′ N–
30°47′00′′ N, 46°00′00′′ E–46°28′00′′ E. The region is 145,000 ha, of which 46,000 ha was 
assigned as the future expansion of Nasiriyah City. This region has historical importance 
because it includes the archaeological ruins of Ur Ziggurat (4000 BCE). According to the 
local census of the year 2021, the population is more than 720,000. Most residents are 
affected by the remnants of wars occurring in the 1990s and 2000s. In addition, they have 
suffered from the severe effects of pollution. In the future, these pollution sites may be 
surrounded by urban communities driven by rapid urban growth, a rising population, 
economic activities and uncontrolled urbanisation. Therefore, predicting urban growth is 
useful for decision makers of this city and also other cities worldwide. 

 
Figure 2. Study area: Nasiriyah City, Iraq. 

3.2. RS and Data Collection 
LULC classification is generally based on RS images that support the major research 

themes regarding global environmental and climate changes. Two major categories of 
data were collected in this work: Landsat images and variable factors. Multispectral 
Landsat TM and OLI aerial imagery covering the entire research region for the years 1992, 
2002, 2012 and 2022 were obtained from the US Geological Survey (USGS) website. To 
ensure integrity, all Landsat imagery from the same or nearby dates were used, and the 
highest overcast threshold was set at 5% throughout the image downloading procedure 
to acquire images with extremely minimal cloudiness or cloud-free images [39]. Driving 
force data included DEM, S, PMR, PCC, PWP, PSN, PR, PD and GDP, which were adopted 
as driving factors in this work; they were converted into raster layers for modelling 
reasons. Table 2 lists the collected data.  

  

Figure 2. Study area: Nasiriyah City, Iraq.

3.2. RS and Data Collection

LULC classification is generally based on RS images that support the major research
themes regarding global environmental and climate changes. Two major categories of data
were collected in this work: Landsat images and variable factors. Multispectral Landsat
TM and OLI aerial imagery covering the entire research region for the years 1992, 2002,
2012 and 2022 were obtained from the US Geological Survey (USGS) website. To ensure
integrity, all Landsat imagery from the same or nearby dates were used, and the highest
overcast threshold was set at 5% throughout the image downloading procedure to acquire
images with extremely minimal cloudiness or cloud-free images [37]. Driving force data
included DEM, S, PMR, PCC, PWP, PSN, PR, PD and GDP, which were adopted as driving
factors in this work; they were converted into raster layers for modelling reasons. Table 2
lists the collected data.

3.3. Method
3.3.1. GIS-Based Classification of Landsat Images Using RF

In this work, supervised classification with RF was used to classify Landsat images
from the years 1992–2002, 2002–2012 and 2022. This process included several steps that
were divided into three main stages: generating training samples, training the algorithm
and developing the prediction model (classification maps). To generate accurate training
samples, on the one hand, band combination was applied to generate true-colour compos-
ites and a false-colour composite for each Landsat image of four different land use classes
(vegetation, bare land, waterbodies and urban); on the other hand, a sufficient and equal
number of training plots for each class were carefully selected to acquire the most realistic
land cover coverage. This was accomplished with the assistance of ancillary information
platforms, such as Google Earth, to aid in the understanding of geographical character-
istics [42,43]. In the training algorithm stage, each Landsat image and its corresponding
training samples were defined to train the RF algorithm. The percentage of the training
model was set as 70%. After making sure that values of overall accuracy and kappa were
perfect, the LULC classification stage was intitated. During this stage, the final LULC maps
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for the years 1992, 2002, 2012 and 2022 were produced with four classes. For the accuracy
assessment, the semi-automatic classification plugin (SCP) technique in QGIS was used to
validate LULC classifications based on reference layers (ground truth).

Table 2. The top part of the table contains metadata of satellite images that were downloaded for this
work, whereas the bottom part contains metadata of driving factors and auxiliary data.

Data Satellite and Sensor Acquisition
Date Stripe Resolution Sources

Remote sensing
images

Landsat 5
(LT05 TM) 13 October 1992 167/039 30 m

USGS
(https://earthexplorer.
usgs.gov, (accessed on

6 November 2022))

Landsat 5
(LT05 TM) 13 October 1992 167/038 30 m

Landsat 7
(LE07 ETM) 1 October 2002 167/039 (15–30) m

Landsat 7
(LE07 ETM) 1 October 2002 167/038 (15–30) m

Landsat 7
(LE07 ETM) 12 October 2012 167/039 (15–30) m

Landsat 7
(LE07 ETM) 12 October 2012 167/038 (15–30) m

Landsat 9
(LC09-OLI_TIRS) 8 October 2022 167/039 (15–30) m

Landsat 9
(LC09-OLI_TIRS) 8 October 2022 167/038 (15–30) m

DEM EntityID:
SRTM1N31E045V3

11 February
2000

(30◦–31◦) N and
(45◦–46◦) E 1-ARC

Data Format and accuracy Date Purpose of data Sources

Road network Vector (2 m)
1992, 2002,

2012,
2022

Generate the raster of
PMR Nasiriyah City, Iraq

River network Vector (5 m) 1992, 2002,
2012, 2022

Shapefile was utilised to produce the
raster of PR

Ministry of
Irrigation/Dhi-Qar,

Iraq

Water pipeline Vector (2 m) 1992, 2002,
2012, 2022 Extract the raster of PWP Dhi-Qar Water

Directorate

Sewage pipeline Vector (2 m) 1992, 2002,
2012, 2022

Shapefile was utilised to extract the
raster of PSN

Sewage Department
Office in Dhi-Qar, Iraq

Population CSV 1992, 2002,
2012, 2022 Generate the raster of PD

Department of
Statistics inMinistry of

Planning

GDP CSV 1992, 2002,
2012, 2022 Generate the raster of GDP

Department of
Statistics inMinistry of

Planning
Auxiliary

information
(master plan for
Nasiriyah City)

Vector, Raster
(2 m) 2016, 2021

Validate the LULC classification and
identify city expansion and street,
central city and neighbourhoods

Nasiriyah City’s
Department of Urban

Planning, Iraq

Coordinates for
several factories CSV (5 m) 29 September

2022 Input data to predict UGBs Dhi-Qar Environment
Office (Iraq)

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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3.3.2. Applying the ANN-CA Technique to Predict Urban Growth

The QGIS 2.18 program and MOLUSCE plugin were utilised [11]. In addition to the
CA strategy, the MOLUSCE plugin included four forecasting methods: ANN, multicriteria
evaluation, weights of evidence and LR [12]. ANN and CA were integrated in this work to
analyse the LULCC of the study area for the period of 1992–2022 and to predict LULCCs
for 2032, 2042 and 2052. Several independent variables were used for this experiment: P,
GDP, DEM, S, PMR, PCC, PWP, PSN and PR. The MOLUSCE plugin provided several well-
known techniques to assess the relationship between LULCC and independent variables.
In this step, Pearson’s correlation was applied because it is the most used method for fuzzy
numbers. It was adopted to check the degree of multicollinearity among independent
variables; the results show that all driving factors are adequate for future land cover
simulations, except for three independent variables, i.e., elevation, PD and GDP, due to
the level of multicollinearity. Change analysis and transition potential modelling for the
years 1992–2022 made it possible to prepare a simulation for city expansion growth for
the years 2032, 2042 and 2050. Therefore, spatiotemporal changes, as well as the LULC
transition between research periods (1992–2002, 2002–2012 and 2012–2022) were computed,
and three LULCC maps were created. Furthermore, transition potential modelling was
generated using the ANN. To prepare for the simulation process, several parameters, such
as iteration value, number of hidden layers and learning rate, must be determined. The
primary task was to train ANN and choose appropriate parameter values using empirical
data; thus, empirical data were used to calibrate CA models via repeated runs of the same
model with various parameter combinations to determine optimal parameter values. Once
sufficient model validation results were achieved, the following parameters were selected
whilst forecasting: 1000 iterations, a neighbourhood value of 3 pixels, a learning rate of
0.001, hidden layer of 10 and 0.05 momentum. In the simulation process, CA was applied to
simulate the LULCC of 2012 by inputting the LULC values for 1992 and 2002, whereas the
LULCC in 2012–2022 was used to simulate the map of year 2022. The MOLUSCE plugin
provides a kappa validation approach and a comparison of real and simulated LULC maps
to verify the model and prediction accuracy [11]. After obtaining good standard evaluation
results, the LULC maps for years 2012 and 2022 were used in the CA technique to predict
the LULC for the year 2032. In addition, the LULCs for years 2002 and 2022 were applied
to simulate the LULCs for year 2042. Furthermore, the predicted maps for 2032 and 2042
were utilised to predict the LULC for year 2052.

3.3.3. Structuring the Training ML Model

In this stage, a simple urban growth prediction technique was developed. Firstly,
the results of the ANN-CA technique were used to delineate the UGB lines for the years
2022, 2032, 2042 and 2052, and train an ensemble of ML algorithms on the urban growth
trends. Each polyline of UGBs was converted to point shapefile with equal distances,
whereas the city centre was defined as the base point of the UGBs. Then, the technique of
extracting multivalues from points in GIS was used to extract the values of the variable
layers. The six values were used as independent variables in the dataset model, whereas the
yearly date of urban growth was selected as the dependent variable (outcome). The dataset
was subjected to several types of data preprocessing, the most important of which were
handling missing values, removing outliers and extreme values, dealing with imbalanced
classification issues using the synthetic minority oversampling technique and applying
the feature reduction process to exclude redundant independent variables using multi-
collinearity analysis as a final check. In the multicollinearity analysis process, the values of
the tolerance and variance inflation factor (VIF) were calculated as the final check of the
level of multicollinearity among independent variables using SPSS software. The analysis
revealed that the level of correlation among the seven independent variables is within an
acceptable range, the tolerance values are greater than 0.1 (0.25 to 0.83) and the VIF are less
than 10 (1.20 to 4.02). Then, a data sampler tool was used to divide the dataset into three
parts: 70% training samples, 15% validating samples for unbiased evaluation of the model
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and 10% testing samples for evaluation of the model. Once the ML algorithms were run,
the performance metrics for each model were measured to evaluate the goodness of fit of
the different ML models; consequently, the result analysis supports the selection of four
suitable algorithms among different ML models, namely, RF, KNN, AB and LR. In addition
to this typical method, different algorithms were tested on validation datasets to select
suitable ML algorithms for the model dataset, and several other factors were considered,
the most important of which were interpretability, dataset size, data linearity, data format
and training and prediction times.

1. RF

RF has a high interpretability of relationship between independent and dependent
variables. In contrast to the other algorithms, RF can evaluate and handle numerous
variables, including regression, classification and feature extraction [44]. Most previous
studies indicated that the RF algorithm can handle high data multidimensionality and is
rapid and sensitive to overfitting [39]. It requires less time for training and prediction. In
addition, it is the most suitable ML for LULCC. Although this model has high fitting and
generalisation capabilities, its basic principle is simple to grasp [45]. It is multiple decision
trees that compose the integrated ML model [46]. In RF, the tree predictors are mixed,
with each tree relying on separately collected values from a random vector and sharing
a common distribution; thus, RF improves prediction accuracy [47,48]. In this work, the
parameters were as follows: the number of trees was 10, the minimum sample was 5 and
the limit depth of individual trees was 15.

2. KNN

Although KNN works effectively with large amounts of data and numerous vari-
ables, it offers indicators that are simple to understand. To fit the dataset, KNN uses an
extremely simple ML technique [49]. Given its simplicity and effectiveness, KNN is a good
nonparametric ML algorithm that is used in various pattern recognition applications [50].
KNN-based approaches use Euclidean distance to compute the match of a training and test-
ing model; subsequently, KNN is identified on the basis of computed correlations, defining
the output label of the testing model, that is, the most votes amongst the k-neighbours. [51].
In addtion, it is capable of rapid training and prediction. In this study, the KNN was set as
follows: the number of neighbours was 5 and the metrics were Euclidean.

3. AB

AB is an ensemble learning algorithm that builds a strong classifier from a series of
weak learners and minimises sensitivity to noisy input [52]. It has a high standardisation
ability, efficient speed and minimal application complexity [53,54]. It applies a weight to
each variable in the training dataset in a repeated fashion [55]. The sample weights are
changed until the model meets its prediction accuracy criteria or the maximum number
of iterations is attained [56]. The data samples are trained in each iteration on the basis of
the classifier’s different weights to reduce training failures and provide accurate predic-
tions [57]. It is most effective when used to boost DT performance on binary classification
problems [58]. In this work, the parameters were as follows: the function was linear
regression; the fixed seed for the random generator was 3.

4. LR

Given that the dataset in this experiment is almost linear, linear regression is an
appropriate choice. It uses a linear formula to obtain the best fit line (straight line) for
an issue, allowing visualisation and predicting the dependent variables’ output based on
Formula 1. In addition, conventional ML approaches, such as logistic regression, may
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generate rapid predictions. Furthermore, LR is a simple yet effective supervised learning
technique. A target variable (dependent variable) is predicted by LR using one or more
feature variables (independent variables). The target value is often a continuous, real-value
variable [59]. Given that the regression technique can predict continuous outcomes for
a long time, this study proposed to forecast a city expansion for a long time. Regression
ML can investigate the relationship between independent variables (IVs) and a dependent
variable (DV) to predict the spatiotemporal of UGBs in the study area. LR may be beneficial
not just for detecting patterns in experimental data, but also for benchmarking and testing
new analytic approaches, particularly those that are novel or unfamiliar [60]. The logistic
function is used by the LR model to establish a relationship between land use class (a
dependent variable) and its driving force (independent variables), making it a viable tool
for mining CA conversion rules [18,61]. In this work, the parameters were as follows: the
ridge regression (L1) was 0.0001 and Lasso regression (L2) was 0.50:0.50.

Yi = f (Xi, B) + ei, (1)

where Yi represents the outcome variable, f represents a function, Xi represents the attribute,
B represents unknown values and e represents standard errors.

3.3.4. Spatial Applicability of the Novel ML Model

To apply the novel technique spatially, a sample of six polluting factories was selected
to predict UGBs and validate the buffer zone. According to Iraqi Environment Standards
(IES) (specifically, number 3-2011) which has been adopted by the Iraqi Ministry of Envi-
ronment [62], buffer zones must be left between UGBs and pollution-causing projects, as
shown in Table 3, to protect urban communities from harmful gas emissions. Similar to
the previous section (structuring the training ML), the seven values of driving factors were
extracted for each specific location of the six selected projects on the basis of their coordi-
nates by using the GIS analysis technique to generate the prediction model. The model
was included from seven attributes (driving factors) as independent variables, whereas the
dependent variable was the yearly date of UBG, which is an unknown value that would to
be predicted by running trained ML algorithms.

Table 3. Sample of polluting factories and buffer zones according to IES.

Project Types Radius of Buffer Zone (km)

Oil refinery 10
Landfill 2
WWTPs 2

Plastic and paint plant 0.5
Sandwich panel industry 1

Industrial area 1

3.4. Validation

In the classification stage, the trained model of classification was validated by the RF
algorithm on the basis of two evaluation metrics, namely, overall accuracy (OC) and kappa
coefficient. Equations (2) and (3) show the calculation method of OC and kappa [9,36,63].
Furthermore, the final classification maps for the years 1992, 2002, 2012 and 2022 were
validated by the SCP technique. In the following stage, i.e., LULC prediction, the simulated
maps for the years 2012 and 2022 were validated on the basis of the real maps for the
same years.
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OC =
TC.P
TS.P

× 100, (2)

where OC denotes overall accuracy, TC.P is the total number of properly identified pixels
and TS.P is the total number of sample pixels.

kappa coe f f icient =
O.A− C.A

1− C.A
, (3)

where O.A is the overall accuracy and C.A is the chance agreement.
In the model prediction stage, the evaluation process of the goodness of fit of regres-

sion ML models was applied, and several metrics were measured each time the model
was run. As a result, after running the four ML algorithms, i.e., RF, KNN, AB and LR,
the following performance metrics were achieved for each model: coefficient of determi-
nation (R2), mean absolute error (MAE) and root-mean-squared error (RMSE) based on
Equations (4)–(6) [64,65]. In a regression ML model, R2 reflects the fraction of the depen-
dent variable’s variation that has been explained by the model’s independent variables [66].
Furthermore, for each ML model, MAE and RMSE describe the divergence between actual
and observed data points and anticipated data points [67]. For validation, 15% of the
dataset was used as a validation set for unbiased evaluation to perform model selection; in
addition, 10% of the testing set was applied to determine if the final model chosen by the
validation set can adapt well to new, unseen data.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

MAE =
1
n

n−1

∑
i=o
|yi − ŷi| (6)

where yi is the equivalent real value, ŷi denotes the predicted value of the i-the sample and
n denotes the total number of samples or errors.

4. Result and Analysis
4.1. Classification of Landsat Image Results

The supervised classification techniques (RF in QGIS) classified the Landsat images
from 1992, 2002, 2012 and 2022 with high accuracy. The minimum of kappa values was
88%, and the minimum OA was 93%. The outcomes indicate that the observed LULCC
are predominantly rapid across Nasiriyah City from the year 1992 to 2020 and turned into
urban areas at the expense of other land use classes. The urban area ratio increased by about
10%, i.e., from 2.5% in the year 1992 to 12.17% in 2022. The urban sprawl was at the expense
of vegetation (6.82%), bare land (2.83%) and water (0.02%), as shown in Figures 3 and 4.
This change was a result of migration from rural areas to the city, in addition to the fact
that the study area is the economic centre of about 2 million people.
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4.2. Prediction Result of Urban Growth

The results reveal that the accuracy of performance of ANN-CA is an ‘almost perfect
agreement’, with an overall kappa value of 90.3% and 80.2% for the simulated maps of
years 2012 and 2022, respectively, based on the maps of the same years. The prediction
result for the following three decades (2032, 2042 and 2052) supports the historical trend
of urbanisation at the expense of considerable quantities of vegetation area. The urban
area ratio of the general region increased by about 7.92 %, i.e., from 12.17% in the year
2022 to 20.09% in 2052. Urban sprawl occurred at the expense of vegetation (7.63%) and
water (0.29%). Meanwhile, the city would be expanded by 34%, 25% and 19% by the years
2032, 2042 and 2052, respectively, as shown in Figure 5. These results were required for
delineating UGB lines for the years 2022, 2032, 2042 and 2052 to train the ensemble of ML
algorithms on the urban growth trends, as shown in Figure 6.
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4.3. Result of the Spatial Applicability of the Novel ML Model

The results of spatial applicability confirm that the novel ML model is effective,
according to the validation metrics that were measured by the four ML algorithms. On the
one hand, the test score result reveals that the values for the coefficient of determination (R2)
are 98%, 96%, 90% and 89%, which were measured by AB, RF, KNN and LR, respectively.
On the other hand, the validation score result reveals that the values of R2 are 100%, 99%,
89% and 88%, which were validated by AB, RF, LR and KNN, respectively. In addition,
the predicted results proven by the novel approach are efficient in supporting decision
systems regarding land use optimisation, especially selecting pollution-causing project
sites. It accurately determined the date of the intersection of UGBs with the buffer zone of
the sample of the pollution-causing projects that were selected in this work. The results
predicted are as follows:

5. Project No. 1 (oil refinery)

UGB already reached the location centre in the year 2021, indicating that the location
centre of the oil refinery violates IES. According to IES, the buffer zone between UGBs and
an oil refinery must be 10 km to protect the urban community from gas emissions.

6. Project No. 2 (WWTP)

UGB was intersected with a buffer zone around the WWTP in the year 2016 and
will reach its location centre in the year 2022. Although the project is presently under
construction, it violates the IES, which enforces a 2 km buffer zone.

7. Project No. 3 (landfill site)

UGB intersected the buffer zone around the landfill site in the year 2013, and it will
reach the location centre by the year 2030. Therefore, the location of this project must be
moved in accordance with the IES, which enforces 2 km as a buffer zone from the UGB.
Based on local environmental reports, the majority of Nasiriyah City residents suffer from
the bad smell and smoke released from this site.

8. Project No. 4 (plastic and paint factory)

UGB will intersect with the buffer zone around the factory in the year 2038, and it will
reach the location centre by the year 2043. The factory must be moved to a farther site by
the year 2038 due to IES, which enforces 500 m as a buffer zone from the UGB.
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9. Project No. 5 (sandwich panel factories)

UGB will intersect with the buffer zone around the factory in the year 2046, and it will
reach the location centre by the year 2056. The factory must be moved by 2046 due to IES,
which enforces 1 km as a buffer zone of from the UGB.

10. Project No. 6 (industrial area)

UGB will intersect with the buffer zone around the factory in the year 2087, and it
will reach the location centre by the year 2092. Its location is suitable based on IES, which
enforces 1 km as a buffer zone of from the UGB. Figure 7 shows the prediction results
regarding the sample of the pollution-causing projects that were selected in this study.
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5. Validation Result

In this work, the validation results reveal that the ML model was run with high
accuracy, and the performance indexes were measured to validate the sequential results
of each stage. The indexes indicated that the performance of the techniques used in this
study was almost perfect. Firstly, the accuracy performance of Landsat image classification
was validated with high accuracy in the two steps, i.e., model training using RF and final
LULC classification using SCP in QGIS, as listed in Table 3. Secondly, to calibrate the
ANN-CA technique, the LULCs for 2012 and 2022 were simulated; thus, the accuracy of
the simulation maps was validated on the basis of the real maps of the same years and
was in ‘almost perfect agreement’, as listed in Table 4. Finally, in predicting the UGB stage,
the trained model was validated using the four ML algorithms, i.e., RF, KNN, AB and LR,
using the testing set (10%) and validation set (15%) via a confusion matrix test, as shown in
Figure 8.

Table 4. Performance evaluation of the LULC classification stage.

Years Overall Accuracy of the
Training Model [%]

Kappa of the
Training Model

Overall Accuracy of
Classification [%]

Kappa
Classification

Kappa of
Simulation Maps

1992 99.64 0.993 99.94 0.999 /
2002 94.07 0.902 96.3127 0.9307 /
2012 89.99 0.844 93.2061 0.8838 0.903
2022 93.77 0.880 97.7284 0.9617 0.802
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6. Discussion

The urban communities near pollution-causing factories are exposed to risks of en-
vironmental pollution [1]. To mitigate possible counteractions, substantial research has
proposed appropriate solutions, including many land use optimisation methods. The most
common methods of spatial optimisation are GIS-MCDM and the integration of GIS and
ML models along with RS data [5,46,62,68–87]. However, in both approaches, the spatial
decision is made on the basis of multicriteria, most of which are spatial dynamic factors;
however, the practical principle of these approaches does not consider dynamic LULCC due
to urban growth. Consequently, a city would likely sprawl close to the pollution-causing
projects that were selected, causing considerable effects on sustainability. Therefore, a novel
technique was proposed in this study to solve the abovementioned problem.

The findings of this work reveal that the novel approach is highly efficient for the
proactive prediction of potential long-term environmental effects, as well as the detection
of environmental impacts at present. The overall result shows that the Nasiriyah City
expansion (the study area) is haphazard and unplanned, resulting in disastrous effects
on urban and natural systems. The urban sprawl would continue towards the area on
which built or proposed industrial projects violate local environmental standards (IESs),
which aim to protect urban communities from environmental pollution. The analysis result
shows that the urban area ratio increases by about 10%, i.e., from 2.5% in the year 1992
to 12.2% in 2022. This change was at the expense of vegetation (6.7%), bare land (2.84%)
and water (0.02%). Furthermore, the prediction results reveal that the city will expand by
34%, 25% and 19 % by the years 2032, 2042 and 2052, respectively. In addition, the land
use assessment result for the sixth site confirms that the novel technique can forecast city
expansion until 2092. It is one of the advantages that the present study seeks. The validation
results confirm that the performance of the novel ML model is effective, according to the
validation metrics that were measured by the four ML algorithms, i.e., AB, RF, LR and
KNN. The coefficient of determination (R2) values ranged from 88% to 100%.

In contrast to conventional and modern approaches of LULC optimisation and simula-
tion, the novel technique can effectively validate and support the decision-making process
regarding long-term land use planning. Nevertheless, their advantages cannot be under-
estimated, although their results are often associated with uncertainty [68–76,81–87]. The
practical principle of almost all land use optimisation methods is similar, that is, their out-
come is driven by multicriteria, which contribute different factors to the decision-making
process. However, most of these criteria are dynamic spatial factors that change over time
due to the impact of urban sprawl [8,88]. Given that this change is neglected when using
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land use optimisation techniques, the decisions that are made on the basis of multicriteria
would be converted from strong to weak over time. To overcome this issue, simulation
techniques could be applied because these techniques provide a comprehensive perspective
of current and future development opportunities [11].

Although ANN-CA is the most effective technique, which has been recently com-
mended by many scholars [7,8], integrating it with land use optimisation approaches to
make a sustainable decision regarding a suitable site for various activities is complex. It
requires multiple operations that must be conducted in sequential steps when a suitable
location for a specific activity is chosen. Whilst most strategic industrial projects, such as oil
refineries, power energy electricity and WWTP, are designed to work for multiple decades,
all prediction techniques are restricted to predict over three decades with acceptable accu-
racy. To bridge these gaps, the novel approach based on ML and GIS was developed. The
results of this study confirm that using this novel technique can avoid the probability of
incorrect decisions that cost a high amount when their consequences are corrected.

The advantages and disadvantages of the proposed approach are arguable. To what
extent the novel technique may be used to forecast urban sprawl in other cities has yet to
be answered. Each city has spatial properties, i.e., area of the city, distance from the city
centre to UGB, design of roads and proximity of the rivers from built-up areas. The novel
model predicts UGB on the basis of these properties and the historical trend of LULCC that
can be obtained from the archive of Landsat images. Therefore, the model can be applied to
another city with its own spatial properties. Another argument that could spark discussion
is that although this novel approach can monitor urban growth with high accuracy, the
other factors that contribute to the selection of optimal sites are neglected. The main aim
of developing this approach was to overcome the limitations of the land use optimisation
technique. This novel technique can be applied before using either GIS-MCDM or GIS-ML
to exclude the sites that would be covered by city expansion in the future.

The novel technique can discover planning problems of projects that were built in the
past, and it can predict potential environmental problems of projects under construction
and even the proposed location of planning projects. Therefore, it can be a DST for land use
optimisation, especially in selecting sites of pollution-causing projects. This technique is
necessary for scholars and urban planners who are interested in sustainable development
goals (SDGs).

7. Conclusions and Future Implications

Although advanced techniques have been involved in and integrated with conven-
tional land use optimisation approaches, dynamic LULCCs are still neglected as crucial
driving forces. Thus, this study focused on developing a novel technique that considers
the dynamic LULCCs to support decision-making processes regarding SDGs. To this end,
three main processes were applied, namely, a supervised classification process using RF,
prediction of urban growth using a hybrid method of ANN-CA and development of ensem-
ble ML models using four ML algorithms (i.e., KNN, RF, AB and LR), to predict long-term
UGBs. In addition, the integration of GIS and RS played a critical role in developing the
novel technique. The novel technique was applied to the sample of six pollution-causing
factories, and the results confirm that the technique is a practical method that should be
integrated with MCDM to make wise decisions and validate previous decisions. On the
one hand, the results reveal that five sites were constructed at the wrong location due to ne-
glected LULCC dynamics when site-selection decisions were made; this mistake produced
disastrous effects on the urban and natural systems. On the other hand, the assessment
result for the sixth site demonstrates that the new method can forecast UGB expansion
until 2092, which is one of the reasons that the technique was developed. Consequently,
the novel technique showed long-term potential environmental effects and detected the
environmental impacts at present due to urban sprawl. In addition, the result shows that
the urban area ratio increases by about 10%, i.e., from 2.5% in the year 1992 to 12.2% in
2022. This change was at the expense of vegetation (6.7%), bare land (2.84%) and water
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(0.02%). Furthermore, the prediction results show that the historic trend of LULCC will
continue for the next three decades. Urban sprawl would expand by 34%, 25% and 19%
by the years 2032, 2042 and 2052, respectively. Therefore, this novel technique can be
integrated with GIS-MCDM or GIS-ML to exclude the sites that would be covered by the
future city expansion. It can be a DST for land use optimisation, especially in selecting
sites for pollution-causing projects. However, the selection of relevant driving factors was
the major shortcoming of this work. It requires encouraging the public to overcome the
bias associated with experts’ opinions. Further studies should be conducted to highlight
another critical issue, which is the interaction between urban sprawl and the efficiency of
urban water supply.
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