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Abstract: Hyperspectral images (HSIs) are pivotal in various fields due to their rich spectral–spatial
information. While convolutional neural networks (CNNs) have notably enhanced HSI classification,
they often generate redundant spatial features. To address this, we introduce a novel HSI classifi-
cation method, OMDSC, employing 3D Octave convolution combined with multiscale depthwise
separable convolutional networks. This method initially utilizes 3D Octave convolution for efficient
spectral–spatial feature extraction from HSIs, thereby reducing spatial redundancy. Subsequently,
multiscale depthwise separable convolution is used to further improve the extraction of spatial
features. Finally, the HSI classification results are output by softmax classifier. This work compares
the method with other methods on three publicly available datasets in order to confirm its efficacy.
The outcomes show that the method performs better in terms of classification.

Keywords: hyperspectral image classification; convolutional neural network; 3D Octave convolution;
depthwise separable convolution

1. Introduction

Hyperspectral images (HSIs) are significant in advancing our understanding and
analysis in a plethora of fields due to their rich spectral and spatial information. They can
acquire precise information of various regions at the pixel level with a very large number
of fine spectral and spatial data. As a result, they not only offer tremendous promise for
future research in the field of remote sensing but are also widely applied to the detection
of plant diseases [1], environmental pollution monitoring [2], environmental science [3],
seawater detection [4], and urban management [5].

The journey of HSI classification methodologies has been dynamic, evolving from
traditional machine learning methods to sophisticated deep learning techniques. Initially,
methods for classifying data typically extracted spectral characteristics solely, such as
Support Vector Machines (SVMs) [6], random forests [7], logistic regression [8], and ex-
treme learning machines [9], because HSIs convey rich information in hundreds of spectral
bands. The significant redundancy of the hyperspectral image data and the high correlation
between surrounding bands caused by HSI’s high spectral resolution, however, greatly
enhance the complexity of data processing. Since they solely consider spectral information
and ignore spatial distribution information, these methods likewise perform poorly for
classification. The classification performance is significantly decreased when using spectral
information alone, especially in the circumstances of homogenous and heterogeneous
structures. In order to give the classifier more information, such as the shape and size of
various structures, which can aid in overcoming the classification uncertainty, it is necessary
to jointly extract spectral and spatial information. Ketting et al. [10] first used spectral
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and spatial information for classification, and then adopted window-level and pixel-level
classification methods to effectively reduce the impact of spectral confusion on classifi-
cation performance. The capacity of the Markov Random Field (MRF) to simulate more
intricate spatial correlations between pixels makes it a popular choice for spectral–spatial
classification as well. In order to lessen the effect of noise on classification performance,
Cao et al. [11] suggested using the MRF for classification derived by extracting low-rank
features. Other methods on the MRF include SVM and an MRF-based algorithm for
spectral–spatial classification of hyperspectral images [12], a Gaussian mixture model and
MRF-based spectral–spatial classification algorithm [13], etc. Methods based on sparse clas-
sification include kernel non-negative constrained least squares (KNLS) for hyperspectral
image classification [14], and regularized kernel sparse representation [15]. The majority of
these feature extraction techniques, however, rely on manually chosen features that could
only be recovered manually from high-dimensional HSI data, which has an impact on the
performance of HSI classification.

Deep learning-based HSI classification methods are more preferred since they have
a greater learning potential than traditional classification methods to automatically learn
the features collected from the original data. The amount of related literature has grown
significantly over the past few years, particularly for CNN-based methods, including
autoencoder (AE)-based HSI classification methods [16–18], deep belief network (DBN)-
based HSI classification methods [19–21], convolutional neural network (CNN)-based
HSI classification methods [22,23], and graph convolutional network (GCN)-based HSI
classification methods [24,25], ranging from the 1DCNN [26], which only extracts spectral
features from HSIs, to the 2DCNN [27], which only extracts spatial features, and to the
3DCNN [28], which utilizes a 3D convolutional kernel to combine spectral and spatial
information. He [29] et al. proposed a multiscale 3D convolutional deep neural network,
M3D-DCNN, to address the requirements of multiscale and multi-resolution. The clas-
sification accuracy of the CNN model declines as the depth of the 3D network increases.
To solve this issue, Zhong et al. [30] suggested a spectral–spatial residual network that
learns a reliable spectral–spatial representation from the original HSI. However, simply
employing a 2DCNN or 3DCNN will result in a lack of spectral information or require
significantly larger model parameters. Therefore, Roy [31] proposed a classification method
that combines 3D convolution with 2D convolution. A spatial–spectral split-attention
residual network that fuses features from several receptive fields was proposed in [32]. It
employs a split-attention technique. The use of CTFB to capture global characteristics in a
novel convolutional transform fusion splicing network was suggested in [33].

In recent years, considerable semi-supervised classification using graph convolutional
neural networks has been carried out because CNNs need a lot of training labels. A
spectral–spatial convolutional network was created in [34] that creates new feature values
based on the feature values of nearby nodes in a graph and pixels in a spatial domain. A
two-branch deep hybrid multi-graph neural network was proposed by Ding [35] et al.,
with a different graph filter in each branch and the information interaction between each
convolutional layer in various branches. To automatically acquire the deep context and
global information of graphs, a semi-supervised HSI classification method based on graph
samples and aggregated attention was developed in [36]. A heterogeneous deep network
of CNN-enhanced GCNs was suggested in the literature [37] as a method for generating
complementary spectral–spatial information at the pixel and superpixel levels, respectively.
Joint spatial–spectral measurement was used in [38] to represent the spectral–spatial prop-
erties of HSIs graphically, and the graph attention network was used to give surrounding
nodes differing weights. Since GCNs are represented in a non-Euclidean domain defined
by nodes and edges, image space transformation to image features is necessary. To perform
graph convolution, each pixel in the HSI space needs to be divided into a node, or a simple
linear iterative clustering method (SLIC) [39] needs to be used to divide each pixel into
superpixels, and then an undirected graph needs to be constructed according to the node
and connection relationship. Due to the separation of each pixel into nodes, pixel-level-
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based graph convolutional networks require a lot of processing and have a limited range of
applications. In contrast, for graph convolution based on the superpixel level, the network’s
performance in classifying objects depends on the number of superpixel divisions. CNNs
have a powerful feature extraction capability, as in [35] where vanilla convolution and
graph convolution were combined to achieve HSI classification. It was also possible to
combine the CNN and Transformer for HSI classification [40]. Octave convolution was
introduced in [41] to lessen the geographically redundant feature information and lower
the complexity of the models, as there is a significant degree of redundancy in the spatial
information of the feature maps produced by CNNs. The feature fusion of 3D Octave
convolution and 2D raw convolution in [42] improves the model classification accuracy and
operation efficiency. A hyperspectral image classification method combining 3D Octave
convolution and the bi-directional recurrent neural network attention network is proposed
in the literature [43]. A two-branch 3D Octave convolution and 3D multi-scale-based spatial
attention network was designed in [44] to enhance the feature characterization capability
and reduce the network parameters.

Building on these insights, we introduce a novel HSI classification method based on
3D Octave convolutions and a multiscale depthwise separable convolution module. The
main contributions of this paper can be summarized as follows.

(1) We propose a two-layer multiscale depthwise separable convolution module for HSI
classification. The module can effectively capture spatial features at various scales.

(2) We design a new model that combines 3D Octave convolutions along the spectral
channel with a multiscale depthwise separable convolution module to improve the
HSI classification performance. Our method significantly reduces spatial redundancy
and possesses a stronger capability of spectral–spatial feature extraction.

(3) Our proposed OMDSC method is compared with state-of-the-art models proposed
in previous research. Experimental results on three commonly used datasets, India
Pines, Pavia University, and WHU-Hi-LongKou, show that our method achieves
better performance in HSI classification.

The rest of this paper is organized as follows: Section 2 presents related work in the
field, Section 3 introduces our proposed OMDSC method, Section 4 details the experimental
setup and performance comparisons using three public datasets, Section 5 discusses our
method in the context of other comparative methods, and Section 6 concludes this paper
with insights and directions for future research.

2. Related Work

The proposed method introduces a new model integrating 3D Octave convolutions with
a multiscale depthwise separable convolution (DSC) module. Central to this model are two
key modules: the 3D Octave convolution module and the multiscale DSC module. This
section elaborates on these core components, starting with the 3D Octave convolution module.

2.1. Three-Dimensional Octave Convolution Module

In conventional CNN-based HSI classification networks, each position on the gener-
ated feature map independently stores a feature descriptor. This method often overlooks
the potential of aggregating common information shared between adjacent locations on the
feature map, leading to spatial redundancy. To alleviate this problem, the feature maps are
decomposed into high-frequency feature maps and low-frequency feature maps, which
are processed with different convolutional treatments at the corresponding frequencies
to obtain the Octave convolution [41]. The novelty of the 3D Octave convolution lies in
its ability to efficiently manage spatial redundancy. By processing low-frequency feature
maps at reduced spatial resolutions, the module facilitates information sharing between
neighboring locations. This results in a more compact and efficient representation of spatial
features. Specifically, the network employs 3D Octave convolution, configured with an
average pool size of (1,2,2), a convolution kernel size of (3,3,3), a stride of (1,1,1), and a
padding of (1,1,1).
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A complete 3D Octave convolution is shown in Figure 1, where X ∈ RH×W×C,
X =

{
XH , XL} is the input feature tensor, and Y =

{
YH , YL} is the output feature tensor.

The spatial resolution is H ×W, where C represents the number of input spectral bands and
C′ represents the number of output spectral bands. The input feature X along the spectral
dimension is decomposed into a high-frequency feature component XH ∈ RH×W×(1−β)C

and a low-frequency feature component XL ∈ R H
2 ×W

2 ×βC, with the feature mapping of
two frequency feature components spaced one octave apart, where β ∈ [0, 1] is the pro-
portion of the channel assigned to the low-frequency component, in order to an avoid
exhaustive search for the optimal hyperparameter β ∈ [0, 1]. In this paper, we choose
β = 0.5, so the number of spectral bands of the input high-frequency feature components
and low-frequency feature components in this paper is half of the number of spectral bands
of the input features.
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In Figure 1, four branches are included, with information updating within the high-
frequency feature component XH→H , information exchange within the low-frequency
feature component XL→L, information exchange between the high-frequency feature com-
ponent and the low-frequency feature component XH→L, and information exchange be-
tween the low-frequency feature component and the high-frequency feature component
XL→H . For the problem of different spatial resolutions of the input features, the exchange
of information from low to high frequencies requires convolution of the low-frequency
part before upsampling, and the exchange of information from high to low frequencies
requires downsampling of the high-frequency part before convolution. To realize the
updating and conversion of information between different frequencies, the weight pa-
rameters W =

{
WH , WL} of the 3D Octave convolution kernel are convolved with the

high-frequency feature component XH and the low-frequency feature component XL, re-
spectively, in which WH =

{
WH→H , WH→L} and WL =

{
WL→L, WL→H}

. The output
high-frequency feature component YH consists of the updating of information within
the high-frequency component XH→H and information exchange XL→H between low-
frequency and high-frequency components. The output low-frequency feature component
YL includes the exchange of information from the high-frequency component to the low-
frequency component XH→L and the update of information within the low-frequency
component XL→L. The equations for YH as well as YL are shown below.

YH = XH→H + XL→H = conv3d
(

XH ; WH→H
)
+ up

(
conv3d(XL; WL→H)

)
(1)

YL = XL→L + XH→L = conv3d
(

XL; WL→L
)
+ conv3d

(
pool

(
XH

)
, WH→L

)
(2)

where conv3d represents the 3D convolution operation, WH→L and WL→H denote the
corresponding inter-frequency weight information updates, WL→L and WH→H denote the
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corresponding intra-frequency weight information updates, up denotes the upsampling
operation, and pool denotes the downsampling operation.

2.2. Multiscale Depthwise Separable Convolutional Module

DSC is the division of ordinary convolution into depthwise convolution for spatial
filtering and pointwise convolution for information fusion in MobileNetv1 [45]. The
pointwise convolution is so named because it uses the 1 × 1 kernel. The definition of the
1× 1 special convolution is that the height and width are the same as 1, and only the number
of channels is the same as the number of input channels. The multiscale DSC module in this
section contains a total of three different scales of DSC, using convolution kernel sizes of
1 × 1, 3 × 3, and 5 × 5, all with a step size of 1 and padding of 0, 1, and 2, respectively. The
process of DSC is shown in Figure 2a, and the process of ordinary convolution is shown in
Figure 2b. In this module, spatial features are first extracted using depthwise convolution,
which is convolved with a filter at each input channel to obtain the output feature map of
the corresponding channel, reducing the number of convolution kernels used compared to
ordinary convolution. Then, in order to be able to fuse features between different channels,
pointwise convolution is required, using 1 × 1 ordinary convolution with a channel fusion
capability. The difference between depthwise convolution and vanilla convolution is that
the parameters of the convolution layers of multiple channels of the convolution kernel
are shared, and the feature map of each channel is not directly added to the subsequent
resident convolution process.
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Consider that the input feature is X ∈ RWi×Hi×Ci and there are N convolution kernels
with sizes of K × K × Ci. The size of the output feature map after performing the ordinary
convolution is Wo × Ho × N. The number of parameters (Paracom) and computational
quantity (Calcom) formulas are shown in (3) and (4).

Paracom = K2 × Ci × N (3)

Calcom = K2 × Wo × Ho × Ci × N (4)

If the above ordinary convolution is replaced with DSC, the parametric quantity (Paradsc)
and computational quantity (Caldsc) formulas are as shown in (5) and (6), respectively.

Paradsc = K2 × Ci + Ci × N (5)

Caldsc = K2 × Wo × Ho × Ci + Wo × Ho × Ci × N (6)

3. Method

The method is based on the new model of 3D Octave convolution fusion multiscale
2D DSC, as shown in Figure 3. Assuming that the HSI cube data input to the model
is D ∈ RH×W×C, the spectral dimensionality reduction of D is first performed using
principal component analysis (PCA). The HSI cube obtained after dimensionality reduction
is D′ ∈ RH×W×N , and the number of spectral bands is reduced from C to N. Then, D′ is
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divided into multiple overlapping 3D patches, each of which is denoted as X ∈ RS×S×N ,
where the spatial resolution of the patch is S × S. The size of the patch and the number of
output channels are indicated in Figure 3.
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In order to fully exploit the spectral–spatial features of the HSI and reduce the redun-
dant spectral and spatial information, we firstly adopt the 3D Octave convolution module.
We take the input patch of the 3D Octave convolution module as the high-frequency feature
component, and the low-frequency feature component is 0. The high-frequency feature
component is updated with intra-frequency information to obtain XH ∈ RS×S× N

2 , which
is the high-frequency feature component. XL ∈ R S

2 ×
S
2 ×

N
2 is obtained by exchanging the

information from the high frequency to the low frequency, and XH and XL are obtained
by exchanging the inter-frequency information and updating the information in the intra-
frequency; the specific process is referred to in Section 2.1. Then, downsampling and
convolution YH→L are performed on YH to realize the inter-frequency information updat-
ing from high frequency to low frequency, and convolution YL→L is performed on YL to
realize the low-frequency intra-frequency information exchange. Finally, YH and YL are
combined to obtain a new low-frequency component Z ∈ R S

2 ×
S
2 ×N , and the equation is

shown in (7).

Z = YH→L + YL→L = conv3d
(

pool
(

YH
)

, WH→L
)
+ conv3d

(
YL; WL→L

)
(7)

The 3D feature component Z is reduced to a 2D feature component along the channel
direction as the input feature of the multiscale depthwise separable convolution module
in order to combine it with the 3D Octave convolution module. There are three different
convolution blocks in the multiscale separable module in Figure 3, each containing two
layers of DSC, where the size of the depthwise convolution kernel is different in each
block. Figure 4 shows the parameter settings for depthwise convolution and pointwise
convolution in the multiscale DSC module, where Depth_conv2d denotes 2D depthwise
convolution, Point_conv2d denotes 2D pointwise convolution, K is the convolution kernel
size, S is the step size, and P represents padding. The image features are enriched by
convolution operations with different-sized convolution kernels. In order to avoid gradient
vanishing, we introduce batch normalization before each depthwise convolution and
pointwise convolution. In addition, we use nonlinear activation function ReLU to improve
the expressive ability of the model. Finally, the classification of the HSI is realized using
softmax classifier. The flow from the original hyperspectral image to the final obtained
classification map is shown in Figure 5.
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4. Experiments

In this section, we set hyperparameters for the model and evaluate the classifica-
tion performance using the Overall Classification Accuracy (OA), Average Classification
Accuracy (AA), and Kappa coefficient (Kappa). Additionally, we conducted compara-
tive experiments on three open datasets: India Pines (IP), Pavia University (UP), and
WHU-Hi-LongKou dataset (LK) [46,47].

The above experiments were carried out on a computer with the processor Inter(R)
Core (TM) i9-10900K@3.70 GHz, 32 GB RAM, and the graphics card NVIDIA GeForce
RTX 3090. The deep learning framework used for our code was pytorch 1.12 and the
programming language was python 3.7.

4.1. Data Description

Our experimental analysis involved three distinct hyperspectral datasets, with the
class distribution and ground truth maps detailed in Tables 1–3.
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Table 1. Number of training and testing samples for the India Pines dataset.

Ground Truth Map Class Name Train Test Total
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4.2. Parameter Setting 

In our study, we employed a strategy of spectral band compression for the patches, 

standardizing their spatial resolution to 15 × 15. For the optimization process, we used 

Adaptive Moment Estimation (Adam) over 100 training iterations. In addition, the batch 

size was set to 64, and the cross-entropy loss function was employed to quantify the dis-

crepancy between the anticipated and real results. Furthermore, we multiplied many hy-

perparameters as indicated in Table 4. For IP, we set the number of principal components 

to 110 (selection methods refer to [48]) and the learning rate to 0.001; for UP and LK, we 

set the number of principal components to 30 and the learning rate to 0.0005. To mitigate 

the risk of overfitting during network training across all three datasets, a dropout rate of 

0.5 was implemented.  

Table 4. Parameter settings on three datasets inclusive of the principal component, batch size, drop-

out, learning rate, and epoch. 

Dataset 
Principal 

Component  

Batch  

Size 
Dropout Learning Rate Epoch 

IP 110 64 0.5 0.001 100 

UP 30  64 0.5 0.0005 100 

LK 30 64 0.5 0.0005 100 

Corn 345 34,166 34,511
Cotton 84 8290 8374
Sesame 30 3001 3031

Broad-leaf soybean 632 62,580 63,212
Narrow-leaf soybean 42 4109 4151

Rice 118 11,736 11,854
Water 671 66,385 67,056

Roads and houses 71 7053 7124
Mixed weed 52 5177 5229

Total Samples 2045 202,497 204,542

(1) The first dataset is India Pines, which was captured by the documented sensor AVIRS
at the Agricultural Experiment Range in northwestern Indiana, USA. The spatial
resolution of the image is 145 × 145, and the effective spectral bands after removal of
interfering bands (e.g., low signal-to-noise ratio and water vapor absorption bands)
is 200. The area is mainly covered with agricultural and natural vegetation with
16 feature classes. During the experiment, 10% of the samples from each category
were randomly selected for training and the remaining samples were used as the test
set. The detailed division information of the dataset of this HSI is shown in Table 1.
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(2) The second dataset is Pavia University, which was acquired by the Reflectance Optical
System Imaging Spectrometer (ROSIS) over the University of Pavia, Italy. The spatial
resolution of the image is 610 × 340 and there are 103 effective spectral bands with a
total of nine feature classes. During the experiments, 5% of the samples from each
class were randomly selected for training and the remaining samples were used as
a test set. The detailed division information of the dataset of this HSI is shown in
Table 2.

(3) The third dataset is the WHU-Hi-LongKou dataset, which was collected by the
RSIDEA group of Wuhan University in July 2018 in Longkou Town, Hubei Province,
China, using an 8 mm focal-length headwall nano-hyperspectral imaging sensor
mounted on a DJI Matrice 600 Pro (DJI M600 Pro) drone platform. The study area
was a simple agricultural scene with nine feature classes. The UAV was flown at
an altitude of 500 m and the resolution of the images was 550 × 400 with a total of
270 spectral bands. During the experiment, 1% of the samples of each category were
randomly selected for training, and the remaining samples were used as the test set.
The detailed division information of the dataset of this HSI is shown in Table 3.

4.2. Parameter Setting

In our study, we employed a strategy of spectral band compression for the patches,
standardizing their spatial resolution to 15 × 15. For the optimization process, we used
Adaptive Moment Estimation (Adam) over 100 training iterations. In addition, the batch
size was set to 64, and the cross-entropy loss function was employed to quantify the
discrepancy between the anticipated and real results. Furthermore, we multiplied many
hyperparameters as indicated in Table 4. For IP, we set the number of principal components
to 110 (selection methods refer to [48]) and the learning rate to 0.001; for UP and LK, we
set the number of principal components to 30 and the learning rate to 0.0005. To mitigate
the risk of overfitting during network training across all three datasets, a dropout rate of
0.5 was implemented.

Table 4. Parameter settings on three datasets inclusive of the principal component, batch size, dropout,
learning rate, and epoch.

Dataset Principal Component Batch
Size Dropout Learning Rate Epoch

IP 110 64 0.5 0.001 100
UP 30 64 0.5 0.0005 100
LK 30 64 0.5 0.0005 100

4.3. Performance Comparison

In this study, we rigorously evaluated the classification performance of our proposed
model across three datasets. The mean and standard deviation of the OA, AA, and Kappa
coefficients were noted after each experiment was carried out five times. Our method was
contrasted with those of 2DCNN, 3DCNN, HybridSN, M3D-DCNN, SATNet [48], Vision
Transformer [49] (Vit), and SSFTT [50]. A brief description of the compared methods is
given below.

(1) 2DCNN: This 2DCNN is designed for a single band of the HSI, each complete
2D CNN layer contains a convolutional layer and a pooling layer, and after several layers
of convolution and pooling, the input image can be represented by a number of feature
vectors containing spatial information. Finally, the learned features are passed through the
LR classifier to achieve HSI classification.

(2) 3DCNN: This model utilizes a 3D convolutional kernel to simultaneously extract
the spectral and spatial information contained in the HSI data. It has two 3D convolutional
layers and one fully connected layer, and it uses softmax loss [51] as the loss function to
train the classifier.
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(3) M3D-DCNN: This network is capable of jointly learning 2D multiscale spatial
features and 1D spectral features from HSI data in an end-to-end manner. Multiscale 3D
convolutional blocks can be utilized to meet multiscale objectives in the spatial domain.

(4) HybridSN: This model contains a 3DCNN module and a 2DCNN module, which
combine the spectral–spatial feature and the complementary information of the spectral
data in 3DCNN and 2DCNN layers, respectively.

(5) Vit: Adapted from Transformer, this performs chunking and dimensionality re-
duction of the image, programming the image in a similar way to the expression of word
encoding, including linear projection and a Transformer encoder.

(6) SATNet: This network mainly contains the 3D Octave convolution module, spa-
tial attention module, and Vit module. By integrating 3D Octave convolution and the
spatial attention mechanism utilizing Vit to extract global spectral–spatial features, it effec-
tively reduces the spatially redundant information of the feature map and improves the
classification performance.

(7) SSFTT: This network extracts shallow spectral and spatial features, followed by a
Gaussian-weighted feature tokenizer for transformation. A Transformer encoder module
then represents and learns the features, culminating in a linear layer for classification.

Visual and quantitative analyses are conducted on the three datasets to provide a clear
and accurate depiction of the classification results. Tables 5–7 showcase the classification
accuracies obtained using these methods, while Figures 6–8 display the corresponding
classification diagrams. Figures 9–11 display the confusion matrix. The confusion ma-
trix’s diagonal values indicate the quantity of correctly classified pixels, and it is intuitive
to deduce from the confusion matrix how many correctly predicted pixels there are in
each class.

Table 5. Test accuracy with different preprocessing methods on the IP dataset.

Class Name 2DCNN 3DCNN M3D-DCNN HybridSN Vit SATNet SSFTT OMDSC

Alfalfa 40.31 ± 16.28 100.00 ± 0 96.71 ± 4.03 96.25 ± 4.7 98.18 ± 2.24 100.00 ± 0 100.00 ± 0 100.00 ± 0
Corn-notill 87.75 ± 8.69 91.85 ± 2.9 97.88 ± 1.2 99.07 ± 0.51 88.2 ± 1.19 99.27 ± 0.24 99.28 ± 0.31 99.61 ± 0.35
Corn-min 70.68 ± 8.09 86.25 ± 1.30 92.80 ± 1.64 96.90 ± 0.64 83.47 ± 1.53 98.99 ± 0.3 99.60 ± 0.47 98.91 ± 0.46

Corn 56.46 ± 20.09 99.76 ± 0.3 97.93 ± 1.42 99.14 ± 0.63 94.48 ± 5.07 98.89 ± 0.5 98.55 ±1.5 99.35 ± 0.63
Grass-pasture 81.20 ± 3.77 98.54 ± 1.12 97.46 ± 1.62 99.00 ± 0.78 97.87 ± 1.35 99.54 ± 0.3 99.32 ± 0.70 99.59 ± 0.51

Grass-trees 90.92 ± 2.53 99.07 ± 0.64 98.97 ± 0.63 99.51 ± 0.22 96.3 ± 1.62 99.73 ± 0.22 98.77 ± 0.61 99.12 ± 0.41
Grass-pasture-mowed 64.41 ± 21.86 100.00 ± 0 99.23 ± 1.54 99.23 ± 0.15 100.00 ± 0 100.00 ± 0 98.46 ± 1.89 99.23 ± 1.54

Hay-windrowed 90.60 ± 5.70 96.52 ± 2.53 99.63 ± 0.38 99.91 ± 0.11 94.19 ± 1.34 99.82 ± 0.17 100.0 ± 0 100.00 ± 0
Oats 50.36 ± 24.12 100.00 ± 0 92.79 ± 9.88 100.00 ± 0 89.74 ± 10.6 100.00 ± 0 97.14 ± 5.72 100.00 ± 0

Soybean-notill 80.65 ± 10.46 96.16 ± 1.6 97.97 ± 1.66 98.90 ± 0.76 94.18 ± 1.15 99.50 ± 0.38 99.13 ± 0.58 98.71 ± 0.61
Soybean-mintill 85.44 ± 5.46 91.81 ± 1.58 96.02 ± 0.83 98.67 ± 0.15 92.42 ± 2.18 98.44 ± 0.15 99.20 ± 0.21 98.96 ± 0.42
Soybean-clean 72.52 ± 6.52 95.36 ± 1.24 95.71 ± 0.87 99.16 ± 0.39 89.27 ± 1.3 97.05 ± 0.36 97.91 ± 0.94 98.82 ± 0.52

Wheat 74.14 ± 9.19 100.00 ± 0 99.44 ± 0.84 99.46 ± 0.58 96.82 ± 2.6 100.00 ± 0 99.25 ± 0.79 98.83 ± 1.03
Woods 95.93 ± 1.48 95.83 ± 1.99 98.07 ± 1.46 98.91 ± 0.73 97.53 ± 0.9 100.00 ± 0 99.74 ± 0.17 99.84 ± 0.24

Buildings-Grass-Trees 77.98 ± 9.97 99.21 ± 0.6 95.25 ± 2.1 98.81 ± 1.23 90.0 ± 2.97 99.94 ± 0.11 99.13 ± 0.30 99.26 ± 0.46
Stone-Steel-Tosers 57.82 ± 1.84 98.21 ± 1.63 92.19 ± 5.55 94.73 ± 1.43 88.54 ± 3.97 90.4 ± 1.11 99.20 ± 3.39 88.73 ± 5.58

OA (%) 83.61 ± 3.56 94.01 ± 1.09 97.01 ± 0.08 98.77 ± 0.12 92.21 ± 0.51 99.06 ± 0.05 99.19 ± 0.12 99.13 ± 0.14
AA (%) 67.63 ± 4.50 81.16 ± 4.97 94.02 ± 0.40 97.12 ± 1.17 85.42 ± 1.32 98.46 ± 0.26 98.71 ± 0.38 98.66 ± 0.28

Kappa (%) 81.23 ± 4.09 93.13 ± 1.26 94.59 ± 0.09 98.60 ± 0.14 91.10 ± 0.58 98.93 ± 0.06 99.08 ± 0.14 99.00 ± 0.16

Table 6. Test accuracy with different preprocessing methods on the UP dataset.

Class Name 2DCNN 3DCNN M3D-DCNN HybridSN Vit SATNet SSFTT OMDSC

Asphalt 85.54 ± 5.85 97.79 ± 0.47 97.91 ± 0.17 98.79 ± 0.17 95.10 ± 0.75 99.64 ± 0.06 99.78 ± 0.11 99.82 ± 0.001
Meadows 99.17 ± 7.04 99.61 ± 0.22 99.88 ± 0.08 99.90 ± 0.04 97.93 ± 0.42 99.92 ± 0.2 99.93 ± 0.06 99.99 ± 0

Gravel 76.89 ± 7.61 94.55 ± 1.33 96.04 ± 1.55 97.97 ± 0.39 84.25 ± 2.52 99.40 ± 0.21 99.61 ± 0.27 99.54 ± 0.003
Trees 88.32 ± 6.27 99.09 ± 0.41 98.47 ± 0.64 98.80 ± 0.53 99.36 ± 0.20 98.37 ± 0.42 98.41 ± 0.30 98.95 ± 0.002

Painted metal sheets 95.61 ± 4.78 100.00 ± 0 99.95 ± 0.06 99.80 ± 0.13 100.0 ± 0 99.98 ± 0.03 99.95 ± 0.06 99.83 ± 0.002
Bare soil 97.81 ± 1.19 99.02 ± 0.13 99.35 ± 0.08 99.72 ± 0.11 97.44 ± 0.63 99.86 ± 0.05 99.95 ± 0.03 99.89 ± 0
Bitumen 81.80 ± 5.55 99.60 ± 0.27 99.30 ± 0.28 98.84 ± 0.49 89.70 ± 2.78 98.98 ± 0.18 99.79 ± 0.13 99.76 ± 0.002

Self-Blocking bricks 75.82 ± 6.36 92.50 ± 0.89 94.40 ± 0.59 96.32 ± 0.95 88.93 ± 1.69 98.24 ± 0.09 98.12 ± 0.58 98.29 ± 0.004
Shadows 76.37 ± 11.29 98.47 ± 0.85 97.34 ± 2.13 97.49 ± 0.75 96.80 ± 1.06 94.76 ± 0.55 96.47 ± 0.40 99.5 ± 0.002

OA (%) 91.97 ± 2.22 98.34 ± 0.31 98.68 ± 0.16 99.13 ± 0.05 95.85 ± 0.35 99.59 ± 0.01 99.54 ± 0.08 99.68 ± 0.05
AA (%) 83.25 ± 5.0 97.06 ± 5.42 97.78 ± 0.24 98.18 ± 0.14 94.12 ± 0.45 99.06 ± 0.02 99.08 ± 0.11 99.38 ± 0.1

Kappa (%) 89.34 ± 2.95 97.80 ± 0.42 98.25 ± 0.21 98.86 ± 0.06 94.49 ± 0.46 99.48 ± 0.01 99.39 ± 0.10 99.58 ± 0.06
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Table 7. Test accuracy with different preprocessing methods on the LK dataset.

Class Name 2DCNN 3DCNN M3D-DCNN HybridSN Vit SATNet SSFTT OMDSC

Corn 91.64 ± 4.12 99.60 ± 0.17 99.87 ± 0.03 99.73 ± 0.14 99.51 ± 0.002 99.95 ± 0.03 99.92 ± 0.04 99.97 ± 0
Cotton 65.27 ± 10.42 97.71 ± 0.44 99.37 ± 0.26 98.37 ± 0.22 91.07 ± 0.007 99.65 ± 0.03 99.50 ± 0.15 99.61 ± 0.2
Sesame 12.22 ± 7.61 99.52 ± 0.26 99.58 ± 0.37 99.62 ± 0.38 95.98 ± 0.008 96.49 ± 0.03 97.91 ± 0.64 98.85 ± 0.59

Broad-leaf soybean 87.91 ± 5.11 98.57 ± 0.32 99.55 ± 0.06 99.43 ± 0.18 98.93 ± 0.002 99.76 ± 0.02 99.75 ± 0.05 99.76 ± 0.06
Narrow-leaf soybean 35.5 ± 31.1 97.14 ± 0.66 98.63 ± 0.92 98.08 ± 0.74 88.73 ± 0.021 98.33 ± 0.56 98.91 ± 0.31 99.41 ± 0.29

Rice 85.50 ± 14.56 99.73 ± 0.23 99.82 ± 0.07 99.67 ± 0.12 97.70 ± 0.002 99.94 ± 0.02 99.83 ± 0.08 99.86 ± 0.10
Water 95.94 ± 2.98 99.89 ± 0.04 99.91 ± 0.04 99.95 ± 0.02 99.77 ± 0 99.84 ± 0.02 99.73 ± 0.10 99.93 ± 0.05

Roads and houses 51.07 ± 14.93 95.25 ± 0.96 95.35 ± 0.39 96.00 ± 1.03 94.02 ± 0.008 96.80 ± 0.10 95.18 ± 0.50 97.14 ± 0.64
Mixed weed 71.64 ± 18.38 98.48 ± 0.25 97.77 ± 0.77 97.62 ± 0.67 98.19 ± 0.004 97.01 ± 0.25 96.39 ± 0.83 98.10 ± 0.42

OA (%) 88.52 ± 2.50 99.07 ± 0.16 99.52 ± 0.04 99.43 ± 0.60 98.45 ± 0.065 99.57 ± 0.02 99.48 ± 0.16 99.69 ± 0.01
AA (%) 54.90 ± 6.86 96.48 ± 0.38 98.34 ± 0.13 97.98 ± 0.21 95.69 ± 0.434 98.76 ± 0.05 98.31 ± 0.13 98.95 ± 0.05

Kappa (%) 84.53 ± 3.48 98.78 ±0.20 99.37 ± 0.05 99.25 ± 0.08 97.97 ± 0.086 99.44 ± 0.03 99.31 ± 0.02 99.60 ± 0.01
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10% training samples. (a) 2DCNN, (b) 3DCNN, (c) M3D-DCNN, (d) HybridSN, (e) Vit, (f) SATNet,
(g) SSFTT, (h) OMDSC.

First, Table 5 shows that the method used in this paper’s classification of the IP dataset
is superior to the other ways and somewhat less accurate than the SSFTT method. Since the
HSI is presented as a cube, the 3D convolution kernel is able to extract the features of three-
dimensional data more in line with the three-dimensional characteristics of hyperspectral
data [52]. As the 2DCNN only uses 2D convolutional layers to classify HSIs ignoring its
spectral information, it is not as good as the classification performance of other networks
that use 3D convolution, while the M3D-DCNN and HybridSN both improve on the
original 3D convolutional kernel, thus further improving the classification performance.
SATNet combines global and local features to reduce the drawbacks due to the limited
constraints of convolution; thus, the classification performance is only second to the model
in this paper. Our method finds that 2DCNN, 3DCNN, M3D-DCNN, HybridSN, Vit, and
SATNet improve by 15.52, 5.12, 2.12, 0.36, 6.93, and 0.07 on OA (%); by 31.30, 17.15, 4.64,
1.54, 13.24, and 0.2 on AA (%); and by 17.77, 5.87, 4.41, 0.4, 7.9, and 0.07 on Kappa (%),
respectively. The OA, AA, and Kappa of this paper’s method are 0.06, 0.05, and 0.08 lower
than those of SSFTT, respectively. Meanwhile, as can be seen in Figure 6, the classification
map of 2DCNN produces the most noise points, and many pixels are misclassified between
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different categories and are mainly concentrated in the upper left of the image, such as
Corn, Soybean-clean, and Buildings-Grass-Trees.
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Secondly, as can be seen from Table 6, the classification performance of our method is
also the best on the UP dataset, and our method improves by 15.52, 5.12, 2.12, 0.36, 6.93,
0.07, and 0.14 on OA (%) compared to 2DCNN, 3DCNN, M3D-DCNN, HybridSN, Vit,
SATNet, and SSFTT, respectively; by 16.13, 2.32, 1.6, 1.2, 5.26, 0.32, and 0.30 on AA (%);
and by 10.24, 1.78, 1.33, 0.72, 5.09, 0.1, and 0.19 on Kappa (%), respectively. In addition,
due to the fact that the IP dataset has a larger spatial resolution and is larger than that of
UP, it is more likely to produce confounding, thus increasing the difficulty of classification.
As a result, the classification results of each method for UP are improved over the results
of the IP dataset. As can be seen in Figure 7, the classification map of 2DCNN produces
the most noise points and the largest error. Our method produces the fewest incorrectly
classified pixels in the classification map, with SATNet and SSFTT coming in second and
third, respectively.

From Table 7, it can be seen that the classification performance of this paper’s method
is the best on the LK dataset, and this paper’s method improves by 11.17, 0.62, 0.17, 0.26,
1.24, 0.12, and 0.21 on OA (%) compared to 2DCNN, 3DCNN, M3DCNN, HybridSN, Vit,
SATNet, and SSFTT, respectively; by 44.05, 2.47, 0.61, 0.97, 3.26, 0.19, and 0.64 on AA (%),
respectively; and by 15.07, 0.82, 0.23, 0.35, 1.63, 0.16, and 0.29 on Kappa (%), respectively.
Since the LK dataset covers a wider range of space, only 1% of the data are selected as the
training set. In addition, as can be seen in Figure 8, the spatial distribution of the LK dataset
is simple, and the coverage area of different categories is more regularized, which reduces
the difficulty of classification. In the picture, it is clearly visible that the classification graph
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of 2DCNN produces the most noise points, and there is no great difference in the noise
points of the classification graphs of other methods. And the classification map of this
paper’s method has the highest quality and is most similar to the classification results of
the ground truth map.
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Figure 8. Classification maps generated by all of the competing methods on the WHU-Hi-LongKou
dataset with 1% training samples. (a) 2DCNN, (b) 3DCNN, (c) M3D-DCNN, (d) HybridSN, (e) Vit,
(f) SATNet, (g) SSFTT, (h) OMDSC.
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Figure 9. Confusion matrix of different methods for the Indian Pines dataset. (a) 2DCNN, (b) 3DCNN,
(c) M3D-DCNN, (d) HybridSN, (e) Vit, (f) SATNet, (g) SSFTT, (h) OMDSC.
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5. Discussion

Our analysis reveals that our proposed method exhibits superior performance on the
UP and LK datasets, although it is slightly outperformed by the SSFTT method on the IP
dataset. This conclusion is drawn from the detailed results presented in Tables 5–7.

First, the 3D convolutional neural network-based method has better classification
results than the 2D convolutional neural network-based and Vision Transformer-based
methods. The 2D convolutional kernel and Vit, which can only extract spatial features
at the expense of spectral features, have worse classification performance than the 3D
convolutional neural network-based method because the 3D convolutional kernel is more
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in line with the nature of the HSI cube data. In contrast, the 3D convolutional kernel is more
in line with the nature of the HSI cube data. Secondly, the classification performance of the
HybridSN method based on 3D convolution combined with 2D convolution outperforms
the classification performance of the M3D-DCNN with multiscale 3D convolution because
the mixing of 3D and 2D convolution further enhances spatial feature extraction on top of
using 3D convolution only and reduces the computational cost of 3D convolution. SSFTT
combines the backbone CNN and Transformer organically, and its TE structure can model
advanced semantic features. Therefore, the classification results of SSFTT on the IP dataset
are also optimal. The SATNet method outperforms the HybridSN on all three datasets
compared to it. SATNet uses 3D Octave convolution combined with the Vision Transformer
model for the hyperspectral image classification task, which adaptively selects the spatial
information through spatial attention mechanism.

We carried out ablation tests to confirm the effectiveness of various modules in terms
of classification. The outcomes of the two ablation experiments (OctNet and DscNet) and
the suggested method’s classification performance on three publicly datasets are displayed
in Table 8. Among these are the classification networks OctNet, which exclusively utilizes
3D Octave convolution modules, and DscNet, which exclusively uses multiscale modules.
Table 8 shows that our method performs much better in classification than OctNet and
DscNet for more complex IP dataset. Even on the more straightforward UP and LK datasets,
our method works better. They thus perform poorly when it comes to categorization on
complicated datasets. This article proposes a method that safely reduces the duplication
of spatial information by using a 3D Octave convolution module. It further improves
spatial feature extraction by using multiscale deep separable convolution modules, which
has advantages.

Table 8. Classification performance with ablation experiments and OMDSC on three datasets.

Dataset Network OA (%) AA (%) Kappa (%)

IP
OctNet 97.43 ± 0.46 83.31 ± 4.42 97.06 ± 0.53
DscNet 97.80 ± 0.71 87.98 ± 5.58 97.49 ± 0.81
OMDSC 99.13 ± 0.14 98.66 ± 0.28 99.00 ± 0.16

UP
OctNet 99.45 ± 0.09 99.03 ± 0.13 99.26 ± 0.12
DscNet 99.54 ± 0.10 99.15 ± 0.16 99.39 ± 0.13
OMDSC 99.68 ± 0.05 99.38 ±0.1 99.58 ± 0.06

LK
OctNet 99.51 ± 0.02 98.18 ± 0.17 99.36 ± 0.36
DscNet 99.43 ± 0.06 97.95 ± 0.11 99.26 ± 0.08
OMDSC 99.69 ± 0.01 98.95 ± 0.05 99.60 ± 0.01

6. Conclusions

In this paper, we introduce an innovative HSI classification network that synergizes 3D
Octave convolution with multiscale depthwise separable convolution (DSC). This network
is specifically designed to harness the spatial–spectral characteristics of HSI data effectively.
Due to the similarity of spectral information between adjacent bands of HSIs and the
redundancy of spatial feature information in the feature maps generated by ordinary
convolution, we utilize PCA to reduce the spectra and we reduce the redundancy of
spatial information by Octave convolution to achieve better fusion of high-frequency and
low-frequency information and to reduce the impact of redundant information on the
classification network. In addition, fusing the 3D Octave convolution along the spectral
channel with 2D DSC of different scales extracts more spatial features, while reducing the
number of trainable parameters and improving the classification accuracy. The effectiveness
of our method is clearly demonstrated through comparative analysis with other techniques
on three public datasets, establishing its superiority in HSI classification.

Due to the small sample nature of hyperspectral data, unlabeled samples are easier
to access than labeled ones. To fully utilize unlabeled samples, we should investigate
semi-supervised learning-based HSI classification techniques in the future. For example,
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we should look into Octave-based convolution in conjunction with graph convolution
neural networks to capture spectral–spatial features at the pixel and superpixel levels and
achieve HSI classification.
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