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Abstract: Predicting traffic accidents involves analyzing historical data, determining the relevant
factors affecting the occurrence of traffic accidents, and predicting the likelihood of future traffic
accidents. Most of the previous studies used statistical methods or single deep learning network
model prediction methods while ignoring the visual effects of the city landscape on the drivers and
the zero-inflation problem, resulting in poor prediction performance. Therefore, this paper constructs
a city traffic accident risk prediction model that incorporates spatial and visual effects on drivers.
The improved STGCN model is used in the model, a CNN and GRU replace the origin space–time
convolution layer, two layers of a GCN are added to extract the city landscape similarity of different
regions, and a BN layer is added to solve the gradient explosion problem. Finally, the features
extracted from the time–space correlation module, the city landscape similarity module and the
spatial correlation module are fused. The model is trained with the self-made Chicago dataset and
compared with the existing network model. The comparison experiment proves that the prediction
effect of the model in both the full time period and the high-frequency time period is better than
that of the existing model. The ablation experiment proves that the city landscape similarity module
added in this paper performs well in the high-frequency area.

Keywords: street view; graph convolution; visual semantics; traffic accidents

1. Introduction

With ongoing urbanization, the global motor vehicle count continues to rise annually.
Urban growth has resulted in challenges like congestion, air pollution, noise, and traffic
accidents on city roads. The most severe issue among these is traffic accidents. The 2022
Global Road Safety Report from the World Health Organization estimates around 2 million
annual deaths due to diverse traffic accidents. Advances in data acquisition and computer
hardware have led scholars to utilize traffic big data and deep learning for real-time traffic
flow prediction, which can enable people to choose appropriate travel routes according to
the prediction results to avoid traffic congestion. Integrating big data and deep learning
offers a potential solution to predict and mitigate traffic accident risks.

An essential step in preventing traffic accidents is developing a predictive model that
accurately assesses the risk in advance and notifies drivers to minimize accident risks.
However, there are many factors that affect the occurrence of traffic accidents, so it is very
difficult to accurately predict the risk of traffic accidents. For example, adverse weather
conditions, road environment, and traffic flow can all have an impact on the occurrence of
traffic accidents. In addition, the incidence of traffic accidents is also related to time, and
the incidence of traffic accidents varies at different time periods. Therefore, effectively and
dynamically predicting traffic accident risks remains a challenging issue.

Taking the Chicago area as an example, this study explores the accident risk of traffic
accident occurrence areas from the perspectives of space, vision, and influencing factors.
We also use deep learning methods to construct a traffic accident risk prediction model
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based on spatial and visual semantics, which is used to identify vulnerable areas in the
neighborhood ranges of each region in the study area. It is expected that this research
will provide technical support for urban planning and road design and provide a research
paradigm for other studies.

2. Related Work
2.1. Deep Learning in Predicting Traffic Accidents’ Risk

Scholars have employed deep learning models to predict traffic and identify high-risk
areas [1–5]. Numerous studies confirm the effectiveness of convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) in capturing spatial [6,7] and temporal [8,9]
features. Chen et al. introduced the first city-level traffic accident prediction using a
stacked denoising autoencoder (SDAE) [10]. Chen et al. extended their work, proposing
a stacked denoising convolutional autoencoder (SDCAE) incorporating CNNs to model
spatial dependencies in neighboring areas [11]. Yu et al. developed a deep spatiotemporal
convolutional network to explore the relationship between traffic accidents and factors in
Beijing [12]. Yuan et al. introduced the Hetero-ConvLSTM model, combining a CNN and
RNN to model spatial environment heterogeneity [13]. Due to the strong spatial–temporal
correlation in traffic data [14], data correlation can be represented as a characteristic graph,
abstracting traffic accident prediction into graph data prediction. The graph convolution
network, a deep learning model processing graph data, has broad applications, particularly
in non-European data [15–18]. Scholars globally utilize space–time map convolution
networks for studying traffic accident risk prediction. Zhou et al. introduced a differential
spatiotemporal graph convolutional model, utilizing a dynamic graph based on static road
features and dynamic traffic features to predict traffic flow and accident risks concurrently
through multitask learning [19]. Guo et al. suggested a spatiotemporal attention graph
convolutional model capturing traffic flow features in both time and space dimensions [20].
Wu et al. presented the GraphWave network, utilizing dilated causal convolutions to extend
temporal feature range and enhance the model’s aggregation ability [21]. These studies
improved model structures, allowing for a more comprehensive consideration of factors
influencing traffic accidents. However, these studies did not consider the impact of visual
feedback from the driving environment on driver behavior when selecting indicators.

2.2. Street View

Urban street scenes partially reflect a city’s spatial environment, revealing elements
like vegetation, sky, buildings, roads, and vehicles. Accelerated urban construction results
in urban roads with improved linearity, lower design speeds, and more complex visual
environments. Hence, the driver’s perception and feedback can significantly impact the
city’s traffic safety [22–29]. Presently, major map service providers offer a sufficient range of
streetscape images covering city streets and alleys. As streetscape data availability improves
and analysis methods mature, scholars increasingly use in-depth learning and streetscape
images to study urban environments from a human perspective [30–35]. Mooney et al.
analyzed Google Street View data (2007–2011), assessing nine features of 532 New York
intersections to estimate the relationship between features and collision frequency [36].
The study found that infrastructure such as traffic islands, visual advertisements, bus
stops, and pedestrian crosswalks were associated with an increase in pedestrian injuries in
New York City. Zhang et al. used street view images to uncover spatiotemporal patterns
of urban mobility from a resident’s perspective, demonstrating the images as a bridge
connecting physical and human space. The study trained deep convolutional neural
networks to recognize advanced scene features in street view images, explaining up to
66.5% of the hourly variation in taxi trips. The study demonstrated that inferring human
activity at a fine-grained scale in urban areas through street imagery offers opportunities
for environmental observation and intelligent city planning [24]. Urban driving involves
a dynamic information interaction system with four factors: people, vehicles, roads, and
the environment. Changes in roads, vehicles, and the driving environment transmit
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information to the driver. The research above offers the theoretical basis and methods
for this paper to use street view images for simulating driver visual changes, proving
that alterations in the traffic environment lead to traffic accidents [37,38]. Thus, when
addressing traffic accident risk prediction, the impact of the traffic environment on drivers
must be considered.

In this paper, we propose a novel model capturing simultaneous spatial–temporal cor-
relations and visual semantics, expected to enhance traffic accident risk forecasting performance.

3. Preliminaries

Definition 1. Region. A city is divided into I × J grids based on the longitude and latitude, where
a grid i represents a region and all regions have the same size. Note that city shapes are typically
irregular, resulting in N(N < I × J) regions with road segments. In these N regions, we can
collect their actual features and traffic accident points, while in other regions, we set zero values for
their features.

Definition 2. Traffic Accident Type. According to the number of casualties in traffic accidents, we
define three traffic accident types, i.e., minor accidents, injured accidents and fatal accidents, and
corresponding risk values are set to be 1, 2 and 3, respectively.

Problem statement: Traffic Accident Forecasting. Let Xt ∈ RI×J×d represent the grid
features of all the regions at time interval t, including the information of weather, POI,
traffic flow and traffic accident risk, where d is the dimension of region features. Let
St ∈ R̂

(
N × dg

)
denote the signal matrix of the three graphs at time interval t. Each row

represents a node’s features, including the values of traffic flow and traffic accident risk,
where dg is the dimension of node features. Let zt ∈ Rdt be the time information of time
interval t, including hour of day, day of week and if it is a holiday, where dt is the dimension
of time features. Given the historical observations of region features (X1, X2, X3, . . . , XT),
graphs signal matrices (S1, S2, . . . , ST) and zT+1, our goal is to predict the traffic accident
risk at the next time interval, i.e., YT+1.

4. Spatial and Visual Semantics Network

The paper introduces SVSNet, a traffic accident risk prediction model illustrated in
Figure 1, comprising three key components: spatiotemporal correlation module, spatial
correlation module, and visual semantic feature extraction module. The spatiotemporal
correlation module, utilizing grid features and time data, initially models the spatial
correlation with CNN, captures time dependencies with GRU, and dynamically adjusts
historical information importance using an attention mechanism for prediction. The image
feature extraction module processes street view images and road similarity maps as input,
computes traffic scene complexity through semantic segmentation, and integrates the
road similarity map with GCN to derive street view similarity features among regions.
The spatial correlation module extracts spatial features by aggregating neighboring node
features with two layers of GCN. The feature fusion prediction module weights and
combines outputs from the initial three modules to generate the prediction value. The
network structure diagram is shown in Figure 1.
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Figure 1. The architecture of SVSNet.

4.1. Training and Testing Data

The study area selected for the experiment is Chicago, and the prediction scope is
divided into 2 km × 2 km square grids based on geographical location. The study employs
Chicago data summarized in Table 1, encompassing seven types: traffic accidents, taxi
orders, POI, weather, road, and building data.

Table 1. Data sources.

Data Type Data Sources Count

Road OpenStreetMap 56,000
Traffic Accidents https://data.cityofchicago.org/ (accessed on 11 March 2023) 620,757

Taxi orders https://data.cityofchicago.org/ (accessed on 11 March 2023) 3,890,000
POI https://data.cityofchicago.org/ (accessed on 11 March 2023 10,219

Weather https://data.cityofchicago.org/ (accessed on 11 March 2023) 5832
Streetview Google Map 29,000

The traffic accident data include the time of occurrence, number of casualties, and
the longitude and latitude of the accident location; the taxi order data include the pick-up
and drop-off times and the longitude and latitude; the road data include the road grade,
length, location, and other attributes; the weather data include the temperature and weather
conditions; and the POI data include nine categories: catering, shopping, entertainment,
living facilities, sports facilities, cultural facilities, educational facilities, medical facilities,
and scenic spots.

4.2. Data Processing
4.2.1. Traffic Accidents Data

Traffic accidents are categorized as mild, moderate, or severe based on injury and
damage. The corresponding risk levels are 1, 2, and 3. Traffic accidents are then matched
with corresponding areas and times based on their time and location. The total accident
risk is calculated by summing the risks of all traffic accidents in that area for the specified
time period.

https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
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4.2.2. Taxi Order Data

Passenger pick-up and drop-off data, like traffic accident data, are matched to the
corresponding area and time period using longitude, latitude, and timestamp. The outflow
and inflow of taxis during the specified time period are calculated. Outflow denotes
vehicles leaving the area (pick-up within, drop-off outside), and inflow is the reverse. We
use taxi orders to simulate the traffic flow.

4.2.3. Points of Interest

The article categorizes POI (point of interest) data into nine types: dining, shopping,
entertainment, daily facilities, sports facilities, cultural facilities, educational facilities,
medical facilities, and scenic spots. Each POI category is matched to the area using its
latitude and longitude, and a nine-dimensional vector is formed by calculating the number
of each POI type in that area. For instance, if a gym is present in the area, the feature vector
would be (0, 0, 0, 0, 1, 0, 0, 0, 0).

4.2.4. Road Data

The road data are collected from OSM. The road data contain road attribute data and
road geometry data, as shown in Figure 2 and Table 2.
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Table 2. The property of road.

Osm_id Road Class Maxspeed Length isBridge isOneway

430XX secondary 0 300 F F
430XX tertiary 0 246 F T

Road geometric data can be extracted from the shapefile data, as shown in Figure 2.
Road features, including the number of intersections, road grade, and road length, were
collected from the road geometry data.

By matching the latitude and longitude of roads to their respective regions, we calcu-
lated the total length, number of intersections, and road types for each region. The road
similarity for each region was determined using JS divergence, which is expressed by the
following formula:

Sim(i, j) = 1− JS
(

Ri, Rj
)

(1)
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JS
(

Ri, Rj
)
=

1
2∑

q

(
Ri(q)ln

(
2Ri(q)

Ri(q) + Rj(q)

)
+ Rj(q)ln

(
2Rj(q)

Ri(q) + Rj(q)

))
(2)

where Ri and Rj represent the road characteristics of areas i and j; Sim(i, j) represents the
similarity degree of road characteristics between region i and j, and the value range is
between [0, 1].

4.2.5. Weather Data

The weather data include hourly temperature and weather conditions. Temperature is
presented as a continuous value, while weather conditions are categorized into five classes:
sunny, rainy, snowy, cloudy, and foggy, which are represented as one-hot vectors. For
instance, if the current temperature is 5 ◦C and the weather is sunny, the corresponding
weather feature vector is (5, 1, 0, 0, 0, 0).

4.2.6. Street View Image

The study employs street view images to simulate the driver’s perception of the
urban landscape, recognizing that higher driving environment complexity correlates with
increased accident likelihood. Street view images are utilized for calculating traffic scene
complexity, employing semantic segmentation to identify objects in the driver’s field of
view. Proportions of object categories in the field of view are calculated based on semantic
segmentation results. The complexity of individual traffic scenes (roads) is then computed
using an improved gravity model [39], and the overall traffic scene complexity in the study
area is derived by summing up complexities across all traffic scenes.

Using the ADE20K dataset, a model is trained with Deeplab-v3 network as the back-
bone for the semantic segmentation of street view images [40,41]. The segmentation results
are shown in Figure 3.
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Figure 3. An example of semantics segmentation.

Considering the influence of road environments on drivers is crucial for predicting
traffic accident risks, but existing methods often analyze the statistical proportions of
influential objects across the entire field of view. However, this approach neglects the spatial
distribution of these objects, making it challenging to accurately capture the complexity of
traffic scenes, as illustrated in Figure 4.
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Figure 4. An example of the same pixel type and different distribution. The number of pixels with
the same color in (a,b) is identical. The difference between these two images lies in the distribution of
colors. The color distribution in (a) is noticeably more complex than in (b). Therefore, even though
the colors in the two images are the same, the perceived complexity by the human eye is different
due to the distinct color distributions.

Figure 4 displays images with an equal number of pixels for each class, where the
traditional calculation method only considers pixel category and proportion. Consequently,
the upper figures have the same calculated complexity. However, it is evident from the
figure that the distribution in (a) is more disorderly, significantly impacting the driver’s
line of sight. Therefore, solely considering pixel proportions fails to accurately describe
traffic scene complexity.

Therefore, this paper proposes a traffic scene complexity calculation model based on
the gravity model. By introducing an information entropy model into the gravity model, a
mathematical model for describing the complexity of a single traffic scene is constructed,
as shown in Equations (3)–(5):

TCi =
Vr × f (pi)

S2 (3)

f (pi) = H = ∑ PijlogPij (4)

Pij =
f (i, j)
N2 (5)

f (i, j) represents the label of each pixel after segmentation; N represents the width and
height of the image (the street view images collected in this paper have a size of 300× 300,
so N2 is used to represent the image size); Vr represents the relative velocity between
the driver and the object, since the study focuses on urban roads and mainly considers
static objects, the speed limit of the road is used as a proxy for relative velocity; f (pi)
represents the complexity of the scene; S represents the visual distance between the driver
and the object, and the average distance of the line of sight is used as the visual distance in
this paper.

Using the model designed in this paper for calculation, the complexity of (a) and (b) are
2.118659262428785 and 2.0527425251086986, respectively, showing significant differences.
The traffic scene complexity of the study area is shown in Figure 5.
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4.3. Model Construction and Train Parameters
4.3.1. Spatial Correlation Module

The spatial correlation of traffic accidents often exists in a local area. For example,
if there is traffic congestion in a neighboring area, it may affect the occurrence of traffic
accidents in the target area, as shown in Figure 6.
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Figure 6. An example of geographical correlations. The red area indicates the region where a traffic
accident occurred at a certain moment, while the yellow area represents the possibility that vehicles,
due to the occurrence of a traffic accident in the red area, may choose to detour through the yellow
area. This diversion results in increased traffic flow in the yellow area, potentially impacting the
probability of traffic accidents occurring in the yellow region.

Due to the connectivity of the road network, neighboring traffic scenes may also have
some similarity. To capture the spatial correlation within a local area, a two-layer graph
convolutional network (GCN) is used, with the GCN layers shared across the temporal
dimension. The two-layer GCN can aggregate values that are two units away from the
target area and thus obtain the features that are two units away from the target area. The
specific operations are as follows:

S′ = ReLU
(

AReLU
(

ASW(0) + b(0)
)

W(1) + b(1)
)

(6)

where W and b are learnable parameters; A is the graph signal matrix; S′ is the result of
two-level graph convolution output.
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4.3.2. Space–Time Correlation Module

The module utilizes a CNN to model the spatial correlation, employs a GRU to capture
temporal similarity, and incorporates an attention mechanism for dynamic weight capture
in the time dimension. Traffic accidents exhibit similarities in both time and space; the
CNN captures the spatial similarity shared across the time dimension. The data at each
time step are convolved using the formula when processing the input at each time step:

X = f (W ∗ X + b) (7)

where f (.) is the activation function; W, b is a learnable parameter; and X is the characteristic vector.
The GRU captures both long-term and short-term features of traffic accidents in the

time dimension, considering how past traffic conditions may influence accidents at the
target time. Additionally, traffic accidents exhibit global features, as illustrated in Figure 7,
depicting the weekly periodicity of accidents on Tuesdays for four consecutive weeks in
the global area.
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To capture the long-term and short-term features in the temporal dimension, the first p
time periods of the target period and the data of the target grid for the previous q weeks are
selected as the training data X1, X2, X3, · · · , Xn. The GRU module is used as the temporal
feature-capturing module. The GRU calculation process of the defined area i in the time
step t is as follows:

ri
t = σ

(
Wrx′it + Vrhi

t−1 + br

)
(8)

zi
t = σ

(
Wzx′it + Vzhi

t−1 + bz

)
(9)

∼
hi

t = φ
(

Whx′it + Vh

(
ri

t � hi
t−1

)
+ bh

)
(10)

hi
t = zi

t � hi
t−1 +

(
1− zi

t

)
�
∼
hi

t (11)

where x′it ∈ RdK is the output result of the local space convolution of the region time step t.

ri
t, zi

t ∈ Rdh represent the reset gate and the update gate, respectively, and
∼
hi

t, hi
t ∈ Rdh are

candidate hidden states and hidden states. Wr, Wz, Wh ∈ Rdk×dh and Vr, VZ, Vh ∈ Rdh×dh

are weight parameters, br, bZ, bh ∈ R1×dh is the deviation parameter, and dh is the number
of hidden cells in the GRU. A is the sigmoid function, which transforms the value of the
element to [0, 1], φ is the Tanh function. � is Hadamaji. H = [h1, h2, h3, · · · , hT ], where
ht ∈ RI×J×dh represents the hidden state of all regions in time step t.
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Finally, the SoftMax function is used to weight the prediction results of different
historical times. All predicted values of the historical segments are weighted and summed
to obtain the output of the spatiotemporal correlation module. The specific formula is
as follows:

α = So f tmax(ReLU(HWH + ET+1WE + bα)) (12)

Y = ∑
i

αi · hi (13)

where W and b are learnable parameters; H represents the hidden state in different time
periods; ET+1 represents the time information of the target time; α represents the score
(weight); and Y represents the output.

4.3.3. Visual Semantic Feature Module

Utilizing the Deeplab-v3 network, the module segments street view images and
calculates the complexity of a single traffic scene using the proposed formula. The area’s
traffic scene complexity is determined accordingly. Visual semantic features of the target
area are obtained by weighing the traffic scene complexity and road similarity. Subsequently,
a two-layer GCN network is employed to establish visual semantic similarity between
different regions, as detailed in Equations (3)–(6).

5. Estimation Performance of the Model
5.1. Experimental Environment and Parameter Configuration

The experimental configuration of this article is shown in Table 3:

Table 3. Experimental software and hardware configuration.

Configuration Parameters

Operating System Window10 Profession
GPU GTX 2080Ti

Pytorch version 1.8.1
RAM 32 G
CPU Intel core Xeon E3

GPU’s RAM 16 G

Implementing a bimodal model in the PyTorch framework, we partition the training,
validation, and testing sets in a chronological order of 6:2:2. Following experimental
comparisons and a literature review, the hyperparameters are determined: the adjacent
time period is set as p = 3; the GRU comprises 3 layers, each with 128 hidden units; the
GCN consists of 2 layers with a kernel size of 16; the CNN employs a kernel size of
3 × 3; the batch size is 8; the learning rate is 1 × 10−6; and early stopping is employed to
prevent overfitting.

5.2. Evaluation Metrics and Loss Function

In order to make the evaluation results more comprehensive, the evaluation indicators
selected in this paper are the root mean square error (RMSE), classification index recall rate
(Recall) and mean absolute error (MAE). The specific calculation formula is as follows:

RMSE =

√√√√ 1
T

T

∑
t=1

∣∣∣∣Yt − Ŷt
∣∣∣∣2 (14)

Recall =
1
T

T

∑
t=1

Pt
⋂

Rt

|Rt|
(15)
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MAP =
1
T

T

∑
t=1

∑
|Rt |
j=1 pre(j)× rel(j)

|Rt|
(16)

where Yt represents the actual accident risk for all regions at time t; Ŷt represents the
predicted accident risk for all regions at time t; Rt represents the set of regions where
traffic accidents actually occurred at time t; Pt represents the set of regions in the top |Rt|
predicted accident risk ranking; pre(j) represents the accuracy sorting list from 1 to j; rel(j)
represents whether a traffic accident occurred, where rel(j) = 1 means a traffic accident
occurred at time t, and rel(j) = 0 means no traffic accident occurred at time t.

A higher RMSE indicates that the model predicts accident risks more accurately across
all areas. A higher recall and MAP indicate that the model predicts high-risk areas better:
that is, the model is more likely to discover high-risk areas.

Since the area where traffic accidents occur in the real dataset is far smaller than the
area where there are no traffic accidents, there are a lot of zero values in the tag, leading to
the zero-inflated model problem. In order to solve the zero-inflated model problem, the
weighted mean square loss function is used in this paper. When calculating the loss, a
larger weight value is given to the area with traffic accidents so as to avoid the predicted
value near 0. The calculation formula is as follows:

Loss
(
Y, Y′

)
=

1
2∑

i
λi
(
Y(i)−Y′(i)

)2 (17)

where Y represents the actual accident risk; Y′ represents the predicted accident risk; and
λi represents weighted value.

5.3. Experimental Results and Analysis

To evaluate the performance of the proposed SVSNet model, a comparison was
made with benchmark and classical models. The models used in this experiment include
the Historical Average (HA) model, Multi-Layer Perceptron (MLP) model, Gated Recur-
rent Unit (GRU) model, Convolutional Neural Network (CNN)-based Stacked Denoising
Autoencoder (SDACE) model, Heterogeneous Convolutional Long Short-Term Memory
(Hetero-convLSTM) model combining CNN and LSTM, and a machine learning model
based on Gradient Boosting Tree (XGBoost), in addition to the proposed SVSNet model.

The Table 4 presents the prediction performance of various models on the dataset.
SVSNet consistently outperforms other methods across all time periods, demonstrating its
superior ability to capture temporal, spatial, and image features. HA, XGBoost, GRU, and
MLP exhibit poor performance, as they solely rely on historical data features and focus only
on temporal correlation, neglecting spatial features. SDCAE captures spatial correlation but
lacks consideration of temporal correlation. Hetero-ConvLSTM addresses both temporal
and spatial correlation but overlooks the visual effects of the driver and the global data
correlation. The proposed model, accounting for driver visual effects and spatiotemporal
correlation, achieves superior prediction performance.

Table 4. Comparative experiment.

Models RMSE Recall MAP RMSE* Recall* MAP*

HA 15.2891 12.80% 0.0488 11.2546 14.98% 0.0544
XGBoost 16.6946 11.58% 0.0445 11.3685 14.22% 0.0514

GRU 13.648 16.83% 0.0564 10.0421 17.66% 0.0632
Hetero-convLSTM 12.3033 17.34% 0.0716 9.4375 18.13% 0.0670

MLP 13.5116 16.53% 0.0572 9.5421 17.93% 0.0648
SDACE 12.3382 17.78% 0.0653 9.7543 19.58% 0.09002
SVSNet 11.2918 19.26% 0.0903 8.6243 20.03% 0.1133

RMSE*, Recall*, and MAP* represent the performance of the model during high-frequency periods of accidents
(7:00~9:00 and 17:00~19:00).
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6. Discussion

To assess our model’s ability to predict traffic accident risk, we visualize the results
on the test set. Figure 7 displays the heatmap of predicted traffic accident risk and true
labels in the study area for the entire and high-frequency time period (10 September to
17 September 2016). Observing Figure 8 reveals the close similarity between predicted and
true values, affirming the model’s accuracy. Sparse traffic accident data are noted with
high-risk regions limited. Notably, in city centers with high traffic flow, predicted heatmaps
closely align with true values, emphasizing the model’s effectiveness in considering the
driver’s visual effect.
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Figure 8. The prediction results.

The existing research results have demonstrated the superiority of CNN and GRU
in mining spatiotemporal correlations between data, and they also demonstrated that
spatiotemporal graph convolutional networks perform better than other models in the
field of traffic accident risk prediction [42–45]. To further validate the effectiveness of the
designed modules, this study conducted an ablation experiment to verify the effectiveness
of the visual effect extraction module. The results of the test on the dataset are shown in
Table 5:

Table 5. Results of ablation experiment.

Baseline SVSNet

RMSE 10.9619 11.2918
Recall 19.03% 19.26%
MAP 0.0808 0.0903

RMSE* 8.3589 8.6243
Recall* 19.75% 20.03%
MAP* 0.0944 0.1133

RMSE*, Recall*, and MAP* represent the performance of the model during high-frequency periods of accidents
(7:00~9:00 and 17:00~19:00).

Table 5 shows the results of ablation experiments conducted to further validate the
effectiveness of the visual attention module. As shown, the model with the visual attention
module performed better in terms of recall and MAP but not in terms of RMSE compared
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to the baseline model without this module. The main reason for this is that the study area
was divided into a 20 × 20 grid, of which only 197 grids belonged to the study area. To
facilitate model construction, the dataset size was set to (20, 20), so the predicted result size
was also (20, 20), including 203 invalid data points. Among these 203 invalid predictions,
there may be some outliers with very large deviation, which resulted in the increase in
the RMSE value. However, when calculating recall and MAP, only high-risk area data
were used, and there were no invalid data, resulting in better performance for these two
indicators. This demonstrates the importance of modeling driver visual attention in traffic
accident risk prediction.

7. Conclusions

In this study, we proposed a gravity model-based approach to assess traffic scene
complexity and quantify its impact on drivers. Subsequently, a spatial and visual semantic-
based traffic accident risk prediction model was developed, integrating CNN, GCN, GRU,
and an attention mechanism to extract and merge spatial–temporal features and relation-
ships from traffic accident data. Model validation utilized Chicago’s traffic accident data
from January to December 2016, evaluating metrics like MAP, recall, and RMSE. The key
findings follow.

Predictions align closely with observed results. Ablation experiments reveal improved
model performance with the added visual semantics module. In full-time prediction,
the model with this module outperforms in MAP and recall but has a slightly higher
RMSE compared to the model without this module. In high-risk period prediction, all
three indicators are superior. Overall, the model effectively forecasts the spatial–temporal
distribution of traffic accidents.

The prediction method employs gridding in the study area, aiding government urban
planning. Introducing a weighted loss function enhances model focus on accident-prone
areas, improving predictive capability. However, there is room for model improvement.
The construction of a 20× 20 grid to organize data covers both the study area and data-free
regions. These blank areas may affect the model, warranting further discussion in future
research to define the study area.
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