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Introduction

This document contains supplementary material for the systematic literature review
presented in [1]. Each of the following sections contains supplementary material corre-
sponding to the section with the same number and/or title in the original article.

3.3. Selection Criteria

The following is the complete list of the 108 articles reviewed in alphabetical order:
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75],
[76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93],
[94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109].

4.1. What types of representations were learnt?

In this section, for each individual data type, we state the number of articles that
considered the problem of learning representations of that type. For each type, we also list
the corresponding articles and describe the specific data they used.

Location Representations

A total of 10 articles considered the problem of learning representations of locations
(see Table S1 for details).

Table S 1. Location representations

Article Location
[16] buses travelling in a street network
[67]
[14]

telecommunication base stations that mobile
devices connect to

[61] WiFi hotspots that mobile devices connect
to

[90] geotagged images in Flickr, an image shar-
ing platform

[64] posts on Twitter, a social media platform
[69] POIs
[85] ‘locations’, which may be POIs
[39] customer home locations
[91] POIs and geotagged images in Flickr
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Individual POI Representations

A total of 31 articles considered the problem of learning representations of individual
POIs. Table S2 displays some of the most frequently used data sources. In some cases,
individual POIs are modelled as a tuple of multiple features. [44] modelled individual
POIs as a tuple of an individual POI plus a user. Consequently, personalised individual
POI representations were learnt. [42] modelled individual POIs as a tuple of an individual
POI plus a time. Consequently, temporal individual POI representations were learnt. The
following works also considered the problem of learning representations of individual
POIs: [8], [13], [21], [22], [29], [32], [33], [57], [68], [86], [99] and [100].

Table S 2. Individual POI representations

Article POI source
[60]
[46]

[101]
the LBSNs Foursquare and Gowalla

[87]
[79]
[28]

the review website Yelp

[7]
[42]
[70]

the Chinese review website dianping.com

[34] the web map service Baidu Maps
[104]
[106]

the New York City data portal NYC Open
Data

[84]
[18]
[2]
[5]
[40]

the LBSN BrightKite

[55] Plancast, an event-based social network

POI Type Representations

A total of 9 articles considered the problem of learning representations of POI types.
The sources of POIs are provided in Table S3. Note that the web service Amap mentioned
in this table is also known as Gaode in Chinese.

Table S 3. POI type representations

Article POI source
[46] the LBSNs Foursquare and Gowalla
[35] the web map service Baidu

[108]
[31] the web map service Amap

[19] a real estate website
[85] the Facebook social network place graph
[82]
[48] the review website Yelp

[58] the Ordnance Survey

Region Representations

A total of 18 articles considered the problem of learning representations of regions.
In many articles, the regions correspond to grid cells of various sizes (see Table S4 for
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details). In the article [36], a region is modelled as a tuple of a cell plus a time. Hence,
spatial-temporal representation is learnt.

Table S 4. Representations of regions defined as grid cells

Article Region

[37] 0.30km × 0.80km
0.22km × 0.28km

[47] 0.5km × 0.5km
[95] 0.3km × 0.3km
[50] 0.3km × 0.3km

[63]
0.5km × 0.5km
1.0km × 1.0km

10.0km × 10.0km

[108]

4.0km × 4.0km
1.0km × 1.0km

0.25km × 0.25km
0.0625km × 0.0625km

[36] 10.0km × 10.0km

In other articles, the regions correspond to less regular shapes than rectangular cells
(see Table S5 for details). A structural region in [77] is composed of a set of spatially
connected road segments, serving as some traffic role, e.g., overpass and crossing. A
functional zone consists of multiple structural regions, providing some kind of traffic
functionality, e.g. shopping areas and transportation hubs. The grid cells in [58] are of sizes
0.2km × 0.2km, 0.5km × 0.5km and 1.0km × 1.0km.

Table S 5. Representations of regions defined as less regular shapes

Article Region
[110] residential communities or regions

[42] urban communities consisting of one or
more residential complexes

[85] places, e.g. a park
[17] cities

[43] populated places in the geographical
database Geonames

[77] functional zones and structural regions
[24]
[96] circular regions centred at a given point

[70] residential communities

[15] Neighborhood Statistical Areas defined by
the USA government

[58] both UK census units and grid cells

Time Representations

A total of 7 articles considered the problem of learning representations of time (see
Table S6 for details).

User Representations

A total of 27 articles considered the problem of learning representations of users (see
Table S7 for details).
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Table S 6. Time representations

Article Time window
[36] a month of the year
[99]
[42] a day of the week

[64] an hour of the day
[71] an hour of each day of the week

[95]
[50]

the total time duration divided by the num-
ber of time windows, which is a hyper-
parameter

Activity Representations

A total of 10 articles considered the problem of learning representations of activities.
In [59], [78], [10], [26], [51] and [83] the activities correspond POI checkins in a LBSN. In
many cases, activities are modelled as tuples of multiple features. For example, in [59] a
checkin equals a tuple of the individual POI, the region containing this POI, the user who
performed the checkin and the time the checkin happened. Similarly, in [83] a checkin
equals a tuple of the individual POI, the type of POI and the time the checkin happened.
In [93] and [76] the activities correspond to posting on the social media platform Twitter.
In both of these articles, the activities are modelled as a tuple of three features equalling
the text, time and location of the post. In [94] the activities correspond to both checkins
to POIs in a LBSN and posting on the social media platform Twitter. In [16] the activities
correspond to a bus being en route, stopped at a bus stop, stopped at a traffic signal and
stopped at other stops.

Event Representations

A total of 4 articles considered the problem of learning representations of events. In
[53] representations of traffic accidents were learnt. In [45] representations of time and
weather condition tuples were learnt; that is, a temporal weather representation. In [71]
representations of event types were learnt. In this article, an event is modelled as a location
and time tuple. In [15] representations of crime types were learnt.

Location Trajectory Representations

A total of 15 articles considered the problem of learning representations of location
trajectories (see Table S8 for details).

Activity Trajectory Representations

A total of 7 articles considered the problem of learning representations of activity
trajectories. In all articles, the trajectories correspond to trajectories of POI checkins in a
LBSN [6], [26], [50], [84], [95], [105], [107].

Text Representations

A total of 12 articles considered the problem of learning representations of texts (see
Table S9 for details).

Street Segment & Intersection Representations

A total of 6 articles, including [25], [73], [27], [38], [77] and [109], considered the
problem of learning representations of street network segments.

A total of 2 articles, including [97] and [73], considered the problem of learning
representations of street network intersections.
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Table S 7. User representations

Article User
[87]
[10]
[60]
[13]
[22]
[18]
[32]
[69]
[79]
[33]
[68]
[21]
[86]
[80]

[100]
[2]
[28]
[83]
[8]
[40]

a user of a LBSN such as Foursquare and
Gowalla

[64]
[103]
[66]

a Twitter user

[14] a mobile phone user
[20]
[75] a vehicle driver

[44] a public transport user
[23] a customer of home delivery
[17] a tourist who travels to different cities

Other Representations

Finally, a total of 6 articles considered the problem of learning representations of a
data type that does not correspond to any element in the proposed taxonomy. In [19]
representations of houses were learnt. In [56] representations of knowledge graph entities
and relations were learnt where these entities and relations model geographical knowledge.
In [106] representations of bike sharing stations were learnt. In [109] representations of car
parks were learnt. In [45] representations of bike stations and time tuples were learnt; that
is, temporal bike station representation. Finally, in [49] representations of trajectories of
transportation hubs, in a multi-modal transportation network, were learnt.

4.2.1. SSRL Models Used

A total of 61 articles used a contrastive SSRL model. These articles are listed here in
alphabetical order: [2], [3], [5], [6], [7], [9], [11], [12], [13], [15], [16], [17], [18], [19], [22], [23],
[25], [27], [28], [30], [31], [34], [35], [38], [41], [43], [45], [48], [50], [51], [52], [54], [56], [59],
[60], [61], [62], [64], [65], [66], [68], [71], [73], [75], [76], [78], [79], [80], [82], [84], [85], [86],
[87], [93], [95], [97], [98], [99], [104], [107], [108].

A total of 19 articles used an autoencoder which is considered a pretext SSRL model.
These articles are listed here in alphabetical order: [8], [110], [24], [37], [39], [42], [47], [50],
[53], [55], [65], [70], [72], [74], [87], [88], [92], [95], [96].

A total of 32 articles used a pretext SSRL model other than an autoencoder. These
articles are listed here in alphabetical order: [4], [14], [20], [21], [26], [29], [32], [33], [36],
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Table S 8. Location trajectory representations

Article Trajectory
[25]
[4]
[11]
[65]
[74]
[72]
[52]
[12]

[102]
[9]

a GPS trajectory

[54]
[14]

a trajectory of telecommunication base sta-
tion locations that mobile devices connect
to

[92] an origin-destination pair of metro stations

[88] a trajectory of ship locations determined
with the Automatic Identification System

[69] a trajectory of individual POI locations

Table S 9. Text representations

Article Text
[62]
[89]
[81]
[98]

postal addresses

[85] postal addresses and place names
[41] general documents
[95]
[50] descriptions of POI check-ins in a LBSN

[79] user reviews
[64]
[3]

[30]
Twitter posts (also known as tweets)

[37], [40], [44], [45], [46], [49], [58], [63], [67], [69], [77], [81], [83], [89], [90], [91], [94], [100],
[101], [102], [103], [106], [109].

Only 2 articles used a generative SSRL model: [2] and [105].
Finally, 4 articles used a method based on matrix factorization to learn representations:

[10], [32], [57] and [69].

4.2.2. Learning Representations Independently

A total of 26 articles learnt more than one data type representation in an independent
manner (see Table S10 for details).

4.2.3. Learning Representations Hierarchically

In total 18 articles learnt more than one data type representation in a hierarchical
manner (see Table S11 for details).

4.3. What downstream problems or tasks are the learnt representations used to solve?

In this section, for each data type, we review all articles where the applications in
question use a single learnt representation of that type. We subsequently review all articles
where the applications in question used more than one learnt representation.
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Table S 10. Independently learnt representations

Article Representations
[87]
[60]
[22]
[18]
[32]
[33]
[21]
[86]

[100]
[2]

[28]
[40]

[103]
[8]

[13]

individual POIs and users in a LBSN

[79] individual POIs, users and user reviews
[46] individual POIs and POI types
[19] houses and POI types
[16] locations and activities
[56] knowledge graph entities and relations
[73] street network segments and intersections
[10]
[83] users and activities

[17] users and regions
[71] locations and times

[109] street network segments and car parks

Location Representations

Table S12 provides details about the types of downstream tasks supported by learnt
location representations. Note that the financial fraud in [39] concerns predicting whether
a customer will fail to make required payments in the future.

Individual POI Representations

Table S13 provides details about the types of downstream tasks supported by learnt
representations of individual POIs.

POI Type Representations

Table S14 provides details about the types of downstream tasks supported by learnt
representations of POI types.

Region Representations

Table S15 provides details about the types of downstream tasks supported by learnt
region representations.

User Representations

Table S16 provides details about the types of downstream tasks supported by learnt
user representations.

Activity Representations

Table S17 provides details about the types of downstream tasks supported by learnt
activity representations.
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Table S 11. Hierarchically learnt representations

Article Representations
[78] individual POIs followed by users

[25] street segments followed by location trajec-
tories

[84] individual POIs followed by activity trajec-
tories

[14] locations followed by location trajectories

[42] individual POIs and times followed by re-
gions

[85] locations, names and addresses followed by
places

[69] locations followed by location trajectories
and users

[95]
[50]

regions, times and activities followed by ac-
tivity trajectories

[64] times, locations, texts and users followed by
activities

[26] activities followed by activity trajectories
[68] users followed by individual POIs

[77] street segments followed by structural re-
gions and functional zones

[106] individual POIs followed by bike share sta-
tions

[58]
[108] POI types followed by regions

[70] individual POIs followed by regions
[15] crime types followed by regions

[109] street network segments followed by car
parks

Event Representations

[53] used representations of traffic accidents to predict traffic congestion. [71] used
representations of event type to perform event recommendation. [93] detected events such
as a protest or a disaster. [45] used representations of weather conditions and bike stations
to predict bike sharing station demand.

Location Trajectory Representations

Table S18 provides details about the types of downstream tasks supported by learnt
location trajectory representations.

Activity Trajectory Representations

Table S19 provides details about the types of downstream tasks supported by learnt
activity trajectory representations.

Text Representations

Table S20 provides details about the types of downstream tasks supported by learnt
text representations.

Street Intersection & Segment Representations

Table S21 provides details about the types of downstream tasks supported by learnt
representations of street intersections and segments.
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Table S 12. Downstream tasks supported by location representations

Article Downstream task
[67]
[61]
[91]

predicting the next location a user will visit

[91]
[90] geotagged photograph classification

[39] financial fraud detection and customer segmentation

Table S 13. Downstream tasks supported by representations individual POIs

Article Downstream task
[101]
[5]

[44]
[57]
[29]
[55]
[99]

POI recommendation

[7]
[104] POI type classification and POI clustering

[34] POI search auto-completion

Other Representations

In [45] representations of weather conditions and bike stations were used to predict
bike sharing station demand. In [49] representations of trajectories of transportation hubs
were used to perform trajectory recommendation.

Multiple Representations

In total, there were 44 articles where the applications in question used more than one
learnt representation.

A total of 16 articles considered the application of POI recommendation in an LBSN.
The majority of these works used representations of individual POIs and users [8], [22], [32],
[33], [13], [18], [87], [28], [46], [78], [100], [103], [60] and [86]. [79] used representations of
individual POIs, users and user reviews to recommend POIs. [84] used representations of
individual POIs and POI checkin trajectories to recommend POIs. [17] used representations
of users and regions to recommend travel destinations. This is distinct from POI recommen-
dation because cities instead of POIs are recommended. [40] and [21] used representations
of individual POIs and users to predict which users will visit which POIs and select the
most influential users. [68] used representations of individual POIs and users to classify
POI types.

A total of 5 articles considered the application of social link prediction or friend
recommendation in an LBSN. All of them used representations of individual POIs and
users [100], [103], [86], [60], [2].

[64] used representations of times, locations, texts, users and activities to determine
the location of and classify posts on the Twitter social media platform. [85] used repre-
sentations of locations, names, addresses and places to disambiguate place names. [83]
used representations of users and activities to identify functional zones and predict crimes.
[42] used representations of individual POIs, times and regions to identify thriving com-
munities. [106] used representations of individual POIs and bike share stations to predict
bike demand for both and new existing bike stations. [108] used representations of POI
types and regions to retrieve regions given keywords, e.g. “Sports and Leisure Service”.
[58] used representations of POI types and regions to delineate urban regions of uniform
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Table S 14. Downstream tasks supported by representations POI types

Article Downstream task

[35]
estimating the proportional distributions of
function types (i.e. functional distributions)
of urban regions

[31] determining urban functional regions
[82] measuring POI type similarity

[48]

an analysis of different POI type representa-
tions within a given city plus an analysis of
the same POI type representations between
different cities

Table S 15. Downstream tasks supported by region representations

Article Downstream task
[37] house price prediction
[47] air quality prediction
[63] land-use classification

[36] predicting climate features and the distribu-
tion of animal species

[110] predicting the number of second-hand
houses

[24]
[96] predicting the number of POI check-ins

functional use. [19] used representations of houses and POI types to predict house prices.
[95] and [50] used representations of regions, times, activities and activity trajectories to
measure trajectory similarity. [77] used representations of street segments and regions
to predict the next location, classify road types, predict destinations based on a partial
trajectory and plan routes. [70] used representations of individual POIs and regions to
predict user willingness to pay (ratio of a property price increase relative to the starting
price) and predict community vibrancy (a measure of both the density and diversity of
check-in activities). [15] used representations of crime types and regions to visually analyse
crime data. [10] used representations of users and activities to classify POI types, classify
user gender and measure user similarity. [26] used representations of activities and activity
trajectories to classify activity trajectories with respect to the user that generated them.
[16] used representations of locations and activities to detect anomalous trajectories and to
classify activities and bus routes. [25] used representations of street segments and location
trajectories to measure trajectory similarity and predict travel time and destination. [73]
used representations of street network segments and intersections to classify street intersec-
tions and segments. They were also used to predict travel time. [109] used representations
of street network segments and car parks to predict traffic volume and parking occupancy.
[14] used representations of locations and location trajectories to analyse different locations,
individuals and groups of people. [69] used representations of locations, location trajecto-
ries and users to link trajectories, i.e. identifying those trajectories that were generated by
the same individual. [56] used representations of knowledge graph entities and relations to
answer logic queries.

4.4. What machine learning models are used to solve these downstream problems?

A total of 34 articles used supervised neural network models. These articles are listed
here in alphabetical order: [16], [17], [18], [20], [26], [27], [30], [33], [35], [44], [45], [47], [49],
[53], [54], [55], [61], [62], [63], [67], [73], [77], [80], [81], [84], [87], [89], [90], [91], [98], [102],
[103], [105], [107].
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Table S 16. Downstream tasks supported by user representations

Article Downstream task
[80] POI recommendation
[66] predicting the location of Twitter users
[20] predicting the duration of a trip
[75] clustering vehicle drivers

[23] clustering of users to allow better routing of
delivery vehicles

Table S 17. Downstream tasks supported by activity representations

Article Downstream task
[59] POI recommendation

[51] predicting the keywords, location and time
of an activity

[93] event detection such as a protest or a disas-
ter

[94] predicting properties of an activity such as
the time and location

A total of 14 articles used supervised linear models. These articles are listed here
in alphabetical order: [2], [110], [21], [24] [25], [25], [66], [72], [79], [96], [100], [101], [106],
[109].

A total of 12 articles used traditional supervised models. These articles are listed here
in alphabetical order: [10], [16], [19], [36], [37], [38], [39], [60], [68], [73], [83], [100].

A total of 3 articles used logistic regression models: [7], [38] and [93].
A total of 13 articles used unsupervised clustering models. These articles are listed

here in alphabetical order: [4], [6], [7], [23], [31], [39], [58], [74], [75], [83], [88], [92], [93].
A total of 4 articles used visualisation models: [3], [14], [15], and [48].
A total of 32 articles used a distance measure in the representation space (e.g. Euclidean

distance). These articles are listed here in alphabetical order: [2], [4], [9], [10], [11], [12], [15],
[22], [25], [34], [41], [50], [51], [52], [56], [59], [60], [64], [65], [69], [71], [74], [78], [82], [83],
[85], [86], [94], [95], [97], [104], [108].

Finally, a total of 7 articles used other model types. These articles are listed here in
alphabetical order: [28], [29], [32], [42], [46], [57], [99].

References
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