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Abstract: The outbreak of COVID-19 in Beijing has been sporadic since the beginning of 2022 and
has become increasingly severe since October. In China’s policy of insisting on dynamic clearance,
fine-grained management has become the focus of current epidemic prevention and control. In this
paper, we conduct a refined COVID-19 risk prediction and identification of its influencing factors
in Beijing based on neighborhood-scale spatial statistical units. We obtained geographic coordinate
data of COVID-19 cases in Beijing and quantified them into risk indices of each statistical unit.
Additionally, spatial autocorrelation was used to analyze the epidemic risk clustering characteristics.
With the multi-source data, 20 influencing elements were constructed, and their spatial heterogeneity
was explored by screening 8 for Multiscale Geographically weighted regression (MGWR) model
analysis. Finally, a neural network classification model was used to predict the risk of COVID-19
within the sixth ring of Beijing. The MGWR model and the neural network classification model
showed good performance: the R2 of the MGWR model was 0.770, and the accuracy of the neural
network classification model was 0.852. The results of this study show that: (1) COVID-19 risk is
uneven, with the highest clustering within the Fifth Ring Road of Beijing; (2) The results of the
MGWR model show that population structure, population density, road density, residential area
density, and living service facility density have significant spatial heterogeneity on COVID-19 risk;
and (3) The prediction results show a high COVID-19 risk, with the most severe risk being in the
eastern, southeastern and southern regions. It should be noted that the prediction results are highly
consistent with the current epidemic situation in Shijingshan District, Beijing, and can provide a
strong reference for fine-grained epidemic prevention and control in Beijing.

Keywords: COVID-19; machine Learning; MGWR; refined governance; risk management

1. Introduction
1.1. Background

According to the WHO, as of November 2022, more than 616 million cumulative
confirmed infections with COVID-19 disease and more than 6.52 million deaths due to
COVID-19 have been recorded [1]. COVID-19 has become the most severe epidemic in the
world [2]. At the beginning of the outbreak, there were no vaccines or other targeted medical
interventions, so non-pharmacological interventions (NPI) [3], such as city closures, travel
restrictions, and self-isolation, were the most critical prevention and control measures
for the epidemic. As research on COVID-19 intensified and COVID-19 vaccines were
developed, many regions gradually relaxed their efforts to prevent and control the spread
of COVID-19. However, it was soon discovered that although the COVID-19 vaccine
effectively reduced the disease in infected individuals and mitigated its spread, it did
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not seem to be able to eliminate the spread of the virus in the population [4]. The highly
mutable nature of the COVID-19 virus has led to a wave of infections worldwide with
variants of the Delta and Omicron viruses [5]. As such, NPI still plays a vital role in
epidemic prevention.

However, it is worth noting that although long-term, complete NPI can have a sig-
nificant effect on epidemic prevention and control, it also dramatically inhibits economic
development, affects the everyday life of the population, and brings about many social
problems [6]. Complete NPI is no longer suitable for current epidemic control. In cos-
mopolitan cities such as Beijing, Shanghai, and New York, it is important not to affect the
city’s functioning while keeping the epidemic under control. Targeted NPI has become the
first choice. Therefore, the identification of risk levels and risk elements in different areas
of the city has become a top priority for current epidemic prevention efforts.

Beijing, the capital of China, is a typical international metropolis. Its high-density built
environment and high-intensity population [7] movement expose it to the constant risk
of various public health emergencies, e.g., the SARS outbreak in 2003 [8] and COVID-19
in 2020 (Xinfadi Market) [9]. This paper takes Beijing as an example. It explores the risk
of COVID-19 infection in areas where Beijing has had outbreaks from a perspective of
geographic and influencing factors. We also use machine learning techniques to measure the
risk of outbreaks and identify vulnerable areas at the neighbourhood scale for each region
in Beijing. It was our goal to comprehensively analyze the risk of COVID-19 outbreaks and
the causes of such outbreaks in different areas of Beijing. It is expected that this study will
provide technical support for future normalized epidemic prevention work in Beijing, as
well as research paradigms for refined risk diagnosis in other regions.

1.2. Literature Review

In our attempt to achieve the goals described above, the most important thing was
to identify the risk elements in urban spaces and to judge and predict the risk level in
order to implement localized prevention and control the city’s vulnerable areas. A review
of previous studies since the outbreak of COVID-19 revealed that research on the risk of
spreading COVID-19 in urban spaces is divided into two categories: the identification of
risk elements in cities using geography [10] and statistics [11,12], and the prediction of
regional risk through the establishment of risk indicators and machine learning.

Since the COVID-19 outbreak, scholars have been actively studying the elements
that influence the spread of COVID-19 in cities; various statistical models have been used
in such studies. For example, one study used hierarchical linear regression models and
ridge regression models to explore the factors influencing the built environment of the
outbreak in 150 communities in Wuhan [13]; another used stepwise regression models to
explore the influence of urban geometry and sociodemographic factors on the spread of
the outbreak in Hong Kong [14]; in addition to the use of regression models, structural
equation models have also been widely used in the study of the outbreak, from the macro
level in the United States [15] to the city level in Huangzhou [16], and some environmental-
level influences have been confirmed. Geographically weighted regression GWR and
mixed geographically weighted regression MGWR were used as practical tools to explore
the spatial heterogeneity of each influencing factor in geographic level studies and to
explore the spatial heterogeneity of urban influencing factors in China [17] and the United
States [18].

At the same time, research targeting urban spatial risk prediction using risk elements
in cities has been increasing. The establishment of risk indicators has been widely used
in traditional risk measurement. Some scholars have established a risk evaluation system
based on various urban elements to quantify the environmental risk of each region and
city [19], while others have used the resilience of communities to cope with the COVID-
19 as a risk evaluation indicator, as judged based on multiple dimensions such as the
infrastructure, socioeconomic, and environmental conditions of the community [20]. Other
studies have used the identified potential COVID-19 risk table to make a preliminary
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determination of urban classes and then analyzed the spatial relationship between urban
form and population density to obtain the risk factors that most influence the spread of
the disease [21]. In addition to the more traditional research methods, machine learning
methods have also been widely used in risk prediction. Some scholars took Wuhan and
Guangzhou as examples and used urban population data and various environmental
factors of these cities as a basis for logit regression [22,23]. In addition, several studies have
used structured Gaussian models with demographic, socioeconomic, and political data and
demographic information as the computational framework to predict regional risk for U.S.
counties [24] or the Cantabria region of Spain at the community level [25]. Maxent machine
learning models have also been widely used for the evaluation of regional epidemic risk
levels [26,27]. In addition, a portion of research has also focused on a specific element for
risk prediction, with building density [28] and human activity patterns [29] being used to
determine and identify potential site transmission risk in cities.

Among the research on COVID-19, there is no shortage of studies specific to Beijing.
For example, one study conducted a sociological analysis of the behavioral patterns of
different Beijing populations during the COVID-19 epidemic and identified the entire
population as being at risk [30]. Factors influencing the differences in COVID-19 epidemic
prevention behaviors among the college student population in Beijing have also been
studied [31]. Additionally, environmental factors have been used as a focus of research.
Micro aspects, such as the effect of indoor air quality [32] and indoor ventilation [33],
as well as macro aspects, such as the spatial heterogeneity of COVID-19 cases and their
environmental influences, have been studied in various districts of Beijing [9]. Different
environments have been shown to have different effects on people’s psychology during the
COVID-19 epidemic [34,35]. Simulation studies of COVID-19 risk [36] are also increasing,
e.g., of the impact of the Beijing rail network on the spread of COVID-19 [37], and of
COVID-19 risk in the “Xinfadi market,” an area with a high prevalence of COVID-19 [38].

A review of previous studies showed that current research on the risk of transmission
in urban spaces is very in-depth. However, there are still some research gaps. (1) Research
on the influencing factors of COVID-19 risk in cities is mainly based on administrative
divisions such as cities, counties, and streets. There is a lack of neighborhood-level research,
and the scale is too large to allow for the fine-tuning of prevention and control in cities.
(2) Research on influencing factors and prediction of epidemic risk is chiefly conducted
independently. In devising prevention and control measures for cities, each region’s
impact factors and risk levels are combined. (3) Few studies are exploring the relationship
between the urban environment and COVID-19 risk in Beijing, and there needs to be
more research on accurately identifying risk elements in cities in advanced epidemic
prevention and control. (4) Although some studies predicted the outbreak in Beijing, they
were all in the early stages of the outbreak. As the COVID-19 virus continues to evolve
and epidemic prevention policies continue to change, the risk of an outbreak has likely
changed significantly.

1.3. Framework

We established a grid network with a cell of size 500 m × 500 m in the ArcGIS
software as the statistical unit for our experiments. We obtained the geographic coordinate
data of COVID-19 cases in Beijing (from June 2020 to October 2022) from the official
website of the Beijing Health and Health Commission. We quantified the COVID-19 risk
into the aforementioned statistical unit. Spatial autocorrelation was then used to explore
the clustering characteristics of the epidemic risk in Beijing. Based on a previous study,
20 COVID-19 risk evaluation features were established. After statistical tests, eight features
were identified as the most significant influences on the epidemic: elderly population,
shopping and service facilities, companies, residential areas, living service facilities, roads,
total population, and scientific, educational, and cultural facilities. After identifying these
features, a multiple geographically weighted regression (MGWR) analysis was performed
on the statistical units according to epidemic risk in order to determine the differences in
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the strength of influence of different features in each statistical unit. Next, we trained a
neural network classification model to classify and predict the risk of locations within the
Sixth Ring Road in Beijing that have not yet been significantly affected by the epidemic
(Figure 1).
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In summary, this article’s research objectives and contributions are as follows.

(1) To explore the risk clustering characteristics of COVID-19 in Beijing.
(2) To identify and analyze the influencing factors affecting the risk of COVID-19.
(3) To classify and predict the COVID-19 risk in the Sixth Ring Road area of Beijing.

Section 2, focuses on the information and methods used, Section 3 presents the results
and a discussion in response to the results, and Section 4 summarizes the article.

2. Materials and Methods
2.1. Study Area

Beijing is located at longitude 115◦25′–117◦30′ East and latitude 39◦28′–41◦05′ North.
There are 16 districts in the city, with a total land area of 16,411 square kilometers, of which
3670 square km are construction areas. The scale of urban and rural construction land is
kept at 2790 square km. At the end of 2020, the population of Beijing was 2,189,095 people.
In other words, the population density of Beijing is 1334 people per square km, while
that of built-up areas in the city is as high as 7847 people per square km. Beijing has two
international airports and 11 railway stations, making it an important transportation hub
in China and East Asia. Beijing’s high population density and its high-frequency of people
movement inevitably exposes it to the risk of a COVID-19 outbreak. The high frequency of
human movement in the city will result in a constant importation of cases into the inner
districts. Its high-density residential environment will also increase the likelihood and
extent of transmission of COVID-19.

Several epidemics of COVID-19 have occurred in Beijing since January 2020. In early
2022, the insidious and more infectious nature of the imported Omicron strain made
detection extremely difficult and led to multiple epidemics in Beijing. In this paper, the
MGWR model was applied using Beijing as the study area. The area within the sixth ring
road was used as the scope of the neural network classification model prediction for urban
space COVID-19 risk identification and to explore influencing factors (Figure 2).
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2.2. Research Materials
2.2.1. COVID-19 Risk Data Acquisition and Processing

After combining different studies [22,23,26,27], we decided to quantify the risk of the
epidemic by the number of COVID-19 cases present in each statistical unit. This study
collected the geographic location of COVID-19 cases from January 2022 (Omicron variant
introduced to Beijing [39]) until 15 October 2022, taken from the Beijing Municipal Health
and Wellness Commission (http://wjw.Beijing.gov.cn/ (accessed on 15 October 2022)).
After the geographic locations of the cases had been statistically organized, their latitude
and longitude coordinates were determined using Baidu Maps and converted into point
data.

Meanwhile, this study used ArcGIS software to establish a 500 m× 500 m neighborhood-
scale statistical fishing network for Beijing (according to the 15-min living circle proposed
by the Shanghai Municipal Government in 2016 to delineate the scale [40]). This indicated
the number of new virus cases within each table with a 500 m search radius to determine
the existing epidemic risk index within each statistical unit. In this way, 2497 risk units were
identified. We applied these data to our MGWR model and to train the neural network
prediction model (Figure 3).

2.2.2. Space Autocorrelation

However, it is essential to note that some environmental factors, despite their influence
on the incidence of epidemics, are spatially heterogeneous and uncertain in their degree
of influence [41]. Therefore, in identifying area-specific vulnerable spaces, detailed site-
specific analyses and judgments are required to determine the elements influencing the
risk of epidemic transmission.

In summary, we selected six dimensions and 20 variables, including Commercial
prosperity [16], Transportation accessibility [17], Convenience of living [16], Population
Gathering [13], Land use [42], and Urban environment [43], for our analysis of influencing
factors and prediction of the degree of risk (Table 1).

http://wjw.Beijing.gov.cn/
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Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited.

Category Variable Data Source Data Type and Calculation Formula

Commercial prosperity

Dining
Facilities (1)

Density of 10 categories of food and beverage attribute
ponts of interest (POI), including restaurants and fast food

restaurants
Shopping
Facilities (1) Density of 20 categories of shopping attribute POI, such as

convenience stores and shopping malls

Company (1) Density of 5 types of company attribute POI, including
factories and small and micro-enterprises

Financial
Service Facilities (1) Density of 7 types of financial service attributes POI, such

as banks and insurance companies

Hotel (1) Density of 3 types of accommodation service attributes
POI, such as hotels and B&Bs

House Price (2)

Kerriging interpolation method to estimate house prices:

Ẑ0 =
n
∑

t=1
γiZi (1)

where Ẑ0 is the estimated value at point (x0, y0), γi is the
weight coefficient, and a indicates the contribution of the

observation at each spatial sample point Zi to its estimated
Ẑ0.
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Table 1. Cont.

Category Variable Data Source Data Type and Calculation Formula

Transportation accessibility

Transportation Facilities (1) Density of 12 types of traffic service attribute POI, such as
bus stops

Road Density (3) Density of the length of roads within the statistical unit

Convenience of living

Public Service Facilities (1) Density of 5 types of public service attribute POI, such as
public toilets and public telephone booths

Living Service Facilities (1) Density of 23 types of living service attribute POI, that
serve life, except for shopping

Medical and health care
service facilities (1) Density of 8 types of medical attribute POI, such as

hospitals, pharmacies, etc.
Educational and Cultural

Facilities (1) Density of 20 shopping attribute POI, such as convenience
stores and shopping malls

Population Gathering
Population Structure (4) Density of population over 65 years old

Population
Density (4) Total population density

Residential area (1) Density of residential area POI

Land use

Land Use Mix (1)

Dx =
n
∑

i=1
(pi × ln pi), (i = 1, 2, 3, . . . , n) (2)

where Dx is the functional mix of the statistical unit, i is the
number of POI categories in the statistical unit, and pi is the
ratio of the number of POIs of category i in the statistical

unit to the total number of POIs in the neighborhood

Functional
density (1)

Di =
Ci

Si
, (i = 1, 2, 3, . . . , n) (3)

where Di is the POI data point density fraction of a
statistical unit (min/km2), Ci is the sum of POI values

within that statistical unit, and Si is the area of the
statistical unit (km2)

Urban Environment

Vegetation Cover (5) Normalized Difference Vegetation Index

Park Green Space (1) Density of three park green space attribute POI, such as
park plaza

Urban
topography (1) DEM Elevation data

Data source: (1) Gaode Map (https://www.amap.com/ (accessed on 15 October 2022)); (2) Using Python crawler
technology to get from the Anjou website (https://beijing.anjuke.com (accessed on 15 October 2022)); (3) OSM
Information Open Platform (https://www.openstreetmap.org/ (accessed on 15 October 2022)); (4) Worldpop
website (https://www.worldpop.org/ (accessed on 15 October 2022)); (5) Quoted from [44].

2.3. Methods
2.3.1. Space Autocorrelation

Spatial autocorrelation analyses may be divided into global correlation and local
correlation, where global correlation, i.e., Moran’s l, is used to analyze the correlation
characteristics exhibited by the study object at the global scale and to determine whether
there is spatial autocorrelation between the whole study object and the samples in the whole
domain. Local spatial correlation (LISA) [45] is used to analyze the correlation between the
study object and its neighboring regions at various scales; as such, it can better reflect the
local characteristics of the study object in space than global correlation. This paper aims to
explore whether there was spatial clustering of all outbreak locations in Beijing to provide
a specific analysis of the causes of the distribution of the outbreak. Therefore, Moran’s l
was used to explore the spatial autocorrelation of COVID-19 outbreak locations.

The Global Moran’s I method of global spatial autocorrelation is given as

I =
n ∑n

i=1 ∑n
i=1 Wij(xi−x)(xj−x)

∑n
i=1 ∑n

i=1 Wij ∑n
i=1(xi−x)2 (4)

where xi and xj are the attribute values of features i and j, Wij is the spatial weight between
features i and j, and n is the number of features in the dataset.

https://www.amap.com/
https://beijing.anjuke.com
https://www.openstreetmap.org/
https://www.worldpop.org/
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The global autocorrelation statistic indicates the existence of clusters, while local
autocorrelation indicates the location and spatial association type of the clusters. To further
study the distribution pattern of COVID-19 epidemic infection risk in Beijing, spatial
autocorrelation was used to identify locally accessible clusters. Due to the characteristics of
spatial heterogeneity, the distribution of COVID-19 risk appeared to be clustered in different
geographical locations. LISA was applied to study the heterogeneity characteristics of the
clustering of COVID-19 epidemic risk distribution, calculated as follows:

Ii =
n (xi−x)−∑n

i=1 ∑n
i=1 wi,j(xj−x)

∑n
i=1(xi−x)2 (5)

where xi and xj are the attribute values of features i and j, wi,j is the spatial weight between
features i and j, and n is the number of features in the dataset.

2.3.2. Feature Screening

Due to the large set of candidate variables, the selected variables had to be filtered
according to the 20 applied urban features that affect the risk of COVID-19 transmission.
The specific feature selection steps were as follows.

Step 1: First, we performed t-testing of each indicator by Ordinary Least Squares (OLS)
with the following formula:

yi = β0 + xiβ + εi (6)

In the i statistical cell, yi is the risk coefficient of the epidemic within the statistical
cell, β0 is the intercept, xi is the vector of selected explanatory variables, β is the vector of
regression coefficients, and εi is the random error term.

Step 2: After selecting indicators, the inflated variance factor (VIF) was used to detect
the covariance between indicators with the following equation:

VIF = 1
1−R2

i
(7)

where Ri is the negative correlation coefficient of the independent variable xi on the
remaining independent variables for regression analysis; the larger the VIF, the greater the
possibility of covariance between the independent variables.

2.3.3. Multiscale Geographically Weighted Regression (MGWR)

Global regression models, such as OLS, and the Spatial Error Model (SEM) implicitly
assume that the relationship between the explanatory and dependent variables is spatially
smooth, meaning that they assume that the relationship between them is spatially un-
varying [46]. However, if this assumption is relaxed, the extent to which the explanatory
variables explain the dependent variable is inconsistent across locations, i.e., the “parame-
ters vary spatially”. Brunsdon et al. [47] proposed a geographically weighted regression
GWR as an extension of the general regression model. It allows these parameters to be
derived separately for each location [48].

Although traditional GWR has been dramatically improved relative to global regres-
sion, it still assumes that the scale of all correlations is spatially constant [49]. However, in
many cases, including the propagation of COVID-19, this assumption is invalid, because
different propagation processes involve different spatial scales. MGWR was inspired by
GWR; it can be used to study relationships at different spatial scales and through different
bandwidths [49]. It can be expressed as [50]:

yi =
k
∑

j=1
βbwj(ui, vi)xij + εi, i = 1, 2, . . . , n (8)

where xij is the jth predictor variable, (ui, vi) is the center-of-mass coordinate of statistical
unit j, and βbwj represents the bandwidth of the regression coefficient of the jth variable. In
practice, MGWR is usually considered as a generalized summation model (GAM); thus,
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it allows calibration using a backward fitting algorithm [50]. By redefining MGWR as a
GAM, it is possible to obtain:

yi =
m
∑

j=0
fij + ε (9)

where fij (which replaces βbwj in the previous equation) is the smoothing function for the
jth explanatory variable. The calibration model will generate a set of bandwidths, one for
each jth explanatory variable, and the difference in bandwidths indicates the difference
in spatial scales. By obtaining the effect of scale in the spatial process, MGWR can more
accurately obtain spatial heterogeneity [50].

2.3.4. Neural Network Classification Model

The main framework of our model is illustrated in Figure 4. Formally, given a set
of input features X = {x1, x2, . . . , xn} consisting of n-dimensional features, our model is
trained to predict the risk value v and the risk level y. Specifically, we first concatenated
all the input features to get a n-dimensional vector, which was then encoded by a fully
connected layer to get hidden representation H:

H = σ(WX + b) (10)

where σ is the activation function (ReLU), W ∈ Rn×d1 and b ∈ Rd1×1 are trainable pa-
rameters. Then, hidden representation H is sent into a projection layer to calculate the
predicted regression value o of risk. Here, the loss function we used was the Mean-Square
Error (MSE):

LMSE = − 1
N

N

∑
i=1

(oi − õi)
2 (11)

where õi and oi are the predicted and ground truth value of the i-th example, respectively,
and N is the number of examples in a mini-batch. After this, the predicted value is sent
into another fully connected layer to get hidden representation H′:

H′ = σ(W ′o + b′) (12)

where W ′ ∈ R1×d2 and b′ ∈ Rd2×1 are trainable parameters. In our experiment, d1 was set
as 256 while d2 was set as 128. Then, hidden representation H and H′ were concatenated
and sent into a projection layer and a softmax later to get the final probability distribution
of the risk level. For classification, the loss function we used was cross-entropy:

LCR = − 1
N

N

∑
i=1

yi log(y′ i) (13)

In order to balance the effects of the two parts of the loss, we used a manual hyperpa-
rameter γ, set to 5 during the experiments, as the adjustment factor.

L f inal = LMSE +
LCR

γ
(14)
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Figure 4. Neural network classification model. (Note:The same color represents the same set of
parameters for the same set of neural networks.)

3. Results and Discussion
3.1. Spatial Autocorrelation of COVID-19 Risk

By Global Moran’s I analysis, the values passed the 1% significance level test (p-value
less than 0.00001) with a highly significant Z-score of 268.87, indicating that the distribution
of COVID-19 risk levels was not random, but rather, had a high degree of clustering
(Figure 5a).
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After the spatial clustering of COVID-19 epidemic risk had been detected, a further
LISA analysis was performed to investigate the clustering types. (Figure 5b) The results
of the LISA measurements are shown in Figure 5b. The urban areas of Beijing (Xicheng,
Dongcheng, Haidian, Chaoyang, Shijingshan, and Fengtai) showed H-H type clusters. In
contrast, the edges of the urban and suburban areas showed L-H type clusters. This implies
that a buffer zone of lower risk existed between the risky areas. It can be concluded that
the risk of a COVID-19 outbreak is higher within the urban areas of Beijing than in the
suburban areas. The risk of COVID-19 showed a decaying trend from the interior to the
edge of each district. This indicates a clear administrative boundary between the urban
and suburban areas of Beijing for outbreak control. Both urban and suburban areas have
tried to contain the COVID-19 risk and inhibit its spread.

3.2. Results of MGWR and Discussion
3.2.1. Variable Filter Results

After feature selection and correlation analysis, 8 of the 20 features selected for the
article were finally identified for inclusion in the MGWR model calculations. These features
included population density, population structure, road density, residential area, company,
educational and cultural facilities, living service facilities, and shopping facilities (Table 2).
As shown in Table 2, the selected variables had relatively low multicollinearity in the OLS
model, because all VIFs were below the threshold of 5 (all VIFs < 5) [51] and were positively
correlated with COVID-19 risk (p < 0.001). The OLS model gave an R2 of 0.597, which
allowed the subsequent MGWR model to provide a baseline.

Table 2. Summary statistics of the OLS model on selected variables in modeling COVID-19 incidence risk.

Test Variable p-Value VIF OLS Models
Diagnostic Indicator

Population Structure 0.000 *** 4.220

R2 = 0.6
Adj.R2 = 0.597

F = 185.984
p = 0.000 ***

Population density 0.000 *** 2.329
Road density 0.000 *** 1.803

Company 0.000 *** 2.593
Shopping Facilities 0.000 *** 2.649

Residential area 0.000 *** 3.100
Educational and

Cultural Facilities 0.000 *** 1.998

Living Service Facilities 0.000 *** 3.500
Note: The results in the above table are regressed based on robust labeling errors, with t-values in parentheses
and a significance level of *** p < 0.01.

3.2.2. MGWR Model Results

As shown in Table 3, the results of MGWR showed that the adjustment R-square was
0.743. The eight selected indicators explained the dependent variable better than the OLS
regression model established in Table 3.

Table 3. MGWR model regression results statistics.

Variables Mean STD Min Median Max Model Diagnostics

Intercept 1.968 0.593 1.021 1.809 3.744

R2: 0.770
Adj.R2: 0.743
AIC: 5419.568

AICc: 5484.815
BIC: 6986.134

Road Density −0.137 0.075 −0.248 −0.137 0.002
Population density −0.144 0.001 −0.147 −0.144 −0.142

Population Structure 0.608 0.326 −0.122 0.573 1.878
Shopping Facilities 0.073 0.002 0.067 0.073 0.076

Company 0.064 0.002 0.059 0.063 0.069
Residential area 0.171 0.067 0.020 0.180 0.327

Education and Cultural Facilities −0.033 0.001 −0.037 −0.033 −0.029
Living Service Facilities 0.090 0.166 −0.216 0.070 0.526
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The results of the MGWR model allowed us to examine the relationship between
COVID-19 risk and the selected characteristics, as well as the spatial variation in the
influence of each feature. As can be seen in Figure 6, the fit of each statistical unit var-
ied considerably, showing a gradual decrease from the middle to the surrounding area
in general. It can be seen that a poorly fitted ring occurred in the central Beijing area.
This indicates that the explanatory power of the selected features in this region is highly
differentiated in space.
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The statistical results of each characteristic coefficient of the MGWR model are shown
in Table 3. Elderly population density, shopping service facilities, corporate enterprises,
residential areas, and living service facilities showed a positive influence on COVID-19
risk. Road density, total population density, and density of scientific, educational, and
cultural facilities showed a negative effect on COVID-19 risk. The indicator of standard
deviation reflects the dispersion degree of each characteristic on the likelihood of COVID-
19 occurrence; a larger standard deviation represents a more significant difference in the
degree of influence in different neighborhoods. The densities of population, shopping
service facilities, corporate enterprises, and scientific, educational, and cultural service
facilities showed global influence. In contrast, the effect of the remaining four characteristics
on COVID-19 risk showed evident spatial heterogeneity.

The spatial distribution of the coefficients for each feature is shown in Figure 7:

· Overall, the effect of road density on COVID-19 risk varied widely within statistical
units, reflecting significant spatial heterogeneity. The impact of road density on the
epidemic gradually diminished from the urban areas to the suburban areas of Beijing.

· Elderly population density had the most significant positive effect on COVID-19 risk.
It was highly spatially heterogeneous, with its influence showing an overall decay
from the center to the northeast and southwest. Even in the central city, it offered
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substantial spatial heterogeneity: its power was most significant for the Fengtai
district. Additionally, in Beijing’s urban sub-center (Tongzhou district), the impact of
elderly population was relatively high.

· Population density strongly negatively affected COVID-19 risk. However, the spatial
heterogeneity of its effect was weak, showing a trend of decay from northwest to
southeast. The Haidian and northern Chaoyang and western Shunyi and Changping
districts showed relatively strong results.

· For the density of shopping service facilities, there was a positive effect on the risk of
COVID-19 outbreak. The overall distribution showed a gradually decreasing effect
from northeast to southwest. Still, the overall difference was not significant, which, to
some extent, reflects the slightly higher commercial vitality in the northeast compared
to the southwest.

· Overall, corporate firms had a positive effect on COVID-19 risk. Their influence
gradually decreased from the western part of Beijing to the east and showed a more
substantial impact in parts of Haidian, Changping, Xicheng, and Fengtai.

· Residential areas had a strong positive effect on COVID-19 risk, with considerable
spatial heterogeneity. This was shown by the overall higher impact in the southern
part of central Beijing than in the northern region, although the suburban areas
presented a higher result in the northeast and southeast. The northern areas of Daxing,
Chaoyang, and Haidian, which are located in the south, as well as Chang, showed
relatively weaker impacts.

· Science, education and cultural service facilities negatively influenced COVID-19 risk.
However, their spatial heterogeneity was weak, and the overall impact gradually
increased from the west to the southeast. This impact was greatest in the Tongzhou
and Changping districts.

· For amenities, there was also a substantial impact on COVID-19 risk with signifi-
cant spatial heterogeneity. This feature presented the most potent negative effect
in Tongzhou and Changping districts but had a strong positive effect in Fengtai,
Changping and Fangshan districts, with Fengtai being the most positive. The spatial
heterogeneity of this feature was most evident in the center of the city, with different
degrees of influence in each of the six districts.
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3.3. Neural Network Classification Model Prediction Results
3.3.1. Experimental Results

In this study, a risk prediction for the area within the Sixth Ring Road of Beijing was
performed using the adopted neural network classification model. In this case, 2497 statisti-
cal units with confirmed cases were used as the training set. It should be noted that as the
neural network model works differently from the OLS and MGWR models, 20 influencing
factors were used as the features for training, and risk was classified into 5 categories as the
labels for the features for model training. The results of the model training are as follows
(Table 4).

Table 4. Neural network classification model training results.

Accuracy Recall Precision F-Measure

Model 0.874 0.874 0.834 0.847

3.3.2. COVID-19 Risk Prediction Results

The trained neural network classification model was used to predict the COVID-19 risk
level in a 500 m× 500 m grid for the area within the sixth ring road of Beijing. The prediction
results are shown in Figure 6. According to the results, the overall distribution of COVID-19
risk predicted by the model decreases gradually from the center to the surrounding area.
However, Dongcheng and Xicheng Districts, located in the center of Beijing, are not at the
highest risk of an outbreak. In contrast, the western part of Chaoyang District and the
northeastern part of Fengtai District are at the highest risk in the region. The predictions for
some of Beijing’s suburban areas revealed that the Beijing urban sub-center in Tongzhou
District has a high predicted risk value. The Liangxiang urban area in Fangshan District is
also at high risk. High risk was also noted near Xisanqi, on the border between Changping
and Haidian, and near Beijing International Airport in Shunyi. The predicted results are
relatively consistent with the general perception. It is important to note that even in areas
with a generally high risk, some areas are at low risk. The projections can provide the
government with a risk guide for outbreaks and, together with the MGWR results, can
be used to tailor outbreak prevention policies at the neighborhood scale for each district
(Figure 8).
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3.4. Global Estimation of MGWR Model Results

As the number of MGWR operational results was 2497 statistical samples of different
impact factors, not all regions were included. In order to comprehensively assign spatial
heterogeneity weights to the different COVID-19 risk impact factors for each statistical cell,
the results of the MGWR model were estimated globally (within the Sixth Ring Road of
Beijing) using kriging interpolation (Equation (1)) (Figure 9). The following analysis was
derived by combining the prediction results of COVID-19 risk and the global estimation
results of each influencing factor:

· The predicted risk locations of the epidemic in the Haidian District were mainly within
the Fifth Ring Road and the northeastern part of the Haidian District. Combined
with the results of the COVID-19 epidemic risk estimation, it was found that the
influence of roads, companies, and shopping facilities was more substantial in the
Haidian District. In contrast, the influence of demographics was particularly evident
in Haidian District (the part within the Fifth Ring Road). In the case of the epidemic
in the Haidian District, in the light of the analysis results, a focused and targeted
prevention and control was adopted for each area.

· The prediction results showed that most areas in Chaoyang District (except for the
northeast part) have a high risk of epidemic. The spatial heterogeneity of the influ-
encing factors was also evident in Chaoyang District. The influence of population
structure and amenities was more substantial in the northern and southern parts of
Chaoyang District. The influence of residential areas and educational and cultural
facilities decreased from east to west, while the influence of road density and company
density decreased in the opposite direction. The influence of population density and
shopping facilities decreased from north to south. In formulating the epidemic policy
for Chaoyang District, different prevention measures should be adopted according to
the different influencing factors and risks.

· Parts of Changping and Shunyi within the Sixth Ring Road are also at high risk,
despite their small size. Among the various influencing factors, elderly population
was found to be influential in Changping, while all other influences were primarily
global for these two areas. More consideration should be given to the risk of special
populations in epidemic prevention, and appropriate measures should be taken in the
locations with higher risk.

· From the predicted results, the risk of an epidemic was found to be higher in most
areas of Fengtai. Indeed, these areas were particularly badly affected by the epidemic
in the last three years. Among the influencing factors, population structure and living
service facilities showed substantial spatial heterogeneity in Fengtai. A strong influ-
ence was produced in the central and western parts of Fengtai. Therefore, epidemic
prevention and control in Fengtai should apply appropriate and strict prevention
and control, and targeted measures should be taken to address different influencing
factors.

· For the area between the fifth and sixth ring roads in southern Beijing, which are
parts of Fangshan, Daxing, and Tongzhou, respectively, the prediction results showed
a higher risk. The impact factors also showed different levels of impact in each
area, with residential areas having a higher impact at the intersection of Daxing and
Tongzhou, while living services were shown to have a higher impact on the Fangshan
area.

· Shijingshan is located in the western area between the fifth and sixth ring roads; its
southern area is at higher risk due to the impact of residential areas and living service
facilities.

· For the Dongcheng and Xicheng districts, the risk was generally predicted to be higher.
In contrast, spatial heterogeneity was weak among the eight risk-influencing factors
analyzed, most of which are global influences. Since the two districts are located
in the center of Beijing, bearing essential urban functions, and have high risks, all
impacting factors should be strictly controlled to prevent new outbreaks.
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4. Conclusions

In establishing a neighborhood-scale, this study used a 500 m× 500 m fishing network
divided using the ArcGIS software as the primary research unit to study the distribution
characteristics of COVID-19 risk in Beijing, explore the influencing factors of risk distribu-
tion status, and predict the epidemic risk in the sixth ring of Beijing. We also combined
the experimental results of influencing factors to identify the key areas and critical fac-
tors for good prevention and control of the epidemic. Overall, three essential findings
corresponding to the objectives were derived.

(1) Regarding the distribution characteristics of the COVID-19 epidemic risk in Beijing.

· The distribution of epidemic risk in Beijing was found to be highly uneven,
with a high concentration within the Fifth Ring Road and an overall feature of
gradual weakening from the city center outward. It was also found that the
distribution of epidemic risk values at the intersection of districts between the
sixth and fifth rings showed an L-H clustering phenomenon, indicating that
each district has obvious administrative boundaries.

(2) Influencing factors that cause this distribution of pension resources.

· After analysis, it was found that the factors that have a strong influence on the
risk value of COVID-19 are: population structure, population density, road
density, the density of residential areas, and density of living service facilities.
In comparison, shopping facility density and educational and cultural facility
density have a weaker impact on COVID-19 risk.

The MGWR results show that population structure, living service facilities, and resi-
dential areas have the highest degrees of spatial heterogeneity among the eight selected
features. In comparison, the remaining five features have weaker spatial heterogeneity.

(3) Predictive analysis of risk for areas within the Sixth Ring Road of Beijing.

· Our predictive analysis of the areas within the Sixth Ring Road of Beijing found
that there is a high risk of COVID-19 within the entire Fifth Ring Road, with the
eastern, southeastern and southern areas showing the greatest risk, and some
areas in the northeast and west also having equally high-risk areas. Meanwhile,
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the areas outside the Fifth Ring Road, such as Tongzhou, Fangshan, Haidian
and Changping, are all high-risk areas.

The COVID-19 epidemic has lasted nearly three years. After understanding the virus
and successfully developing vaccines, COVID-19 does not bring as much fear as it did in
early 2020. In this “post-epidemic era”, it is necessary to ensure people’s well-being while
carrying out essential production and daily activities. Therefore, prevention and control
measures typically focus on the key areas and influencing factors in an attempt to make
epidemic prevention and control more specific and localized. The contribution of this study
is to investigate the characteristics of COVID-19 risk distribution in Beijing, explore and
discover the urban elements affecting COVID-19 risk distribution, and predict the COVID-
19 risk level in areas with high epidemic incidence. It is worth noting that the prediction
of the risk level of COVID-19 in the Shijingshan area in this study was corroborated by
recent statistics. This provides both a reference basis for advanced epidemic prevention
and control in Beijing and a research paradigm for the study of epidemics in other cities.
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