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Abstract: Exploring spatiotemporal patterns of traffic accidents from historic crash databases is
one essential prerequisite for road safety management and traffic risk prevention. Presently, with
the emergence of GIS and data mining technologies, numerous geospatial analysis methods have
been successfully adopted for traffic accident analysis. As characterized by high driving speeds,
diverse vehicle types, and isolated traffic environments, expressways are confronted with more
serious accident risks than urban roads. In this paper, we propose a combined method based
on improved density clustering and the Bayesian inference network to explore spatiotemporal
patterns of expressway accidents. Firstly, the spatiotemporal accident neighborhood is integrated
into the DBSCAN clustering algorithm to discover multi-scale expressway black spots. Secondly, the
Bayesian network model is separately employed in both local-scale black spots and regional-scale
expressway networks to fully explore spatially heterogenous accident factors in various black spots
and expressways. The experimental results show that the proposed method can correctly extract
spatiotemporal aggregation patterns of multi-scale expressway black spots and meanwhile efficiently
discover diverse causal factors for various black spots and expressways, providing a comprehensive
analysis of accident prevention and safety management.

Keywords: traffic accident; black spot; causal analysis; density clustering; Bayesian network

1. Introduction

In the last decades, road safety has been one global challenge issue that greatly
threatens human life, economic property, and social consequences [1]. According to the
World Health Organization (WHO), traffic accidents have always been the leading cause of
death for children and young adults aged 5–29 years [2]. Moreover, it is also reported that
low- and middle-income countries account for approximately 93% of accident fatalities in
the world, although they own only 60% of the world’s vehicles. Particularly, according
to the China Statistical Yearbook [3], 244.6 thousand accidents took place in China in
2020, which lead to about 61.7 thousand deaths and 250.7 thousand injuries. Not only do
accidents cause injuries and damage but they may also result in traffic congestion and even
trigger local traffic paralysis [4]. Hence, it has always been a hot topic for traffic researchers
and management departments to identify the accident-prone black spots and mine their
spatiotemporal patterns, so as to make targeted solutions for traffic risk precaution [5,6].

Compared to urban roads, expressway traffic has the characteristics of high driving
speeds, diverse vehicle types, and isolated traffic environments, and expressways may
cause serious traffic accidents and trigger off massive traffic jams [7]. Presently, with the
gradual improvement of China’s highway infrastructures, the number and total mileage
of China’s expressways increase year by year, forming an efficient and dense expressway
network. However, the accident rate, mortality rate and injury rate per 100 km happening
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on expressways reaches 3.0, 5.1 and 3.8 times than that of ordinary roads in 2015 according
to a statistical report from Traffic Management Bureau, Ministry of Public Security of
China [8]. A traffic accident is a typical kind of spatiotemporal event, and historic crash
databases can provide important clues for understanding the spatiotemporal scenarios of
where and when traffic accidents happened. Exploring the spatiotemporal patterns of traffic
accident data is one essential prerequisite for discovering expressway safety deficiencies
and then making valid countermeasures. Hence, the paper concentrated on presenting a
combined method based on improved density clustering and Bayesian inference network
to explore the spatiotemporal patterns of traffic accidents to provide a fundamental analysis
of decision making for traffic safety management.

The remainder of this paper is organized as follows. Section 2 conducts a systemic
literatures review about black spot identification and accident causal analysis. Section 3
subsequently presents a methodological framework to profile spatiotemporal patterns of
expressway accidents based on density clustering and the Bayesian network. In Section 4, a
comprehensive analysis of the expressway accident datasets in the Hunan province, China,
is undertaken to demonstrate the performance of the proposed method and interpret the
spatiotemporal characteristics of Hunan expressway accidents. Finally, the conclusions and
future works are discussed at the end of the paper.

2. Literature Review

In the past decades, numerous studies have been devoted to traffic accident analysis,
which can be divided into two aspects. One aspect is identifying the accident-prone black
spots (it is called an accident hotspot in urban areas) and the other one is analyzing the
potential causal factors that lead to traffic accidents.

Generally, accident-prone black spots (or accident hotspots) can be defined as high-
risk locations, sections, or zones where traffic accidents are more likely to happen than
other places during a long-observed period in terms of accident volumes or accident
characteristics [9]. Nevertheless, for various countries and regions, there is no widely
accepted standard to demarcate the spatial range, time coverage, and factor significance
for determining accident-prone black spots [10]. In the early stage, researchers mainly
investigate various risk indicators to identify accident-prone black spots, of which the
representative ones are accident count (AC) [11], accident rate (AR) [12], accident frequency
(AF) [13,14], and accident density (AD) [15,16]. Particularly, some researchers attempt
to split roads into geometry-homogenous segments and then introduce a hazard ratio to
assess the traffic risk of these homogenous segments [17]. In view of the heterogeneities
between different observation periods, some studies develop statistical models for crash
risk assessment, typically such as empirical Bayesian frameworks [18] and Poisson-Tweedie
models [19]. Presently, with the emergence of GIS and data mining technologies, some
studies start to introduce geospatial statistical indicators [20,21] and spatial clustering
methods [22,23] to find accident-prone black spots from historic crash data. For example,
Blazquez et al. [24] computed Moran’s I and Getis-Ord Gi* to identify accident-prone
black spots. Harirforth and Bellalite [25] combine network kernel density estimation
(KDE) and network screening methods based on critical collision rates for finding accident-
prone black spots. Holmgren et al. [26] applied iterative K-means clustering and DBSCAN
clustering to discover the unsafe positions for urban cyclists. Those studies made significant
contributions to crash data analysis, but there are still some problems to be urgently solved.
On the one hand, the Modifiable Areal Unit Problem (MAUP), i.e., the optimal segmentation
unit, is still an intractable problem for identifying accident-prone black spots [27]. On the
other hand, the time duration and temporal periodicity of crashes are not fully considered
to explore the spatiotemporal patterns of accident-prone black spots [28].

In addition to accident-prone black spot identification, the other studies mainly focus
on causal analyses of traffic accidents. On the one hand, the occurrence of a road accident
is possibly caused by some spatial and temporal factors at the accident location [29]. On
the other hand, a sudden accident may also have an impact on a road’s traffic flow [30].
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Generally, the road risk factors could be summarized as four major aspects, including driver
factors (e.g., speeding, drunk driving, drowsy driving), vehicle factors (e.g., brake failure),
road factors (e.g., sharp turn, steep slope) and environmental factors (e.g., snow, fog,
complex terrain) [31]. In the early stage, many researchers focus on one or several causal
factors analysis by statistical methods. For example, Thiffault and Bergeron [32] utilized
the driving simulator and proposed a steering wheel movement analysis to evaluate
the impact of road environmental monotony on driver fatigue and accident risk. For
another, Pervez et al. [33] adopted a seven-zone analytic approach to discuss the crash
causal features for different zones of expressway long tunnels. In recent years, multi-
factor analysis methods are introduced into causal analyses of traffic accidents, such as
Geographically Weighted Regression (GWR) [34], association rule mining [35], and the
Bayesian network [36,37]. Traffic accidents are widely accepted as spatiotemporal events,
so it is indispensable to take both time and space dimensions into consideration when
analyzing expressway traffic accidents. Previous studies conducted good attempts to
analyze the regional-scale causal factors of traffic accidents, but regional-scale causal
analysis may ignore local spatiotemporal variations of causal factors that may exist in
different black spots and expressways. For example, some black spots in the expressway
network may be mainly caused by complex road environments and some other ones
may be greatly impacted by heavy traffic flow or unreasonable road design. Hence, it is
insufficient to conduct a regional-scale causal analysis for the whole expressway but needs
a divide-and-conquer strategy to study the correlations and heterogeneities of accident
causal factors for various black spots and expressways.

3. Materials and Methods

In this paper, we propose a Spatiotemporal Density-based Accident Clustering (STDAC)
method for identifying expressway accident-prone black spots and then perform a divide-
and-conquer causal analysis based on Bayesian network to profile the spatiotemporal
patterns of local-scale black spots and regional-scale expressway network. The main
contributions of the paper can be summarized as follows. Firstly, the temporal periodicity
and the accident severity are introduced to improve DBSCAN clustering algorithm, in order
to discover expressway black spots with different scales. Secondly, we employ a divide-
and-conquer strategy based on sophisticated Bayesian network (BN) model to explore
the accident causal factors for both local-scale black spots and regional-scale expressway
networks, so as to provide decision-making support for traffic safety management.

3.1. Study Area and Data Preprocessing

In this study, we use the expressway accident data provided by the traffic management
department of Hunan province in China. Hunan is located in the central south of China,
mainly in complex terrain of mountains and hills. The study area enjoys a subtropical
humid monsoon climate and are characteristic of four distinct seasons, sufficient heat, and
concentrated precipitation. The whole province has more than 72.95 million population,
more than 15.4 million motor vehicles, and nearly 7 thousand km expressway network
according to 2021 Hunan Statistical Yearbook [38].

The experimental accident datasets (excel format) contain 98,295 simple accidents
and 3240 general accidents reported between 2012 and 2016. As listed in Table 1, general
accident data stores 26 accident-related attributes, but simple accident data only stores 18
accident-related attributes. Based on this reason, we use general accident data in accident
causal analysis in Section 3.3 because of incomplete attributes recorded in simple accidents.
Because each participant of one accident is stored as one record in raw accident data, we
first grouped raw accident data by accident number and calculated the numbers of minor
injuries, serious injuries, and deaths for each accident as new fields, and meanwhile, we
set the field values of Car Type, Gender, and Driving Years as the personal information of
the participant with main accident liability, respectively. Moreover, the accident location is
recorded through a text description of the accident place and a numerical value of mileage
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information. Hence, we need to calculate the spatial coordinates for each accident by
matching them with the referenced expressway network. The result of geo-referenced
accident data is shown in Figure 1.

Table 1. They include attributes in raw datasets of general accidents and simple accidents.

Accident Attribute Name Accident Attribute Name

General
Accident

1 Accident number 14 Weather

2 Accident time 15 Visibility

3 Route number 16 Illumination

4 Road name 17 Road type

5 Kilometers 18 Road alignment

6 Meters 19 Gender

7 Accident place 20 Age

8 Accident reason 21 Traffic mode

9 Accident situation 22 Driving years

10 Multi-vehicles accident 23 Blood alcohol content

11 Single vehicle accident 24 Main illegal act

12 Carrying Hazardous goods 25 Accident liability

13 Consequence of carrying
hazardous goods 26 Injury degree

Simple
Accident

1 Accident number 10 Multi-vehicles accident

2 Accident time 11 Weather

3 Route number 12 Road type

4 Road name 13 Traffic mode

5 Kilometers 14 Driving years

6 Meters 15 Traffic mode class

7 Accident place 16 Motor vehicle class

8 Accident reason 17 Accident liability

9 Accident situation 18 Car number

3.2. Spatiotemporal Density-Based Accident Clustering for Black Spot Identification

In the past, numerous advanced methods (e.g., KDE, spatial correlation, spatial clus-
ter) have been proposed to identify accident-prone black spots. On the one hand, spatial
statistics methods (e.g., local Moran’s I and KDE) need to segment roads into homogenous
sections, which brings about the Modifiable Areal Unit Problem (MAUP), that is the size
of basic road unit may directly affect the precision and accuracy of black spots identifica-
tion [27]. On the other hand, the existing methods mainly consider spatial aggregations of
traffic accidents in the observed period, which may ignore the time evolution characteristics
of accident-prone black spots [28,39].

Significantly, spatial clustering methods aim to segment spatial point datasets into
various spatial cliques, which have been adopted by some studies to extract multi-scale
accident-prone black spots [17,22,23,26,39]. Traditional clustering methods mainly contain
partition clustering methods, density-clustering methods, hierarchical clustering methods,
etc. [40]. However, the cluster number of partition clustering methods and the splitting
threshold of hierarchical clustering methods can hardly be predetermined according to
historical accident datasets. Differently, as a classical density-clustering method, DBSCAN
first detects high-density core points and then iteratively aggregates the core points and
their neighborhood points into individual clusters by the density-connectivity rules [41].
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Compared to other clustering algorithms, DBSCAN is independent of the cluster numbers
and the cluster sizes, which have been successfully used in some of the literature [26,42,43]
and indicates some accuracy improvement of accident black spot identification. However,
previous DBSCAN-based methods do not consider temporal factors and accident severities.
Hence, this paper proposes a Spatiotemporal Density-based Accident Clustering (STDAC)
method to identify varying-scale accident-prone black spots.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 1. Geo-referenced accident data. 

3.2. Spatiotemporal Density-Based Accident Clustering for Black Spot Identification 
In the past, numerous advanced methods (e.g., KDE, spatial correlation, spatial clus-

ter) have been proposed to identify accident-prone black spots. On the one hand, spatial 
statistics methods (e.g., local Moran’s I and KDE) need to segment roads into homogenous 
sections, which brings about the Modifiable Areal Unit Problem (MAUP), that is the size 
of basic road unit may directly affect the precision and accuracy of black spots identifica-
tion [27]. On the other hand, the existing methods mainly consider spatial aggregations of 
traffic accidents in the observed period, which may ignore the time evolution characteris-
tics of accident-prone black spots [28,39]. 

Significantly, spatial clustering methods aim to segment spatial point datasets into 
various spatial cliques, which have been adopted by some studies to extract multi-scale 
accident-prone black spots [17,22,23,26,39]. Traditional clustering methods mainly contain 
partition clustering methods, density-clustering methods, hierarchical clustering meth-
ods, etc. [40]. However, the cluster number of partition clustering methods and the split-
ting threshold of hierarchical clustering methods can hardly be predetermined according 
to historical accident datasets. Differently, as a classical density-clustering method, 

Figure 1. Geo-referenced accident data.



ISPRS Int. J. Geo-Inf. 2023, 12, 73 6 of 24

Various expressway black spots probably may show different spatiotemporal patterns
of traffic accidents. For some black spots, the traffic accidents may concentrate on some fixed
time period because of heavy weather, whereas the traffic accidents of some other black
spots may show homogeneous temporal distribution on account of multiple causal features.
To fully explore the spatiotemporal patterns of traffic accidents, the paper introduces
the time periodicity into the definition of spatiotemporal neighborhood accidents and
meanwhile considers the accident severity to count the neighborhood accidents for each
accident. Based on the definition of spatiotemporal neighborhood accidents, the core
accident points are detected and successively extended to discover the accident clusters of
black spots according to classical density-connectivity rules. It can be seen from Figure 2
that the identified black spots based on STDAC contain two elements. One element is
Spatial Coverage SC, which depicts the mileage range of the black spot. The other one
is Temporal Scale TS, which indicates the accident-prone periods of black spots. The
combination of spatial and temporal descriptors about black spots can provide important
basis for making temporally targeted risk precaution solutions.
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3.2.1. Definition of Spatiotemporal Neighborhood Accidents

The time periodicity is very common in our actual life, such as 23:00 PM being tempo-
rally close to 0:00 AM, December being close to January, etc. Similarly, many geographical
phenomena also show obvious time periodicities, such as day and night, four seasons, daily
commuting, etc. Hence, it is necessary to model the time periodicity of traffic accidents and
further explore the potential time-related accident causes. In this paper, to mine the time
periodicity of traffic accidents, the time components (e.g., month, day, week number, hour,
minute, second) of each accident are separately extracted and then we convert accident
time into an angle representation based on a predefined dial.

For example, as illustrated in Figure 3, 12 months are represented as an equally spaced
dial, where January corresponds to 0◦, December corresponds to 330◦, and so on. For one
accident e, the angle representation θ is calculated as follows.

θ =

[
(TM − 1) +

Td × εd + Th × εh + Tm × εm + Ts

D× εd

]
× 30◦ (1)

where TM, Td, Th, Tm, and Ts are the month, day, hour, minute, and second components of
accident e, respectively. εd, εh, and εm are the number of seconds in one day, one hour, and
one minute, respectively (for instance, εm equals 60 s and εh equals 3600 s). D denotes the
total number of days in the month of accident e, which possibly equals 28, 29, 30, or 31.
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As illustrated in Figure 3, the accident time of two accidents ei and ej are “13 December
2014 15:20:00” and “10 January 2012 12:10:00”, respectively. The angle values of ei and ej are
calculated as θi and θj, which are represented as gray-filled circles in Figure 3. It is clearly
seen that the angle representations of ei and ej are very approximate on the circular dial.
Based on the angle representation of accident time, we can define the temporal distance
Dis_T between two accidents ei and ej, according to Formula (2) whereas the spatial distance
Dis_S is calculated as the Euclidean distance between two accident points.

Dis_T
(
ei, ej

)
= sin

∣∣θi − θj
∣∣

2
(2)

3.2.2. Counting of Spatiotemporal Neighborhood Accidents

Traditional DBSCAN needs to set two parameters of Eps and Minpts. Thereinto, Eps
is a distance threshold for searching the neighborhood points. Minpts is a point number
threshold for detecting the core points. In this paper, both spatial and temporal distance
thresholds Epss and Epst are required to define the neighborhood accidents Neighbor(ei) for
each accident ei by Formula (3).

Neighbor(ei) =
{

ej
∣∣Dis_S

(
ei, ej

)
≤ Epss and Dis_T

(
ei, ej

)
≤ Epst

}
(3)

In addition, DBSCAN simply selects these points with the number of neighborhood
points larger than Minpts as core points. However, as different traffic accidents may lead to
varying degrees of casualties and damage, the accident severity level should be integrated
with the weights of the neighborhood accidents. With reference to the Road Traffic Accident
Grade Standard issued by the Ministry of Public Security [44], we divide all traffic accidents



ISPRS Int. J. Geo-Inf. 2023, 12, 73 8 of 24

into five grades: 1st simple accident, 2nd minor accident, 3rd ordinary accident, 4th major
accident, and 5th extra-serious accident according to the following rules.

• 1st Simple accident: Accidents without injuries (i.e., simple accident dataset) are
marked as simple accidents, of which the accident weight is uniformly assigned to
w1 = 1/3;

• 2nd Minor accident: Accidents with 1–2 slight injuries are marked as minor accidents,
of which the accident weight is uniformly assigned to w2 = 1;

• 3rd Ordinary accident: Accidents with 1–2 serious injuries or more than 3 slight
injuries are marked as general accidents, of which the accident weight is uniformly
assigned to w3 = 3;

• 4th Major accident: Accidents with 1–2 deaths or 3–10 serious injuries are marked as
major accidents, of which the accident weight is uniformly assigned to w4 = 5;

• 5th Extra-serious accident: Accidents with more than 3 deaths, or more than 11 serious
injuries, or 1 death and meanwhile more than 8 serious injuries, or more than 2 deaths
and meanwhile more than 5 serious injuries are marked as Extra-serious accidents, of
which the accident weight is uniformly assigned to w5 = 7.

The weight values of minor accidents and above are set as an arithmetic progression
according to the injuries or deaths, and the weight value of simple accidents is uniformly
set as 1/3. Based on the definition of accident severity and corresponding weights, the car-
dinality of neighborhood accident set for each accident ei is calculated as |Neighbor(ei)|=∑j
Nj × wj, where Nj is the total number of ith-grade accidents in Neighbor (ei) and wi is the
corresponding accident weight for ith-grade accident, respectively.

3.2.3. Identification of Accident-Prone Black Spots Based on DBSCAN

Through introducing the temporal periodicity and improving the counting of neigh-
borhood accidents, the Spatiotemporal Density-based Accident Clustering process based
on DBSCAN is implemented as follows:

Step 1: Detect the core accidents by judging whether the cardinalities of their neigh-
borhood accidents are larger than Minpts;

Step 2: Randomly select an unprocessed core accident and add the core accident
together with its neighborhood accidents into a newly created cluster;

Step 3: Recursively traverse all the unprocessed core points in the current cluster and
insert the density-reachable accidents of the traversed accident into the current cluster until
all core accidents in the current cluster are processed;

Step 4: Return to Step 2 until all the core points have been processed.
After spatiotemporal density-based accident clustering (STDAC), the weighted acci-

dent count and temporal accident frequency of each cluster is calculated and ranked for
identifying accident-prone black spots.

3.3. Divide-and-Conquer Accident Causal Analysis Based on Bayesian Network

As mentioned before, a traffic accident is an unlikely event caused by many factors.
Bayesian Network (BN) utilized a directed acyclic graph (DAG) model to represent the con-
ditional correlations between variables, providing a feasible tool for uncertainty reasoning
and data analysis. In the Bayesian Network, each node represents an attribute variable and
each directed edge corresponds to the conditional dependency between the two connected
nodes. Previous studies [36,37,45] have demonstrated that BN is applicable to exploring
the potential relationship between accident causal factors. However, the existing research
applied all the observed accidents to construct a uniform Bayesian Network, which can
hardly profile the spatial heterogeneities of accident causal factors in different regions.
Hence, the paper proposes to adopt a divide-and-conquer strategy that is separately con-
structing different Bayesian networks for accident-prone black spots and the whole study
area to explore their accident causal patterns. In general, a Bayesian Network B contains
two parts, namely structure G and parameter Θ. Hence, The BN-based accident causal
inference process consists of two key steps, i.e., structure learning and parameter learning.
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Structure learning is to determine the topological graph structure G of accident Bayesian
Network. Parameter learning is to acquire the quantitative parameters to describe the
conditional probability table (CPT) between two connected nodes.

3.3.1. Structure Learning of Accident Bayesian Network

Generally, there are expert-based methods, machine-learning methods, and hybrid
methods to determine the directed acyclic graph structure of Bayesian Network [36]. The
expert-based method directly establishes Bayesian Network by absorbing experts’ opinions
and the machine-learning method automatically learns Bayesian Network structure from
observed data. For balancing the dependence on experts’ knowledge and the interpretabil-
ity of auto-learned models, we incorporate the TAN-based learning structure [46] and
experts’ knowledge to construct accident Bayesian Network. As listed in Table 2, 9 accident
nodes are selected to constitute accident Bayesian Network to be built. Thereinto, the
node of accident severity is set as target node in order to analyze other factors’ impact on
accident severity. Weather, Visibility, Illumination, and Alignment are directly obtained
from general accident data. Car Type, Gender, and Driving Years are generated from the
personal information of the participant with main accident liability. Particularly, Road Type
is determined as either Road Sections or Road Facilities by judging whether the accident
point is located within the buffer region of some road facilities, such as junctions, service
zones, and tollgates. Finally, severity is calculated according to the schemes of Section 3.2.2.

Table 2. The nodes constitute Bayesian Network and the corresponding variable values.

No. Node Variable

1 CarType
Small Passenger Car; Middle Passenger Car; Large Passenger Car;

Light Truck; Medium Truck; Heavy Truck; Pedestrian; Other

2 Weather Sunny; Rainy; Cloudy; Other

3 RoadType
Road Sections;

Road Facilities (e.g., junctions, service zones, tollgates)

4 Gender Male; Female

5 DrivingYears
type1: ≤1 year; type2: 2–5 years;

type3: 6–10 years; type4: >10 years; no-licensed

6 Visibility type1: ≤50 m; type2: 50–100 m; type3: 100–200 m; type4: >200 m

7 Illumination Day; Dusk; Dawn; No Lighting at Night; Lighting at Night

8 Alignment

Flat; Bend; Slope; Sharp Bend; Steep Slope; Bend and Slope;

Sharp Bend and Slope; Steep Slope and Bend;

Sharp Bend and Steep Slope; Long Descent

9 Severity
Simple Accident; Minor Accident; Ordinary Accident;

Major Accident; Extra-serious Accident

The accident Bayesian Network is constructed and shown in Figure 4. The prior
probability of each node variable is calculated by counting the corresponding ratio of
general accidents. As shown in Figure 4, the arrowed line indicates one causal relation exists
in the connected nodes. The darker color of nodes denotes it has more important impact
on the target nodes of accident severity. It can be seen that the top four factors impacting
accident severity are Car Type, Alignment, Gender, and Illumination, respectively. They
are the representative factors concerned with vehicle-related, road-related, driver-related,
and environment-related features, respectively.
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3.3.2. Parameter Learning of Accident Bayesian Network

After structure learning of accident Bayesian Network, parameter learning is per-
formed to quantitatively obtain the parameters for describing accident Bayesian Network.
Suppose the learned directed acyclic graph structure is G = {V, E}, V contains d nodes,
i.e., X1 . . . Xd, the possible values for each node Xi are in the set χi =

{
x1

i . . . xki
i

}
, and

the parent configuration πi for each node Xi is in the set Πi =
{

π
(1)
i . . . π

(qi)
i

}
, where

qi = ∏Xh∈parent(Xi)
kh. The conditional probability θji,l to be estimated is defined as follows:

θij,l = P
(

Xi = xj
i |π i = π

(l)
i

)
, i = 1 . . . d, j = 1 . . . ki, l = 1 . . . qi (4)

It is obvious to meet ∑ki
j=1 θij,l = 1. The paper utilized maximum likelihood estimation

(MLE) method to determine the parameter variable θji,l according to Formula (4).

δMLE
ji,l =

Nijl

Nil
, Nil =

ki

∑
j=1

Nijl (5)

where Njil denotes the number of general accident data that meets both Xi = xj
i and πi = π

(l)
i .

Based on Bayesian Network, reverse inference is used to explore the potential causal
factors for different black spots and the whole expressway network. Theoretically, reverse
inference is used to calculate the posterior probability of each parent node variable under a
target node variable and then compare the posterior probability with its prior probability,
in order to find the potential causal factors leading to the target node variable [47].

4. Results

In the experimental analysis, an exploratory analysis of expressway accident data
is first conducted by overlapping the geo-referenced accident data with the Hunan ex-
pressway network and the administrative areas of prefecture-level cities. After that, the
results of identifying accident-prone black spots and exploring accident causal factors are
qualitatively and quantitively analyzed to verify our proposed method.
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4.1. Exploratory Analysis of Expressway Accident Data

Figure 5 shows a spatiotemporal distribution map of expressway accident data in
Hunan province, China, during 2012–2016. Firstly, we find that there are obviously spatial
aggregation patterns of expressway accidents both at the expressway-level scale and
prefecture-level city scale. At the prefecture-level city scale, more accidents happened in
the eastern cities and relatively fewer accidents happened in the western cities. Specifically,
as the capital of Hunan province, Changsha has the most accidents, whereas the city with
the fewest accidents is Zhangjiajie in the west, which is one of the most famous tourist
cities in Hunan. At the expressway level, the Beijing-Hongkong-Macao expressway (G4),
Shanghai-Kunming expressway (G60), and Changsha-Zhangjiajie expressway (G5513)
are the top three expressways (see the text annotations with red borders) with highest
accident volume. The representative expressways with the fewest accidents (see the text
annotations with black border) are Yiyang southern front, Shishou-Huarong expressway,
Shaoyang-Pingshang expressway, and Wugang-chengbu expressway, which are mostly
provincial-level expressways, and about 40 accidents took place in the observed five years.
Overall, the spatial patterns illustrated in historical expressway accident data may be
related to the spatial variations in the social economy, human traveling, expressway density,
and traffic flow between different regions.
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Secondly, statistical analysis of expressway accidents at four temporal granularities
(i.e., yearly, monthly, daily, and hourly) are elaborated in the upper right histograms of
Figure 5, respectively. At the yearly granularity, the annual expressway accidents have
increased year after year, and the number of accidents that occurred in 2016 was double the
number of accidents that occurred in 2012. Large challenges for traffic safety management
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have been caused by the popularization of motor vehicles and the increasing acceleration
of urbanization. At the monthly granularity, there are two obvious peaks of expressway
accidents (i.e., Jan-Feb and Oct), that account for about 44.28% of the total accidents. It
is found that these two peak periods correspondingly cover the two biggest holidays in
China (i.e., Spring Festival and National Day) when larger human traveling occurs and
raises the accident risk. At the daily granularity, the daily accidents in the month are almost
uniformly distributed, with slightly more accidents at the beginning days of one month.
Finally, at the hourly granularity, there are also two obvious peaks of expressway accidents
(i.e., 10:00–12:00 and 16:00–17:00), which account for about 48.85% of all accidents and are
possibly relevant to the human daily schedule.

Thirdly, we make a spatiotemporal integration analysis for each prefecture-level city. In
detail, we compute the yearly, quarterly, daily, and hourly expressway accident proportions
for each prefecture-level city and intuitively plot the proportions as a circular pie chart
located at the center of each prefecture-level city. As shown in Figure 5, although the
temporal distributions of different prefecture-level cities were similar to the whole of the
Hunan province, there were still some particular characteristics for individual prefecture-
level cities, summarized as follows.

(1) At the yearly granularity (shown as the innermost layer of the pie chart), some
prefecture-level cities (Zhangjiajie, Hengyang, Zhuzhou, etc.) had relatively simi-
lar accident volumes in the observed 5 years but some other prefecture-level cities
(Changsha, Loudi, Yongzhou, etc.) manifested a significant accident increase in the
latter 3 years.

(2) At the quarterly granularity (shown in the second layer of the pie chart), the quarterly
expressway accident proportions in most prefecture-level cities were roughly similar
but the expressway accidents of some special prefecture-level cities (e.g., Xiangxi,
Huaihua, Yongzhou, and Chenzhou) mainly concentrated on the first quarter (nearly
account for 50%).

(3) At the daily granularity (shown in the third layer of the pie chart), the daily expressway
accidents of most prefecture-level cities were nearly similar to each other, which also
coincided with the daily distribution of Hunan province.

(4) At the hourly granularity (shown in the outermost layer of the pie chart), the hourly
expressway accidents were conformably displayed as daytime-dominant distributions
for most prefecture-level cities.

4.2. Results Analysis of Identifying Accident-Prone Black Spots

Based on the clustering parameters, Epss = 700 m, Epst = 0.025, and Minpts = 10, the
expressway accident-prone black spots are identified and depicted in Figure 6. In Figure 6,
the identified accident-prone black spots as denoted as gray circles, of which the central
point indicates the central accident position of each black spot and the circle size measures
the weighted accident number of each black spot during the period of 2012–2016. The
mileage range of each black spot and the belonging expressway route number are labeled
in the nearby rectangle annotation, respectively. Meanwhile, different fill colors of the
rectangle annotations are used to distinguish temporally clustering ranges of black spots.
For example, the red color indicates that the black spot mainly had accidents in February
and a combination of red and blue means the black spot mainly had accidents in February
and October.

It can be seen from Figure 6 that different spatiotemporal patterns indeed existed
in the identified black spots. At first, spatially, the identified black spots were mainly
located at the Beijing-Hongkong-Macao expressway (G4), Shanghai-Kunming expressway
(G60), and Changsha-Zhangjiajie expressway (G5513). The identified black spots on the
above three expressways account for about 78.13% of all identified black spots, showing
obvious spatial aggregation patterns of expressway black spots. Then, temporally, the
accidents happening on various black spots were intensively at different time periods,
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showing significant temporal heterogeneities of accident-prone periods between different
black spots.
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Table 3 lists the mileage range, weighted accident volume, and accident proportion
of typical months for the top four accident-prone black spots identified by the proposed
method. As listed in Table 3, for the top black spot (G60 1064–1090 km), about 63.77%
of accidents were happening in February (32.69%) and October (31.08%). However, for
another two black spots, G4 1637–1668 km and G4 1443–1476 km, the accidents mostly
happen in February (68.22%) and October (87.65%), respectively. It demonstrates that the
proposed method can adaptively identify accident-prone black spots with different spatial
coverages and temporal ranges, efficiently dealing with the problem of MAUP in black spot
identification. Moreover, the temporal periodicity and accident severity are introduced into
spatiotemporal density-based accident clustering, which can effectively make up for the
confronting deficiency of identifying spatiotemporal black spots. Various spatiotemporal
patterns of black spots may put forward urgent demands for divide-and-conquer accident
causal analysis and targeted traffic security treatments in future research.

Table 3. Accident volume and proportion statistics for the top four expressway black spots.

Mileage Range of Accident-Prone Black Spots Weighted Accident Count Accident Proportion of
Typical Month(s)

Shanghai-kunming (G60) 1064–1090 km 558 Feb (32.69%) + Oct (31.08%) = 63.77%

Beijing-Hongkong-Macao (G4) 1637–1668 km 335 Feb: 68.22%

Changsha-Zhangjiajie (G5513) 14–44 km 283.7 Oct: 59.97%

Beijing-Hongkong-Macao (G4) 1443–1476 km 193.3 Oct: 87.68%

According to one official report of 2017 by the traffic management department [48],
the Changsha-Zhangjiajie expressway 15–33 km (G5513 15–33 km) is recognized as one of
the top 10 accident-prone black spots in China, which is demonstrated to be very consistent
with the black spot of G5513 14–44 km identified by our method. Further analysis in
Figure 7 reveals that there are as many as 10 road facilities along this black spot in spite of
only 30 km mileage. Besides passing through many road facilities (e.g., bridges, tollgates,
service areas, and junctions), the black spot is also particularly located at the exit and
entrance roads between two important cities of Changsha and Ningxiang, leading to its
complex road condition and heavy traffic flow.

Additionally, Figure 8 illustrates the statistical histogram of traffic accidents on the
identified black spots and other road sections of G4 expressway in Hunan province (5 km
per bin). The red bins above the horizontal axis denote the black spots identified by our
method and the yellow bins below the horizontal axis denote the black spots released by
the official department [49]. It can be seen that seven of nine black spots published to the
public are correctly identified by our method and have common sections as long as 55 km.
Relatively high consistency between our results and the official results demonstrates the
good performance of our density-clustering method.

To contrastively analyze the accuracy of black spot identification, we apply the pro-
posed method to two accident datasets concerning the Beijing-Hongkong-Macao express-
way (G4) during 2012–2016 and in the year of 2018. As shown in Figure 9, the results of
black spot identification based on two accident datasets have as long as 75 km of common
segment parts, indicating high spatial consistency between the identified black spots. Ad-
ditionally, we also find that the temporal ranges of black spots identified by two accident
datasets are similarly concentrating on two periods, i.e., mid-January to early March and
early September to early October. Particularly, there are two black spots i and j identified
by the 2012–2016 accident dataset (see the blue rectangles of Figure 9a), which have disap-
peared as a result of black spot identification in 2018 (see Figure 9b). Actually, Figure 10
shows that black spot i is located at the upstream road segments near the Leiyang service
area in Hengyang, while black spot j is located at the road interchange of Zhuting tollgate.
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It is valuable for other similar black spots to confirm whether efficient measures have been
taken on these black spots.
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4.3. Results Analysis of Exploring Accident-Prone Causal Factors

In this paper, we conduct reverse inference analysis for extra-serious accidents us-
ing Netica software and attempt to explore heterogeneous accident factors for various
black spots and the whole expressway network. We select two black spots identified
by our method, i.e., Changsha-Zhangjiajie expressway 14–44 km (G5513 14–44 km) and
Beijing-Hong Kong-Macao expressway 1637–1668 km (G4 1637–1668 km), to compare
their heterogeneous causal factors. Figure 11a–c depict the prior probabilities of all node
variables for the whole Hunan expressway network, black spots G5513 14–44 km, and G4
1637–1668 km, respectively.
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At first, it can be roughly seen from Figure 11 that the prior probabilities of the iden-
tical node show some discrepancies between the whole expressway and black spots. On
the one hand, it can be seen from the green node Road Type that 83.9% of accidents on
black spot G5513 14–44 km and 70.5% of accidents on black spot G4 1637–1668 km were
located at road facility sections while only 51.4% of accidents in the whole expressway
network were located near road facilities. Various black spots and expressways show
different spatial distributions of facility-related accidents, which demand the formulation
of targeted road-designing solutions for traffic risk precaution. On the other hand, we
find from the blue node Car Type that only some vehicle types (e.g., small passenger cars)
are the main accident participants in the Hunan expressway network and black spot G4
1637–1668 km, whereas relatively more vehicle types are likely to happen road accidents on
black spot G5513 14–44 km. It indicates that various black spots and expressways may have
the main accident participants of their own. Especially, a lot of road facilities (see Figure 7)
are distributed along black spot G5513 14–44 km, which probably leads to common acci-
dent proneness for most vehicle types. Moreover, according to the red node of visibility,
we found from black spot G5513 14–44 km that its prior probabilities of low visibility
(e.g., type1–3: <200 m) are larger than that of the whole area and black spot G4 1637–1668 km,
indicating that bad visibility environment may exacerbate the traffic risk of G5513 14–44 km.
In addition, compared with the whole Hunan expressway network, the number of female-
related accidents on black spot G5513 14–44 km shows a significant increase but the
corresponding accident number on blackspot G4 1637–1668 km decreased. Finally, we ana-
lyze the target node of accident severity and discover that the proportions of extra-serious
accidents on black spots G5513 14–44 km and G4 1637–1668 km are relatively higher than
that of the whole expressway network, indicating the potential accident risk on black spots.

Figure 11b,c and Figure 12a contrastively illustrate the posterior probabilities of
all node variables when extra-serious accidents happen in the whole Hunan express-
way network, at black spots G5513 14–44 km and G4 1637–1668 km. Compared to
Figures 11a–c and 12a–c, the identical node variables are showing minor differences be-
tween their prior and posterior probabilities. Hence, we calculate an increasing percentage
IPi,j by Formula (5) to analyze the causal impacts of different node variables on extra-
serious accidents quantitatively.

IPi,j =
P
(

Xi = xj
i

∣∣∣Xseverity = xExtra−serious accident
severity

)
− P

(
Xi = xj

i

)
P
(

Xi = xj
i

) (6)

where P(Xi = xi
j) means the prior probability that node Xi takes the state of xi

j, and
P(Xi = xi

j|Xseverity = xseverity
Extra-serious accident) denotes the posterior probability that node Xi

takes the state of xi
j when extra-serious accidents happen (i.e., Xseverity = xseverity

Extra-serious accident).
Figure 13 plots the increasing percentages (IP) of different node variables when extra-

serious accidents happen. The result of the whole expressway network is represented as
red dotted lines. The results of two black spots G5513 14–44 km and G4 1637–1668 km
are represented as green dotted lines and blue dotted lines, respectively. In general, the
increasing percentages of G4 1637–1668 km are basically consistent with but lower than
that of the whole expressway network. Contrastively, the increasing percentages of G5513
14–44 km keep a low level for almost all node variables, perhaps because of only a small
number of general accidents recorded at this black spot. For the whole expressway network
and G4 1637–1668 km, the posterior probabilities of some car types when extra-serious
accidents happen, such as middle and larger passenger cars, light and medium trucks,
and pedestrian (as well as heavy trucks on G4 1637–1668 km and other car types in the
whole expressway network), have obviously increased more than their prior probabilities,
indicating that the above-mentioned car types may increase the risk of extra-serious acci-
dents. On the one hand, middle and larger passenger cars often carry more people than
small passenger cars, which possibly leads to extra-serious accidents with more injuries
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and heavy damages. On the other hand, the problems of overloading, long driving, and
high speed are becoming more and more severe, especially for light and middle trucks,
which amplify the risk and severity of extra-serious accidents.
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Figure 13. The increasing percentages (IP) of different node variables when Extra-serious
accidents happen.

Similarly, we can see from Figure 13 that the posterior probabilities of visibility less
than 200 m (visibility), no more than one driving year or even without a license (driving
years), female drivers (Gender), rainy and other extreme weather (snowy, foggy, etc.), and
weak illumination (e.g., dusk, dawn, and lighting at night) also show positive values of
increasing percentage (IP) when extra-serious accidents happen, indicating more impacts
of these factors on extra-serious accidents. Additionally, the non-flat road alignments
(especially sharp bends, steep slopes, and long descents) show a high increasing percentage
of posterior probabilities when extra-serious accidents happen. Those node variables with
obviously increasing percentages should be paid more attention to accident risk prevention.

To quantitatively analyze the impacts of different conditional combinations on accident
severity, we calculate the increasing percentage ICPi,j between the conditional and prior
probabilities as follows.

ICPi,j =
P
(
X = xi |Π = π j)− P

(
X = xi)

P
(
X = xi

) (7)

where P(X = xi) is the prior probability of ith accident severity and P(X = xi|∏ = πj) denotes
the conditional probability of ith accident severity when ∏ takes the combination of πj. In
this paper, we analyze the combinations ∏ = (Car Type, Road Type, and Weather).

As shown in Figure 14, we make a visual analysis of ICP values under different
conditional combinations for the whole expressway and two black spots. In general, the
whole expressway network and two black spots show diverse ICP distributions of various
conditional combinations, of which the whole expressway network is more fluctuant, but
the two black spots are relatively stable. Under most conditional combinations, black
spot G5513 14–44 km always keeps low ICP values close to 0%, while black spot G4
1637–1668 km maintains a relatively high ICP value for simple accidents (5%), minor
accidents (−10%), and extra-serious (10%) accidents. Moreover, we plot some black arrowed
lines to point to some factor combinations with high ICP values for the two black spots,
which should be paid more attention to for safety improvement.
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Figure 14. Increasing percentage (ICP) of conditional probabilities under different combination
of vehicle types, weather, and road types (SPC/MPC/LPC: Small/Middle/Large Passenger Car;
LT/MT/HT: Light/Middle/Heavy Truck; PED: Pedestrian; other: other traffic modes; RS: Road
Sections; RF: Road Facilities).

5. Conclusions

Expressways often have high driving speeds, diverse vehicle types, and isolated traffic
environments, which make it more likely for serious traffic accidents to happen and cause
massive traffic jams. Exploring the spatiotemporal patterns of traffic accident data is one
essential prerequisite for discovering expressway safety deficiencies and then making valid
countermeasures. Previous studies made significant contributions to crash data analysis
but still have some problems that need to be solved, including optimal segmentation of
basic statistical units, spatiotemporal aggregation of accident-prone black spots, and spa-
tiotemporal heterogeneities of accident causal factors. Hence, we first introduced temporal
periodicity and accident severity into the DBSCAN clustering algorithm for adaptively
discovering multi-scale expressway black spots. Then, we applied a sophisticated Bayesian
Network model [36] and a divide-and-conquer inference strategy to explore accident causal
factors for both local-scale black spots and regional-scale expressway networks. 2012–2016
expressway accident data in Hunan province, China is used to identify accident-prone
black spots and explore heterogeneous accident causal factors, showing that the proposed
method can correctly extract spatiotemporal aggregation patterns of multi-scale expressway
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black spots and meanwhile efficiently discover diverse causal factors for various black
spots and expressways. However, there are still some imperfect problems to be negotiated
in future research. The first is collaboratively modeling both temporal periodicity and
time sequences for analyzing the spatiotemporal evolution of accident-prone black spots.
The second is integrating traffic flow data and social-economic data into accident causal
analysis for understanding the mechanism of traffic accidents comprehensively.
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