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Abstract: The novel coronavirus pneumonia (COVID-19) pandemic has caused enormous impacts
around the world. Characterizing the risk dynamics for urgent epidemics such as COVID-19 is of
great benefit to epidemic control and emergency management. This article presents a novel approach
to characterizing the space-time risks of the COVID-19 epidemic. We analyzed the heavy-tailed
distribution and spatial hierarchy of confirmed COVID-19 cases in 367 cities from 20 January to 12
April 2020, and population density data for 2019, and modelled two parameters, COVID-19 confirmed
cases and population density, to measure the risk value of each city and assess the epidemic from the
perspective of spatial and temporal changes. The evolution pattern of high-risk areas was assessed
from a spatial and temporal perspective. The number of high-risk cities decreased from 57 in week 1
to 6 in week 12. The results show that the risk measurement model based on the head/tail breaks
approach can describe the spatial and temporal evolution characteristics of the risk of COVID-19,
and can better predict the risk trend of future epidemics in each city and identify the risk of future
epidemics even during low incidence periods. Compared with the traditional risk assessment method
model, it pays more attention to the differences in the spatial level of each city and provides a new
perspective for the assessment of the risk level of epidemic transmission. It has generality and
flexibility and provides a certain reference for the prevention of infectious diseases as well as a
theoretical basis for government implementation strategies.

Keywords: COVID-19; risk assessment; head/tail breaks; power law; ht index

1. Introduction

The COVID-19 pandemic caused by the novel coronavirus (SARS-CoV-2) infection has
constituted a global health security threat since 2020 [1–3]. As of June 2023, the COVID-19
pandemic has lasted over three years, posing great challenges to regional epidemic pre-
vention and control [4]. Characterizing the risk dynamics of the COVID-19 epidemic is
of great benefit to epidemic control and emergency management. It is urgent to establish
an effective assessment system to identify space-time risks which can provide support
for formulating epidemic control and prevention policies [5]. Since the COVID-19 out-
break, governments have launched various measures to combat the pandemic, such as
quarantines, the closure of cities, and the suspension of large gatherings [6,7]. Meanwhile,
researchers have conducted a large number of studies to combat the COVID-19 pandemic,
focusing on the clinical characteristics [8], viral gene sequencing [9], epidemic transmis-
sion characteristics [10,11], spatiotemporal distribution patterns [12–15], space-time risk
assessments [16,17], and others.

With the advent of the post-epidemic era, the study of space-time risk assessment of
the COVID-19 epidemic has gradually become a focus of attention [18,19]. Various data
sources related to the epidemic’s spread, e.g., social and environmental data, were used to
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identify the dynamics of epidemic risks. The population-related data played an important
role in risk assessment, such as population movement data [20,21], residential population
data [22], and population density data [23], which were usually correlated with reported
cases to support risk modelling. In addition, spatiotemporal big data such as Tencent
location-based big data can be applied to indicate the population flow and help construct
an epidemic model to evaluate the risk of the epidemic [24]. Smartphone signaling data
can also be used to indicate human mobility and support modelling the human-to-human
transmission networks to assess the risk of COVID-19 infections [25]. Many scholars have
assessed the risks of COVID-19 transmission in different countries and regions associated
with various natural and social environmental factors [16,25], and results have shown that
the COVID-19 epidemic spread was due to multiple environmental, economic, and social
factors [26], in which population density was an important determinant of the infection.

On the other hand, many researchers have proposed corresponding modelling ap-
proaches for the spatiotemporal spread of COVID-19 epidemics. The most common ap-
proach is a series of models derived from the classical SIR model [27,28] based on the
principles of infectious disease dynamics, including SEIR models [29–31], SEAIR mod-
els [32,33], etc., which simulate the COVID-19 epidemic situation in cities. Key epidemiolog-
ical parameters such as the basic reproduction number (R0) [34,35] have found widespread
application in monitoring the transmission dynamics and risk assessment of COVID-19.
Additionally, scholars have applied various methods such as spatial stratified heterogene-
ity statistics [34], Kalman filtering [36–38], Bayesian maximum entropy [39], head/tail
breaks [40], and more [41–45]. These methods have been employed for various applications
in modelling the spatiotemporal spread of COVID-19, including identifying spatiotem-
poral distribution patterns [46,47], mapping spatiotemporal disease distributions [48],
describing spatiotemporal characteristics of the epidemic [49–51], and assessing its impact
on production and daily life in China [52–54]. These studies cover different stages of
epidemic transmission.

China, with its vast territory and large population, exhibits significant regional dis-
parities. Risk assessment and early warning require hierarchical zoning, with different
regions at various risk levels adopting different prevention and control measures. However,
research in this area remains limited. The factors influencing the transmission and spread
of the COVID-19 virus are multifaceted and include not only the intrinsic biological factors
of the infected [55–57] but also natural and social factors [47,58] such as temperature [58],
population mobility [59], and economic development [60,61]. Relevant studies have indi-
cated that the spatial hierarchy of epidemic cases is correlated with the spatial hierarchy of
the underlying population. Comparing the spatial hierarchies of COVID-19 cases and the
population, the results show that the pandemic is largely determined by the underlying
population, with an R2 value as high as 0.82 [40]. In simple terms, the more the population,
the more cases there are. For a specific study area, the cases and the population are dis-
tributed across different units, such as different cities, forming different spatial hierarchies.
Therefore, we can identify the potential risk of epidemic transmission by comparing the
differences in their relative hierarchies.

With this consideration in mind, our research endeavors to introduce a novel approach
to characterizing the space-time risk of COVID-19 outbreaks in Chinese cities. We employ
a “head/tail breaks approach” [62–64] to delineate the spatial hierarchy of the COVID-19
cases and populations within each city for every date or specified period (e.g., weekly).
Subsequently, we compare the disparities in their relative hierarchies. We then define a
risk assessment metric to ascertain the risk levels for each city. This approach enables
the examination of the dynamic risk of epidemic spread in both the spatial and temporal
domains. Unlike traditional classification and stratification methods, the head/tail breaks
method applies to data with heavy tail distribution [62,65] and can better reveal the inherent
hierarchical structures of things, which can effectively portray regional differences in the
space-time risk of the COVID-19 epidemic. At present, although there have been studies
applying the head/tail breaks approach to the space-time mapping of the COVID-19
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epidemic [40], there are few, if any, studies on the assessment of the risk level of COVID-
19 epidemics. Our study provides a direct method for describing the space-time risk of
epidemic transmission, offering a fresh perspective on the dynamics of epidemic risk
assessment. Importantly, the methodology we propose not only elucidates the inherent
hierarchy of epidemic cases and populations at a macroscopic level but also allows for
the characterization of risk dynamics at a local level, such as within specific regions or
individual cities. This provides a theoretical basis for government policy implementation,
offers insights for domestic and international efforts in the prevention and control of
COVID-19, and imparts valuable lessons for enhancing the utilization of healthcare services
in other regions.

2. Data and Methodology
2.1. Study Area and Data Sources

This paper, using China as a case study, examines the space-time evolution of COVID-
19 risk. To account for the typicality of the COVID-19 pandemic, this study acquired daily
confirmed COVID-19 cases for 367 municipal-level administrative units in China from 20
January 2020 to 12 April 2020, from sources including the National Health Commission
of the People’s Republic of China (www.nhc.gov.cn, accessed on 1 April 2020) and official
websites of municipal health commissions. As of 12 April, China had reported 108 new
confirmed cases, bringing the total cumulative confirmed cases to 82,160. The development
of the COVID-19 situation in China exhibits distinct phases. Based on the trend in daily
new confirmed cases (as shown in Figure 1a), the pandemic in China can be divided
into three stages: a rapid growth phase (20 January–12 February), a controlled reduction
phase (13 February–1 March), and a stable maintenance phase (2 March–12 April). It
is noteworthy that, on 12 February, there was a peak in the number of new confirmed
cases due to a change in the statistical criteria, which included clinical diagnosis cases as
confirmed cases. This change aided in controlling the outbreak, increasing the recovery rate,
and reducing the mortality rate. Spatially (as depicted in Figure 1b), the confirmed cases
are concentrated in the eastern regions, particularly in areas surrounding Wuhan, such as
Huanggang, Xiaogan, Chongqing, and other cities, which were significantly affected by the
pandemic. In contrast, the northwestern and southwestern regions experienced a relatively
lower impact, with fewer new cases of COVID-19. The spread of the pandemic exhibits
periodic characteristics, and we will explore the space-time evolution of the COVID-19 risk
in various Chinese cities over 12 weeks, using 7-day intervals.

We collected 2019 population data and administrative unit area data for each city from
the 2019 Statistical Yearbook. Subsequently, we calculated the incidence rate and population
density for each city. Population mobility data were obtained from Baidu Migration Data
(https://qianxi.baidu.com/#/, accessed on 1 July 2020), which includes metrics such as
intra-city travel intensity and a migration scale index for inflow and outflow. Given that
population inflow is a significant influencing factor in the spread of the epidemic, we
selected the inflow intensity index to represent population mobility data in our study.

2.2. Methodology
2.2.1. Heavy-Tailed Distributions

Heavy-tailed distributions [66–68] are characterized by a split between the mean of
the data and the majority of the small values in the tail of the distribution, with only a
minority of the large values in the head. The imbalance between the head and tail of
heavy-tailed distributions can be conceptualized as the dominance of the small values
over the large ones. They exhibit a feature of having a “fat head” and a “long tail”, in
statistical terms. A common visualization tool for exploring heavy-tailed distributions is the
rank-size distribution plot (as shown in Figure 2), where ranks are plotted on the x-axis and
corresponding values or sizes on the y-axis. Initially used in studies of word frequencies
and city sizes [62], this visualization provides a straightforward and intuitive way to

www.nhc.gov.cn
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investigate heavy-tailed distributions. Common forms of heavy-tailed distributions include
power-law distributions, log-normal distributions, exponential distributions, and others.
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For a given dataset, specific statistical methods, such as power-law fitting [67], can be
employed to detect whether it follows a heavy-tailed distribution. Power-law distributions
reveal scaling relationships within data, indicating that small values occur much more
frequently than large ones. The expression for a power-law distribution is given by:

y = cx−α (1)

In this context, α represents the power-law exponent or scaling parameter (1 < α < 3),
and c denotes a constant. Typically, a higher power-law exponent, α, indicates greater
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spatial heterogeneity. In other words, a power-law exponent of 3 implies more heterogeneity
compared to an exponent of 1 [40].

As for power-law testing, the simplest approach involves taking the logarithm of both
sides of Equation (1). The resulting function expression is as follows, and allows us to
assess whether it forms a straight line on a double-logarithmic graph.

ln y = −αln x + ln(c) (2)

However, this method has limitations and relies on a substantial amount of data
for reliability, being suitable primarily for discrete data. In this study, we employed a
robust maximum likelihood approach and the Kolmogorov–Smirnov test to assess power-
law distributions. The indicators of power-law fitting are represented by the estimated
exponent α̂ and goodness-of-fit index p A higher p value indicates a better fit to the power-
law distribution. A p value approaching 1 suggests that the data closely follow a power-law
distribution, with p values exceeding 0.1 considered acceptable for fitting.

2.2.2. Head/Tail Breaks and ht Index

The head/tail breaks method was initially introduced by scholar Jiang Bin in 2013 as
an approach to classify or stratify data with characteristics of heavy-tailed distributions [62],
such as power-law distributions. It enables rapid data categorization and reveals the latent
hierarchical structure of the dataset. The head/tail segmentation is a recursive function, as
shown in Figure 3, used to iteratively deduce the head and tail for all levels (scales) and
recursively unveil the inherent hierarchical structure of the dataset. Based on a descending
order of data sorting, the original data are split into the head, consisting of values higher
than the mean, and the tail, consisting of values lower than the mean. Since the tail exhibits
minimal variation, there is no need to segment values below the mean. This process
continues to iteratively split the head until the concept that small values are significantly
more abundant than large values is violated, signifying that the head no longer conforms
to a heavy-tailed distribution, at which point the segmentation stops.

The structural hierarchy levels obtained using the head/tail break method can be
quantified using the ht index [69], revealing the number of levels in the hierarchy. The
calculation formula involves adding 1 to the number of recursive segmentations. There
are two fundamental principles governing hierarchical structures: scaling laws, where
smaller levels are far more numerous than larger ones within the hierarchy, and Tobler’s
law, which stipulates the presence of varying degrees of similarity within each level of the
rank structure. In other words, spatial heterogeneity and spatial homogeneity, or spatial
dependency, can be simultaneously observed in the hierarchical structure. A higher ht
index signifies a higher level of hierarchy within the structure.
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We also employed the aforementioned set of 1001 data points (1, 1/2, 1/3, . . ., 1/1001)
to further illustrate this classification scheme (Figure 3). The average of the 1001 data points
is 0.0075, which divides the 1001 data points into two categories: the head, consisting of
data points greater than the average (1, 1/2, . . ., 1/133), and the tail, consisting of data
points lower than the average (1/134, 1/135, . . ., 1/1001). For the data points in the head
category (1, 1/2, . . ., 1/133), their average is 0.0411. This value further divides the head
data into two subcategories: the upper head (1, 1/2, . . ., 1/24) and the lower head (1/25,
1/26, . . ., 1/133). We continue this process with the upper head data, obtaining a third
average value of 0.1573, which further divides the upper head data into two subcategories.
Subsequently, we obtain a fourth average value of 0.4083, which further divides the six data
points into two categories. After this, the data no longer follow a heavy-tailed distribution,
and the segmentation process stops. In total, the data iterated (was segmented) four times,
and the ht index is expressed as the number of recursive segmentations (as stated on the
previous page) + 1, meaning the ht index is 5. The data are classified into five categories:
[1/134, 1/135, . . ., 1/1001], [1/25, 1/26, . . ., 1/133], [1/7, 1/8, . . ., 1/24], [1/3, 1/4, . . ., 1/6],
and [1, 1/2]. These correspond to five hierarchical structure levels: L1, L2, L3, L4, and
L5. Furthermore, we can calculate the hierarchical level of each city in the total number of
levels, i.e., Li

N = ht index rank, where Li represents hierarchical structure levels, and N is the
ht index.

2.2.3. Epidemic Risk Measurement

This study provides a dynamic perspective for identifying the space-time risk of an
epidemic in the space-time domain. We examine the disparity between the relative levels
of cases and the population at each date for each specific region across the entire study
area. The space-time risk refers to the likelihood of an outbreak around a specific region at
a certain date. In this study, we define a risk assessment indicator, Ri,t, to characterize the
space-time risk of COVID-19.

Ri,t =
L(cas)

i,t

N(cas)
t

−
L(pop)

i

N(pop)
(3)

where N(cas)
t denotes the ht index of COVID-19 confirmed cases at the moment t, L(cas)

i,t
denotes the hierarchical level of COVID-19 confirmed cases at the moment t, N(pop) is

the ht index of the population density,
L(cas)

i,t

N(cas)
t

denotes the t, which is the time rank of

COVID-19 confirmed cases; L(pop)
i denotes the hierarchical level of the urban population

density and L(pop)
i

N(pop) represents the rank of the urban population. Ri,t denotes the risk value
for a certain region i at time t. From Equation (3), we can obtain three possible outcomes:
Ri,t > 0 indicates high risk, Ri,t = 0 indicates medium risk, and Ri,t < 0 indicates low
risk. Obviously, if a region has a lower level of population density but a higher level
of confirmed cases, the risk of epidemic spread exists. Specifically, while a region has
a relatively low level of cases but a relatively high level of population density, Ri,t is
negative, which indicates low risk. While the two relative levels of cases and population
density are identical, Ri,t equals zero and indicates medium risk. Further, while the
relative level of the population density is low but the relative level of cases is high, Ri,t is
positive, which indicates high risk. Thus, if the risk assessment indicator, Ri,t, is greater
than 0, it indicates the epidemic risk of a certain city i at a certain date t (a higher value
of Ri,t indicates increased risk). It is worth noting that this study does not consider the
situations of medium and low risk, focusing on the spatiotemporal variations in high-risk
areas. The positive value of the risk assessment indicator represents the epidemic risk
across the space-time domain. Its greater value indicates a higher risk. Specifically, when
a region exhibits the highest hierarchical level of cases at a certain date, and meanwhile
exhibits the lowest level of population density, the epidemic risk reaches the highest
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level (approaching 1). According to Equation (3), the highest risk value in this study was
calculated as up to 0.84.

3. Results
3.1. Exploration of Heavy-Tailed Distribution

We first examined the heavy-tailed distributions of COVID-19 cases and population
density. The results indicated that both exhibited heavy-tailed distributions. According
to statistics, the total population density of 367 Chinese cities in 2019 was 148,161.80
individuals per square kilometre, with an average population density of 403.71 individuals
per square kilometre. Among these, the highest population density was 6727.91 individuals
per square kilometre, while the lowest was 0.35 individuals per square kilometre. Table 1
displays the results of population density head/tail break calculations, involving five
iterations of the population density data. Figure 4a,b depict the top three stratification
levels of the population density and the magnitude ranking of the confirmed COVID-19
cases in the first week, respectively, using embedded insets. The head data are represented
in red, while the tail data are in blue. Two smaller insets are added for each dataset,
providing a visual representation of the heavy-tailed distribution characteristics of the data
and further illustrating the role of the data hierarchy structure. As shown in Figure 4a,
the largest plot encompasses population density data for all 367 cities. Dark red indicates
the first head (126 cities), while dark blue represents the first tail (241 cities). Replotting
the population density rank-size plot for the 126 cities in the first head reveals that dark
red denotes 30 cities with a population density in the head, while dark blue represents
96 cities with a population density in the tail. The smallest plot is for the population
density rank-size plot within the second head, consisting of 30 cities, and it also exhibits
heavy-tailed characteristics in the population density data.

Throughout the power-law fitting process, except for the first week, the power-law
exponent α remained around 2, with goodness-of-fit (p) values consistently exceeding
0.1. We did a power-law estimation test for the number of confirmed COVID-19 cases at
12 weeks (Figure 4c–e), and as shown in Figure 4d,e, the maximum value of the power-
law estimation index for COVID-19 cases (α = 2.02) occurred in the first week, while the
minimum value of the goodness-of-fit p (p = 0.048 (p < 0.05)) also occurred in this time
period, and it did not pass the power-law test. The COVID-19 confirmed cases did not show
a power-law distribution in the first week. However, the pattern of power-law distribution
was presented after only the second week, and the power-law distribution of the COVID-19
confirmed cases showed a trend of gradually decreasing significance with increasing time
(Figure 4c: change from dark blue to light blue).

In the context of the dynamic development of the epidemic, the power-law estimation
index α underwent an overall decreasing and then increasing evolution, with an inverted
“V” shape (Figure 4d). The most robust spatial heterogeneity was observed for COVID-
19 cases in the second week (α = 2.02, p > 0.05) and the smallest in the seventh week
(α = 1.58, p > 0.05). We can find that, as the power law estimation index decreases, the
scale effect of the epidemic spread decreases and so does the spatial heterogeneity. At
the beginning of the epidemic, the local outbreak was at the “low level of spread” stage,
the scale effect of the epidemic spread was not obvious, and there was no power-law
distribution. With the spread of the epidemic, the COVID-19 cases gradually showed a
power-law distribution. It is worth clarifying that the confirmed cases of COVID-19 did
not show a power-law distribution pattern in the first week, but it is clear from the result
of their head/tail breaks (Table 1) and rank-size plot (Figure 4b) that they also satisfy the
heavy-tailed distribution characteristics.
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Table 1. Population density and calculation of head/tail breaks of confirmed COVID-19 cases in
week 1.

City Mean Head Tail %Head

Population density

367 403.71 126 241 34%
126 861.24 30 96 24%
30 1668.05 8 22 27%
8 3150.71 3 5 38%
3 4666.17 1 2 33%

First week
COVID-19

confirmed case

367 6.96 70 297 19%
70 29.99 17 53 24%
17 87.06 5 12 29%
5 188.4 1 4 20%
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Figure 4. Population density and the heavy-tailed distribution of COVID-19 confirmed cases ((a,b) show
the first three levels of rank-size plots for population density and first-week COVID-19 confirmed case
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confirmed cases; (d,e) show the trend of power-law index α and goodness-of-fit p, respectively).

3.2. The ht Index and Spatial Hierarchy of COVID-19 Confirmed Cases and Population Density

We can use head/tail breaks to derive the hierarchical structures for population densities
and the numbers of confirmed COVID-19 cases (See Appendix A for full details). The ht index
indicates the spatial hierarchy structure. For example, the population density ht index = 6,
implying the presence of six hierarchical levels, namely L1 (0–404), L2 (405–861), L3 (862–1668),
L4 (1669–3151), L5 (3152–4666), and L6 (4667–6728). From Figure 5, it can be found that, for
the population densities, the hierarchical structure had a stable ht index value of 6. Or, we can
say that the spatial hierarchy of the population densities had a total of six levels. We employed
choropleth symbolization to visualize the spatial hierarchy levels of the population density for
each city. The darker the color, the higher the spatial hierarchy level, indicating that L1 (pop:
0–404) < L2 (pop: 405–861) < L3 (pop: 862–1668) < L4 (pop: 1669–3151) < L5 (pop: 3152–4666)
< L6 (pop: 4667–6728). As depicted in Figure 6, cities with a higher population density are
generally located in the eastern regions, particularly in some coastal areas such as Shenzhen
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and Shanghai. For the epidemic cases (Figure 5), the ht index value varied from 3 to 5. The first
week had the largest ht index value of 5. At first, there were a total of five levels in the spatial
hierarchy of the cases, and then, the ht index varied around 3 and 4 during the entire period.
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To explore the inherent spatial hierarchy of COVID-19 cases, we further generated
spatial hierarchy maps for the first week (ht index = 5), the sixth week (ht index = 3), and the
12th week (ht index = 4) in relation to the number of COVID-19 cases (Figure 6b–d). Darker
colors indicate higher spatial hierarchy levels of the cities. In Figure 6b, during the first
week, the cities with higher levels of COVID-19 cases were concentrated around Wuhan,
with five cities being at the highest level, namely Wuhan (500 cases), Huanggang (142 cases),
Chongqing (110 cases), Xiaogan (100 cases), and Jingmen (90 cases). By the sixth week
(Figure 6c), the cities with higher COVID-19 case numbers remained concentrated around
Wuhan, but the hierarchy structure of the case numbers decreased to three levels, indicating
a reduction in the heterogeneity of the pandemic spread. After nearly three months of
epidemic prevention and control efforts, in the final week of the study (Figure 6d), the
ht index for the spatial hierarchy structure of the cases was 4. Overall, the COVID-19
case levels in the eastern region were higher than those in the western region, and the
hierarchy structure changed over time. For instance, from the first week to the sixth week,
the levels decreased from Wuhan, then in surrounding cities, and then in other areas. By
the 12th week, the cities with higher levels were distributed in the northeast region.

3.3. Assessment of the Risk of Transmission of COVID-19 Cases in China

Based on the hierarchical structures of the population density and COVID cases, we
can calculate the risk assessment indicators for all cities over 12 weeks and display the
spatiotemporal dynamics of high-risk cities. Figure 7 illustrates the spatial distribution
of high-risk cities from week 1 to week 12. The color red represents risk, with darker
shades indicating a higher risk. The evolution of the COVID-19 space-time risk exhibits
significant regional disparities. During the early stages of the study, i.e., from week 1 to
week 5 (Figure 7a–d), the high-risk cities were predominantly concentrated around Wuhan,
displaying a larger “single-core” structure. However, in the middle weeks, from week
6 to week 8 (Figure 7f–h), the distribution of the high-risk cities became more scattered,
with only a few cities exhibiting relatively higher infection risks. Increases in population
mobility may contribute to higher epidemic risks. In the final four weeks, i.e., from week 9
to week 12 (Figure 7i–k), the high-risk cities were primarily located in the eastern coastal
regions and a few central-western areas, such as Beijing and Chongqing. These cities exhibit
high population density, intense population migration, and vibrant socioeconomic activity,
resulting in elevated risk values.

To delineate more detailed information about the pandemic risk, we primarily inves-
tigate the changes in the number of cities at risk from week 1 to week 12, along with the
statistical metrics of the average, standard deviation, and maximum risk values per week.
The average is the sum of the space-time risks of all cities divided by the number of cities in
each week, which reflects the trend of the space-time risk concentration. Standard deviation
mathematically refers to the arithmetic square root of the arithmetic mean of the squared
deviation from the mean (i.e., variance). In this study, computing the standard deviation
of the risk values over the 12 weeks serves as a measure of uncertainty, representing the
precision of the risk estimates. The maximum risk value per week is the one with the
largest weekly temporal risk for all cities. Over the entire study period, the number of
high-risk cities decreased from 57 in the first week to 6 in the last week (Figure 8). However,
it is worth noting that, in the last four weeks, the average value and standard deviation of
the risk assessment indicator noticeably increased. While the number of high-risk cities
decreased significantly during the study period, greater attention should be paid to the
later stages of epidemic control, especially in several cities with extremely high-risk values.
It is noteworthy that the maximum risk value occurred in the last three weeks.
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3.4. Application of Outbreak Risk Assessment Models

Finally, we selected six representative cities: Beijing, Guangzhou, Wuhan, Shanghai,
Wenzhou, and Chongqing, to explore their local-level risk dynamics and compared their
84-day risk assessment values with their incidence rates and population migration inten-
sities (Figure 9). We observed that the risk evolution in these six cities varies, and their
relationship with the incidence rate and population migration intensity differs as well.
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An increase in the incidence rate contributes to a higher infection risk in a region,
which is particularly evident in the early stages of the epidemic (the rapid growth phase
and the control reduction phase), as seen in Wenzhou from 26 January to 11 February
(Figure 9e) and Chongqing from 21 January to 26 January (Figure 9f). In the middle and
later stages of the epidemic, a city’s epidemic risk is mainly influenced by its population
mobility. When the incidence rate is low, a city may still face a high risk due to factors such
as population mobility. Beijing (Figure 9a) showed a higher population migration rank from
28 March to 10 April, increasing the local epidemic risk as the influx of people grew. From
18 March to 9 April, Wenzhou experienced a gradual rise in its population inflow intensity,
reaching a high of 0.42 during that period. Chongqing exhibited similar characteristics
from 20 February to 23 February. Furthermore, due to the virus’s high destructiveness,
high infection rate, and rapid transmission, the risk persists even with the implementation
of government-enforced lockdown measures. This is particularly evident in the Wuhan
region (Figure 9c), where the risk remained consistently high, especially from 20 January to
17 March.

It is worth noting that, due to the lag in epidemic risk assessment, situations can occur
where risks are not immediately recognized during periods of high incidence rates and
high population migration ranks. Instead, risks may manifest later, especially as observed
in Guangzhou from 26 January to 6 February (Figure 9b) and Shanghai from 25 January
to 4 February (Figure 9d). Therefore, in epidemic control efforts, vigilance should not be
relaxed even when the incidence rate is high and the population influx is significant, to
prevent potential epidemic rebounds.

In summary, the risk dynamics in these six cities vary, and their relationships with
incidence rates and population migration intensity differ as well. The approach we have
presented allows for a better description of the risk dynamics in each city. Specifically,
an increase in the incidence rate can elevate the risk for a city. However, it is crucial to
recognize that, even with lower incidence rates, other factors such as population mobility
can still place a city at a high risk.
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4. Discussion

Epidemic risk assessment has been a focal point of research in post-pandemic China
and other countries. In recent years, the head/tail break method has been widely ap-
plied across various domains, including urban studies [62,64], environmental pollution
studies [70], and more, offering functions such as image texture extraction and data vi-
sualization. In epidemiology, the head/tail break method is commonly employed as a
classification approach to visualize the spread patterns of diseases, such as the mapping of
the global COVID-19 pandemic [40].

This study employed the head/tail segmentation method to investigate the space-
time evolution of COVID-19 risks in China. The COVID-19 pandemic is influenced by
underlying populations, and the spatial hierarchies of epidemic cases in different regions
correlate with the spatial hierarchy of the base population. By comparing the differences
in the relative hierarchy of the population density for confirmed COVID-19 cases, a risk
measurement model was constructed. This proposed risk measurement model quantifies
the impact of population density on infectious disease transmission and is feasible for
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identifying areas with a high risk of infection in urban epidemic surveillance. Important
research results were achieved, providing valuable references for cities facing increasing
cases during the pandemic.

In the early stages of the new coronary pneumonia outbreak, many researchers have
predicted the potential outbreak size and duration through various models [71–73]. For
instance, the basic reproduction number (R0), serving as a crucial indicator of infectious
disease transmission, elucidates the extent of COVID-19 case dissemination. In real-time
studies of epidemic transmission risk, the effective reproduction number (Rt) is employed
to signify the current epidemic transmission index, which studies have used to provide
some useful clues for health authorities in China and other countries or regions. In contrast,
one of the significant contributions of our study is the introduction of a method to directly
depict epidemic risks. Based on two parameters, namely newly confirmed COVID-19
cases and population density, we constructed a risk measurement model that dynamically
assesses the risk of epidemic spread through spatially stratified ranking. Compared with
other epidemic risk assessment models such as SEIR models and Kalman filtering, the risk
assessment indicator proposed in this paper, Ri,t, is more straightforward and user-friendly.

Our study of one-week units reveals the risk of COVID-19 transmission in China. It
is worth stating that the virus does not adhere to or respect either aggregation definition.
Hence, different time periods (e.g., 10-day or 14-day) would likely produce different
results. Moreover, a different spatial structure (e.g., at a coarser administrative level)
would also produce different results. In other words, the results produced by this article
are only valid under the assumption of a 7-day week and the municipal administrative
district. Other temporal frameworks or enumeration unit boundary structures for the
same period (12 weeks) and geographic area (China) will result in different outcomes.
Thus, the effects of the modifiable areal unit problem (MAUP) cannot be ignored. We
observed that areas with higher pre-epidemic levels may have a higher risk of infection.
The number of high-risk cities increased sharply, mainly concentrated in densely populated
coastal cities, central and western regions, and the Beijing-Tianjin-Hebei region. This is
because these areas have high population densities and active socio-economic activities.
Therefore, the timely identification of densely populated areas should be considered one
of the key measures in controlling the spread of the disease [74,75]. After the outbreak,
various regions implemented a series of targeted infection prevention and control measures,
including isolating confirmed cases and suspected cases, breaking the transmission chain,
and reducing the spread of COVID-19 in various regions. As a result, the epidemic in China
was well-controlled within a short period (6–8 weeks).

In addition, the results of the risk assessment not only reflect the inherent hierarchy
of the epidemiological and demographic context at the macro level but also portray the
dynamics of risk evolution at the micro level for local areas or individual cities. The analysis
of the daily risk assessment values of six cities, Beijing, Guangzhou, Wuhan, Shanghai,
Wenzhou, and Chongqing, compared with their COVID-19 incidence rates and the ranking
of their population movement intensity, reveals that the model has a certain degree of
foresight and can effectively assess the risk of an area in the future. When the incidence
rate rises, the risk value will also rise. The risk of an epidemic is influenced by population
movement, and an increase in the rank of the population inflow will bring about the risk of
an epidemic, and the risk value will fluctuate and change. To a certain extent, this provides
the basis for the government to adjust and update its strategy and shorten the time for
China to prevent and control the epidemic, which provides important support for the rapid
resumption of production in February and March.

Another scientific contribution of this study lies in the pioneering application of the
head/tail breaks approach to the space-time risk research of epidemics. The proposed
method offers a better depiction of the risk evolution in each city. The study visually
mapped the space-time risk evolution of each city over 12 weeks. In terms of spatial
distribution, the high-risk cities were concentrated around Wuhan in the early stages,
forming a “large core,” and were later distributed in coastal areas, forming a “striped”
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pattern. To validate the relationship between the space-time risk changes in each city and
the actual situation, we compared the incidence rates, the ht index ranking of the population
influx intensity, and the Ri,t values of six cities. We found that the risk assessment index
has a certain usability and can be applied to the evaluation of urban epidemic risk. This
model has provided a new perspective on the assessment of epidemic transmission risk
levels and a new approach to the analysis of space-time changes in epidemic risk.

Although we have revealed spatial and temporal variation in areas at risk of out-
breaks in China, further research is needed. As many stringent interventions have been
implemented in some cities, more potential variables (preventive and control measures,
vaccination, virus transmission characteristics, etc.) should be considered to refine the
identification of areas at a high risk of transmission of confirmed COVID-19 cases. Secondly,
longer-period datasets of the COVID-19 outbreak in China could be incorporated to further
enhance the depth and significance of our research, and time-series data of the COVID-19
outbreaks in other countries or regions should be collected to validate the study in this
paper. Exploring data on the impact of multiple factors on the spread of the epidemic and
long-time series epidemics is an important research component to improve the accuracy of
risk assessment and prediction.

5. Conclusions

This study, taking China as an example, analyzes the spatiotemporal characteristics
of the evolution of COVID-19 risk over 12 weeks from 20 January to 12 April 2020, in 367
prefecture-level cities, focusing on the perspective of spatial hierarchy differences. We
propose a COVID-19 risk assessment index based on the head/tail break method to identify
the spatiotemporal distribution of high-risk cities. In this research, we observed that both
COVID-19 cases and the population density exhibit heavy-tailed distribution characteristics.
We found that the hierarchy structure of COVID-19 cases in China consistently approached
but never surpassed the hierarchy structure of the population density. Consequently, the
spatiotemporal transmission of COVID-19 is influenced by the underlying population.
Furthermore, the calculated risk assessment values have practical significance, as they
increase with rising incidence rates. It is worth noting that, even with lower incidence
rates, the influence of other potential factors like population mobility can place an area at
high risk.

In summary, these findings enhance the overall understanding of the space-time risk of
COVID-19 in China and provide a scientific basis for policymakers. The risk measurement
model we propose can describe the spatiotemporal patterns of COVID-19 risk and offers a
new perspective for assessing the risk level of epidemic transmission, which holds practical
significance. However, this study did not delve into more detailed influencing factors of
epidemic risk, and the time series is relatively short. Therefore, future research should focus
on longer time series and a comprehensive consideration of factors influencing changes in
epidemic risk.
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Appendix A

This appendix includes a statistical table of the results of head/tail breaks calculations
for 12-week COVID-19 cases.

Table A1. Results of head/tail break COVID-19 cases calculations.

Date City Mean Head Tail %Head

Week1

367 6.96 70 297 19%
70 29.99 17 53 24%
17 87.06 5 12 29%
5 188.40 1 4 20%

Week2
367 39.31 38 329 10%
38 312.71 7 31 18%
7 1155 1 6 14%

Week3
367 62.88 30 337 8%
30 669.23 3 27 10%
3 4798 1 2 33%

Week4
367 85.75 15 352 4%
15 1971.33 1 14 6%

Week5
367 18.73 16 351 4%
16 412.63 1 15 6%

Week6
367 7.84 6 361 2%

6 467 1 5 17%

Week7
367 1.93 9 358 2%

9 78 1 8 11%

Week8
367 0.31 15 352 4%
15 7.47 3 12 20%
3 28.67 1 2 33%

Week9
367 0.63 36 331 10%
36 6.42 4 32 11%

Week10
367 1.02 28 339 8%
28 12.68 6 22 21%

Week11
367 0.59 37 330 10%
37 5.84 8 29 22%
8 20.25 3 5 38%

Week12
367 1.04 12 355 3%
12 30.83 3 9 25%
3 107.33 1 2 33%
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