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Abstract: Dysentery is still a serious global public health problem. In Chongqing, China, there were
37,140 reported cases of dysentery from 2015 to 2021. However, previous research has relied on
statistical data of dysentery incidence rate data based on administrative regions, while grained scale
products are lacking. Thus, an initialized gradient-boosted decision trees (IGBDT) hybrid machine
learning model was constructed to fill this gap in grained scale products. Socioeconomic factors,
meteorological factors, topographic factors, and air quality factors were used as inputs of the IGBDT
to map the statistical dysentery incidence rate data of Chongqing, China, from 2015 to 2021 on the grid
scale. Then, dysentery incidence rate grained scale products (1 km) were generated. The products
were evaluated using the total incidence of Chongqing and its districts, with resulting R2 values of
0.7369 and 0.5439, indicating the suitable prediction performance of the model. The importance and
correlation of factors related to the dysentery incidence rate were investigated. The results showed
that socioeconomic factors had the main impact (43.32%) on the dysentery incidence rate, followed
by meteorological factors (33.47%). The Nighttime light, normalized difference vegetation index,
and maximum temperature showed negative correlations, while the population, minimum and
mean temperature, precipitation, and relative humidity showed positive correlations. The impacts of
topographic factors and air quality factors were relatively weak.

Keywords: dysentery; initialized gradient-boosted regression trees; downscaling; fine-grained
scale product

1. Introduction

Dysentery is a water- and food-borne infectious disease [1]. It is an intestinal infectious
disease transmitted through contaminated water, food, or human contact. It includes bacil-
lary dysentery and amebic dysentery [1,2]. Dysentery is also a global public health problem
with high contagiousness and complex transmission, affecting people of all ages, especially
in developing countries [3–5]. According to a report from the World Health Organization
(https://www.who.int, accessed on 2 November 2023), diarrhoeal is the second leading
cause of death among children under the age of five. Approximately 525,000 children under
the age of five die from diarrhoeal each year, and there are approximately 1.7 billion cases
of diarrhoeal in children worldwide every year. And, dysentery is a significant subtype of
diarrhea. In China, dysentery is still classified as a Class A or B legally notifiable infectious
disease. According to the report on legally notifiable diseases by the National Health
Commission of China in 2021 (http://www.nhc.gov.cn/jkj/, accessed on 8 July 2023), the
number of reported cases of dysentery was 50,403, with a national incidence rate of 3.5752
(1/105, per 100,000 population).

The United Nations introduced the Sustainable Development Goals in 2015, and
within the “Good Health and Well-being” goal, there is a clear aim to eliminate epidemic
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diseases by 2030. Given that dysentery remains a prevalent infectious disease worldwide,
it is crucial to study and analyze the spatial and temporal clustering areas, development
trends, and related factors of dysentery. Although there are many studies related to
dysentery, such as spatial and temporal distribution studies [5–9], prediction of dysentery
incidence [10], and related influencing factors [3,11–19], these studies were based on the
incidence rate of dysentery statistics data within administrative regions. Although statistical
dysentery incidence rate data can intuitively represent geographical phenomena and spatial
distribution and be convenient for spatial relationships and statistical analysis, it is limited
by the use of predefined statistical units [20]. As such, it cannot express the situation within
units in a fine-grained manner and cannot achieve more detailed research. Grid data can
provide this required detail [21,22], and it has the advantage of integrating various related
factors, such as topographic and meteorological factors. Therefore, there is a demand for
mapping dysentery incidence rate data to obtain a fine-grained distribution of dysentery
incidence rates.

The factors related to dysentery incidence should be investigated first to obtain the fine-
grained distribution of dysentery incidence rates. As for the factors affecting dysentery, they
can be broadly summarized as socioeconomic factors [1–3,15,23,24], such as population and
economic development status, meteorological factors [13,14,16–19,24], such as precipitation
and temperature, topographical factors [11,15], such as slope and elevation differences, and
air quality factors [25,26], such as PM2.5 and PM10. Therefore, this study believes that using
these factors for research is appropriate. However, these factors have strong nonlinear
relationships with the dysentery incidence rate, so machine learning methods are a suitable
approach for mapping the dysentery incidence rate to the grid scale.

To date, some scholars have used machine learning methods to map statistical data to
the grid scale, such as using a random forest (RF) model to map population census data
to a 1 km grid scale [21], using an ensemble approach for fine-scale dynamic population
mapping [27] using a convolutional neural network method to map gross domestic product
(GDP) statistics data to a grid scale [22], and using an RF model to map NO2 concentration
data to a grid scale [28]. Compared to traditional multiple linear regression methods,
machine learning algorithms such as RF, gradient-boosted decision trees (GBDT), and
neural networks are better at explaining the nonlinear relationships between variables.
The initialized gradient-boosted decision trees (IGBDT) [29] is a hybrid machine learning
model that combines the RF [30] and GBDT [31,32], thereby integrating the strengths of
both algorithms. This model has suitable interpretability, allowing for an explanation of
the impact of each feature on the target variable. These advantages make IGBDT highly
generalizable and capable of explaining nonlinear relationships, thus allowing for more
accurate predictions of the dysentery incidence rate.

The main contributions of this paper lie in two aspects. An IGBDT hybrid machine
learning model is used to downscale the annual dysentery incidence rate data to a 1 km grid
scale. Second, the importance levels of and correlations among various factors affecting the
incidence rate of dysentery are revealed.

The remainder of this article is organized as follows. In the Section 2, the data sources,
data processing, and integration process used herein are introduced. The Section 3 describes
the workflow of this study and the IGBDT model. In the Section 4, the evaluation results of
the constructed IGBDT model are presented. The dysentery incidence rate grained scale
products (1 km) of Chongqing generated by the model are described, and the importance
levels of and correlations of various relevant factors are discussed. In the fifth part, the
IGBDT model is compared with other models, and the importance levels of and correlations
among the influencing factors obtained in this study are compared with other studies.
Finally, the contributions, limitations, and future prospects of this study are summarized.
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2. Materials and Methods
2.1. Study Area

The study area considered in this work is Chongqing, a municipality located in south-
western China and one of the four municipalities directly under the central government of
China. Chongqing has 38 districts, covers an area of 82,400 km2, and had a total population
of approximately 32.12 million in 2021. Chongqing is located between the middle reaches of
the Yangtze River and the Sichuan Basin, with the landscape consisting of mountains, hills,
and valleys. The terrain is characterized by large differences in elevation, with elevations
ranging from 73.1 m to 2723.7 m. According to the Chongqing Municipal Bureau of Statis-
tics (https://tjj.cq.gov.cn/, accessed on 8 July 2023), the urbanization rate in Chongqing
reached 70.3% in 2021, and the city’s annual GDP was CNY 2.7894 trillion. The mean
temperature between 2015 and 2021 was 16–18 ◦C, and the mean precipitation during
this period was approximately 1100–1400 mm (https://ceidata.cei.cn/jsps/, accessed on
12 July 2023).

Chongqing, China, ranked fourth in terms of the mean incidence rate of dysentery
from 2015 to 2021, with a rate of 16.91 cases per 100,000 people. During this period, there
were a total of 37,140 reported cases of dysentery in Chongqing. In addition, the overall
incidence rate of dysentery in Chongqing was higher than the national average during
this period (Figure 1c). Therefore, given Chongqing’s unique geographical environment
and the notably high incidence rate of dysentery, it is of paramount importance to investi-
gate the dysentery incidence rate in Chongqing. Figure 1b also shows that the incidence
rate of dysentery is relatively high in the areas surrounding the main city of Chongqing
and expands northeastward. Moreover, Chengkou, located in the northernmost part of
Chongqing, is also a high-risk area.
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2.2. Materials Sources and Processing

In this study, the incidence rates of dysentery and other auxiliary data such as socioe-
conomic factor data, meteorological factor data, topographic factor data, and air quality
factor data in Chongqing from 2015 to 2021 were collected. The details are presented
in Table 1.

Table 1. Datasets used in this study.

Name Format Spatial Resolution Temporal Resolution Data Source

Incidence rate data
of dysentery Text / Year Chongqing Municipal

Health Commission
Nighttime light dataset Grid 1 km Year HARVARD Dataverse

Population Grid 1 km Year LandScan
NDVI Grid 0.01745◦ (~1 km) Month

National Earth System Science
Data Center

PM2.5 Grid 0.01745◦ (~1 km) Year
PM10 Grid 0.01745◦ (~1 km) Year

Temperature Grid 0.01745◦ (~1 km) Month

Precipitation Grid 0.01745◦ (~1 km) Month National Tibetan Plateau
Data Center

Relative humidity Grid 1 km Month
National Earth System Science
Data Center/National Climatic

Data Center
DEM Grid 12.5 m / The Earth Science Data Systems

2.2.1. Incidence Rate of Dysentery in Chongqing

The incidence rate data of dysentery for all 38 districts in Chongqing from 2015 to
2021 were obtained from the website of the Chongqing Municipal Health Commission
(https://wsjkw.cq.gov.cn/, accessed on 8 July 2023). In total, we collected 266 samples of
incidence rate data.

2.2.2. Socioeconomic Factor Data

The Nighttime light (NTL) dataset (2015–2021) was obtained from improved time-
series DMSP-OLS-like data product in China by integrating the DMSP-OLS and SNPP-
VIIRS data [33] published in HARVARD Dataverse (https://dataverse.harvard.edu/,
accessed on 8 July 2023). The spatial resolution of these data is 1 km.

The population raster dataset covering the years 2015 to 2021 was obtained from the
open-source population mapping product called the LandScan Global population database,
which is maintained by the Oak Ridge National Laboratory (https://landscan.ornl.gov/,
accessed on 8 July 2023). The spatial resolution of the raw data is 0.01745 arc-degrees.

Monthly normalized difference vegetation index (NDVI) datasets were obtained from
the National Earth System Science Data Center, National Science & Technology Infrastruc-
ture of China (http://www.geodata.cn, accessed on 8 July 2023). Their original resolution
is approximately 0.01745 arc-degrees.

2.2.3. Meteorological Factor Data

Monthly mean temperature grid datasets [34–38] with a resolution of 0.01745 arc-
degrees were collected from the National Tibetan Plateau Data Center (https://data.tpdc.
ac.cn/, accessed on 4 July 2023) in China and spanned the period from 2015 to 2021.

Monthly precipitation datasets [38] covering China from 2015 to 2021 were obtained
from the National Earth System Science Data Center, National Science & Technology
Infrastructure of China. Their original resolution is approximately 0.01745 arc-degrees.

A monthly relative humidity gridded dataset covering the period from 2015 to 2020
with a spatial resolution of 1 km was collected from the National Earth System Science Data
Center, National Science & Technology Infrastructure of China. Due to the lack of relative
humidity raster data for 2021, air temperature and dew point temperature data of Chinese

https://wsjkw.cq.gov.cn/
https://dataverse.harvard.edu/
https://landscan.ornl.gov/
http://www.geodata.cn
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/


ISPRS Int. J. Geo-Inf. 2023, 12, 459 5 of 16

regional meteorological stations through the FTP server (ftp://ftp.ncdc.noaa.gov/pub/
data/noaa/isd-lite/, accessed on 4 July 2023) published by the National Climatic Data
Center (NCDC) were collected. The relative humidity was calculated from air temperature
and dew point temperature by Equation (1) [39]. Afterward, kriging interpolation was
performed on the relative humidity data recorded at regional stations in China to obtain
raster data with a resolution of 1 km.

RH = 100× e(17.62×Td)/(Td+243.12)

e(17.62×T)/(T+243.12)
(1)

where RH represents relative humidity, Td represents the dew point temperature, and T
represents the air temperature.

2.2.4. Topographic Factor Data

The 12.5 m digital elevation model (DEM) data in Chongqing were obtained from
the ALOS PALSAR Dataset of The Earth Science Data Systems (ESDS) (https://search.asf.
alaska.edu/, accessed on 4 July 2023) in Chongqing. We proceeded to resample these data,
changing the original resolution of 12.5 m to 1 km. Based on these resampled data, the
surface slope was calculated.

2.2.5. Air Quality Factor Data

Yearly PM2.5 and PM10 datasets covering China from 2015 to 2021 at a 1 km resolution
were obtained from the National Earth System Science Data Center, National Science &
Technology Infrastructure of China. The original resolution of these data is approximately
0.01745 arc-degrees.

2.2.6. Data Integration

To ensure the smooth operation of the model, the format of all covariates should be
standardized. Therefore, NTL data were used as the basis to resample and correct all other
grid data, including the DEM, slope, NDVI, PM2.5, PM10, precipitation, temperature, and
relative humidity data, so that all data had the same spatial resolution (1 km), spatial extent,
and row/column numbers. The NDVI, temperature, relative humidity, and precipitation
data were all monthly data. However, this study was focused on an annual timescale, so
these data needed to be aggregated on a yearly basis. Specifically, the maximum NDVI
value across the 12 months was taken as the annual NDVI value, the monthly precipitation
values were summed up to obtain the annual cumulative precipitation value, and the mean
relative humidity and temperature across the 12 months were calculated to obtain the
annual relative humidity and temperature values, respectively. This aggregation process
enabled us to analyze the annual trends and patterns in these environmental variables.

2.3. Methods

To explore the nonlinear relationships between the dysentery incidence rate and the
covariates, an IGBDT model was established to map the incidence rate of dysentery to a
1 km grid scale. First, the mean values of the covariates (mean NTL, mean NDVI, mean
population, mean DEM, mean slope, mean cumulative precipitation, mean temperature,
annual maximum temperature, annual minimum temperature, mean relative humidity,
mean night light, and mean PM2.5 and PM10) in each district were used as the explanatory
variables, and the annual incidence rate of dysentery in each district was used as the
response variable to train the model. Due to the large gaps in the annual dysentery
incidence rate among districts, a logarithmic transformation was performed to make the
distribution of data more symmetrical and reduce the impacts of extreme values on the
model. Then, the covariate data of Chongqing from 2015 to 2021 were input into the IGBDT
model in pixels to predict the incidence rate of dysentery (anti-logarithm is required) at the
pixel level at a 1 km resolution. The specific workflow is shown in Figure 2.

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/
https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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Figure 2. The workflow used to map the dysentery incidence rate to a fine-grained grid scale.

IGBDT is a method in which trained RF prediction results are used to initialize the
GBDT, and the final boosted learner is added to the initial RF results. The specific algorithm
process is described as follows. First, an RF is trained on the training data to obtain the
initial prediction results. Then, the residuals of the initial prediction results are calculated
and used as the target variables to train the GBDT. In each iteration of the GBDT, a new
decision tree is trained to fit the residuals, and the results of the new decision tree are
added to the initial prediction results of the RF. This process is repeated until the desired
number of iterations is reached or until the residuals are no longer significantly reduced.
The specific algorithm is shown in Steps (1)–(3).

Step 1. Initialize the weak learner:

f0(x) = arcminc

n

∑
i=1

L(yi, RF(xi)) (2)

where L is the loss function.
Step 2. Perform the iterations: where m is the number of weak learners.
m ∈ {1, 2, . . . , M}:

(a) Calculate the negative gradient for each sample (xi, yi) (i ∈ {1, 2, . . . , n}). The obtained
residual rim is taken as the new true value of the sample, and (xi, rim) (i ∈ {1, 2, . . . , n})
is obtained as the training data of the next tree, then a new regression tree fm(x) is
obtained along with its corresponding Rjm (j ∈ {1, 2, . . . , J}). J is the number of leaf
nodes in the regression tree.

ri,m = −∂L(yi, fm−1(xi))

∂ fm−1(xi)
(3)

(b) Calculate the best fitting value for the leaf area J.

tjm = arcmint ∑
xi∈Rjm

L(yi, fm−1(xi) + t) (4)
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(c) Update the strong learner.

fm(x) = fm−1(x) +
J

∑
j=1

tjm I(x ∈ Rjm) (5)

where I is a function. If the sample falls on the node, then I = 1; otherwise, I = 0.
Step 3. Obtain the final learner:

f (x) = f0(x) +
M

∑
m=1

J

∑
J=1

tjm I(x ∈ Rjm) (6)

3. Results
3.1. Evaluating the Quality of the Model

In this article, we divided the dataset into 80% for the training set and 20% for the
testing set and utilized cross-validation in place of a validation set to evaluate the model.
First, an RF model (n = 860, max_depth = 12, max_features = 9, min_samples_split = 22,
min_samples_leaf = 14, and max_leaf_ nodes = 847) was constructed using a Bayesian
hyperparameter optimization training approach. The MAE, RMSE, and R2 values of the
testing set were 5.9345 (1/105), 8.1928 (1/105), and 0.7224, respectively.

Subsequently, the previously trained RF model was used to initialize the GBDT model,
resulting in the IGBDT model (init = RF, loss = ‘huber’, n_estimators = 810, learning_
rate = 0.015, max_depth = 8, max_features = 10, min_samples_split = 32 and min_samples_
leaf = 4), which was trained by Bayesian hyperparameter optimization. Figure 3 shows the
specific performance of the IGBDT model. The MAE, RMSE, and R2 values of the testing
set were 4.7522 (1/105), 6.5265 (1/105), and 0.8239. Compared to the RF, the R2 value of the
IGBDT increased by 0.1015, and the MAE and RMSE values decreased by 1.1823 (1/105)
and 1.6663 (1/105), respectively, in the testing set. The MAE, RMSE, and R2 values obtained
through five-fold cross-validation were 5.0039 (1/105), 7.346 (1/105), and 0.78, respectively.
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3.2. Dysentery Incidence Rate Grained Scale Product (1 km)

The IGBDT model was used to map the incidence rate of dysentery in Chongqing to
the pixel level (1 km). To reflect the spatial distribution of the incidence rate of dysentery in
1 km grained scale products, the mean incidence rate from 2015 to 2021 was calculated for
grained scale products, as shown in Figure 4. The spatial distribution of the mean incidence
rate was consistent with the distribution trend in 2019. Using this product, it is possible to
understand the spatial distribution of dysentery incidence in the regions of Chongqing at a
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relatively fine scale, not only at the scale of statistical units. The incidence rate of dysentery
is relatively high in the main urban area of Chongqing and Chengkou, which is located in
the northernmost part of Chongqing. High dysentery incidence rates can also be observed
in the northwestern and southwestern of Chongqing. Additionally, there is a clear zone
with high dysentery incidence rates along the Yangtze River basin.
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A regression evaluation was carried out on the population data multiplied by the
simulated incidence rates and actual incidence rate data in Chongqing, as presented in
Figure 5. Figure 5a illustrates the regression analysis outcome of the actual and simulated
incidence rate numbers for the entire city from 2015 to 2021, resulting in a correlation
coefficient of 0.7360. Figure 5b displays the regression analysis results of the actual and
simulated incidence rate numbers for each district in the city from 2015 to 2021, with
a correlation coefficient of 0.5439. These results suggest that the model is capable of
predicting the incidence rate to a certain extent and can capture some factors influencing
dysentery incidence.
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3.3. Covariate Importance and Correlation Analysis

Through the IGBDT model, the contribution of each characteristic element to the
incidence rate can be obtained (Figure 6). Among the various factors analyzed in this study,
the population, NTL, and NDVI had the highest impact weights among the socioeconomic
factors, accounting for approximately 43.32% of the total impact weight, with the population
accounting for 17.07%, NTL accounting for 14.18%, and NDVI accounting for 12.07%.
Among the meteorological factors, the mean temperature accounted for 12.20%, minimum
temperature accounted for 9.55%, and maximum temperature accounted for 3.46%. The
impact weights of cumulative precipitation (4.88%) and relative humidity (3.38%) were
relatively small, with meteorological factors accounting for a total of 33.47%. The impacts
of air quality factors, specifically PM10 and PM2.5, were relatively small, accounting for only
4.83%. Topographic factors, including the slope and DEM, accounted for a total of 14.42%.
The impacts of annual features, as this study was based on time-series data from 2015 to
2021, account for 3.95% of the total impact weight. Overall, socioeconomic factors had
the dominant impact on the dysentery incidence rate, followed by meteorological factors,
with temperature being the most important meteorological factor, while relative humidity
and cumulative precipitation had relatively small impacts. Topographic factors were more
important than air quality factors, but neither reached a significant level of importance.

The grained scale products (1 km) of dysentery incidence rate were used to study the
correlations between various features and the incidence rate of dysentery. The r (Pearson
correlation coefficient [40]) value was calculated by computing the pixel values of each
covariate at the corresponding location from 2015 to 2021. The results are shown in Figure 7.
The r value cannot represent the importance of each factor or the incidence rate of dysentery
but represents only the correlation of the trend between 2015 and 2021. In Chongqing,
among the socioeconomic factors, NTL and NDVI were all negatively correlated with the
incidence rate of dysentery, and the population was weakly positively correlated with the
dysentery incidence rate. Among the meteorological factors, the minimum temperature
and mean temperature were positively correlated with the dysentery incidence rate, while
the maximum temperature was negatively correlated, contrary to the actual expectations.
The cumulative precipitation and relative humidity were positively correlated with the
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dysentery incidence rate. The air quality factors, PM10 and PM2.5, were both negatively
correlated with the incidence rate of dysentery.
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Figure 7. Correlation between each feature and the incidence rate of dysentery in Chongqing from
2015 to 2021.

The impacts of topographic factors on the dysentery incidence rate in Chongqing were
investigated using the 2019 dysentery incidence rate grained scale product, which has the
same spatial distribution trend as the mean incidence rate. The correlations between the
incidence rate of dysentery and the DEM and slope were calculated using all the raster
values of the dysentery incidence rate in 2019, and the resulting r values of the DEM and
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slope were −0.2358 and −0.2371, respectively. Our findings revealed that the impacts
of topographic factors on the incidence rate of dysentery in Chongqing were negatively
correlated, contrary to our initial expectations.

4. Discussion
4.1. Comparison with Other Models

We constructed the IGBDT, RF, GBDT, linear, and SVM models and obtained the
optimal model through Bayesian hyperparameter optimization. The MAE, RMSE, and
R2 values of the IGBDT model in the testing set were best at 4.7024 (1/105), 6.2830 (1/105),
and 0.8368, respectively. The MAE, RMSE, and R2 values obtained by five-fold cross-
validation were 5.0039 (1/105), 7.346 (1/105), and 0.78, respectively. Table 2 shows the
performances of the different models. RF and GBDT perform better than linear and SVM.
However, compared to GBDT, the performance of the RF was not ideal. The IGBDT model
had a better performance than the RF and GBDT models. The R2 values on the testing set
improved by 0.1015 compared to the RF and by 0.0202 compared to the GBDT. Moreover,
the MAE and RMSE values were better, demonstrating a higher accuracy, robustness,
and generalization ability than the RF and GBDT models. Mohan et al. noted that the
GBDT results were heavily influenced by initialization, while the RF was highly resistant to
overfitting and served as an excellent optimization starting point. In addition, the IGBDT
outperformed both RF and GBDT in terms of the RMSE values when M (the number
of trees) was less than 1000. This conclusion was confirmed by our experiments, which
indicated that providing GBDT with a better initialization can significantly improve its
performance, allowing it to surpass the individual GBDT and RF models.

Table 2. Comparison of different models.

Model MAE (1/105) RMSE (1/105) R2

IGBDT 4.7024 6.2830 0.8368
RF 5.9345 8.1928 0.7224

GBDT 4.7260 6.6603 0.8166
Linear 9.1378 11.9004 0.4143
SVM 9.5465 11.487 0.4543

4.2. Comparison with Other Studies on the Influencing Factors of Dysentery

The transmission of dysentery may be influenced by various factors [17]. The incidence
rate grained scale products (1 km) of dysentery were used to study the importance levels
and correlations of socioeconomic factors, meteorological factors, air quality factors, and
topographic factors on the dysentery incidence rate.

Significant negative correlations between the incidence rate of dysentery and the
NTL and NDVI variables among socioeconomic factors were found, while a positive
correlation was observed between the dysentery incidence rate and population density
in this study. NTL satellite imagery is highly positively correlated with socioeconomic
parameters, including urbanization, economic activity, and population [41–43]. In the
first stage of urbanization (an urbanization rate of less than 77.59%), NDVI is positively
correlated with the per-capita GDP [44]. The urbanization rate of Chongqing in 2021 was
70.3%, far from exceeding the first stage to the next stage. Therefore, the study of NTL
and NDVI indirectly reflects that the relationship between the incidence rate of dysentery
and socioeconomic development reflects a negative correlation; this finding is consistent
with other research results [11,15,23,45,46]. Regarding the population density, the denser
the population is, the more people the dysentery bacteria come into contact with within a
certain time and space, and the more likely this situation is to have group reality. Therefore,
we found a positive correlation between the population density and the dysentery incidence
rate, consistent with previous research findings [6,8,23,24].

Meteorological factors such as temperature, relative humidity, and precipitation are
considered to be among the main environmental predictors of the dysentery transmission
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risk [47]. Previous studies have shown that temperature is a key meteorological factor
affecting the incidence rate of dysentery [8,13,16,17,19,48]. For example, in a study per-
formed around Beijing, the minimum, mean, and maximum temperatures were found
to be positively correlated with the dysentery incidence rate [8]; the dysentery incidence
rate in Jinan, China increased by 12%, and in Shenzhen, China, it increased by 16% with
a 1 ◦C rise in the highest or lowest temperature [48]; in Peru, for every 1 ◦C increase in
temperature, severe diarrhea in children increased by 8% [49]. The increases in temperature
may lead to an increase in pathogen exposure, promote bacterial growth, and prolong
the survival rate of bacteria in the environment and contaminated food [49]. In addition,
when the temperature rises, some changes related to specific behavior in the population
may occur, and such changes may increase the demand for drinking water and accelerate
the spread of dysentery [50]. In this study, the minimum and mean temperatures were
positively correlated with the incidence rate of dysentery, consistent with previous research
conclusions. However, the maximum temperature was negatively correlated with the inci-
dence rate, which was unexpected. A possible reason for this result is that high maximum
temperatures may promote improved hygiene activities, such as increased hand washing
and cleaning of food and water sources, thereby reducing the spread of dysentery. It is
possible that other factors contributed to the decline in the incidence rate of dysentery
during the study period, so specific, accurate research also needs to add more refined
temperature factors to continue this discussion and research.

Positive correlations were observed between the dysentery incidence rate and cumula-
tive precipitation and between the incidence rate and relative humidity. This was in line
with the anticipated results based on previous studies. To date, some studies have explored
the impacts of relative humidity and precipitation on the dysentery incidence rate, but
the results are inconsistent. For example, some studies have shown positive correlations,
such as studies performed in Northeast China, Hunan Province, and Beijing, where the
incidence rates of dysentery were positively correlated with relative humidity and precipi-
tation [5,13,14,47]. Similar findings have been reported in Taiwan, China [19], the Pacific
islands [51], and Bangladesh [52]. Some studies have shown negative correlations, such as
a study performed in Wuhan, which found that relative humidity and precipitation were
negatively correlated with the risk of bacterial dysentery [17]. One study indicated that a
lack of precipitation during the dry season would increase the incidence rate of dysentery
in areas south of the Sahara Desert [18]. There are also studies that found no significant
impact, such as a study conducted in two cities in North and South China, in which no
significant correlation was found between relative humidity and precipitation and the
incidence rate of dysentery [48,53].

Regarding air quality factors, we found that PM2.5 and PM10 had positive correlations
with the incidence rate of dysentery. Currently, no research has indicated any clear associa-
tion between PM10 or PM2.5 and dysentery. However, air pollution may affect the human
immune system and health conditions, thereby increasing the risk of infectious diseases
such as dysentery [25,54]. Therefore, the results of this study are in line with expectations,
but studying the relationship between PM air pollution and the incidence rate of dysentery
will require more detailed data.

The relationships between topographic factors and the incidence rate of bacillary
dysentery are complex, with some studies indicating that topographic factors can lead to
an increase in the dysentery incidence rate [15,46,55], while others have found that the
impacts of topographic factors on the dysentery incidence rate are not significant [11].
These inconsistent results of existing studies may have been due to other factors, compared
to topographic factors, being more important in determining the dysentery incidence
rate, thus preventing generalizations. In this article, we found that the incidence rate of
dysentery in Chongqing was negatively correlated with topographic factors overall. This
was not consistent with the expected situation. The reason for this contradiction may be
due to the complex terrain of Chongqing, which is low in the west and high in the east.
However, the dysentery incidence rate is generally high in the west and low in the east. For
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example, the terrain in the main urban area is flat, while the terrain in Chengkou is rugged
and steep. The incidence rate of dysentery in both these places is high, while in the eastern
part of the urban area, the terrain is also rugged and steep, but the incidence rate is low.

Our findings suggested high incidence rates of dysentery in the southwestern and
northernmost parts of Chongqing. In the southwestern region, this high incidence rate is
associated with factors such as high urbanization, a large population of migrants, a high
population density, and a high per-capita GDP. This finding is consistent with previous
studies that suggested that the population and economy are dominant factors affecting
dysentery incidence rates [9,23]. On the other hand, Chengkou, located in the northernmost
part of Chongqing with the least population (a permanent population of 198,000 in 2021)
and per-capita GDP, has had a consistently high incidence rate since 2012 [9]. This may
be due to the small population causing a relatively high disturbance in incidence rates.
Although Wulong (with a permanent population of 356,500 in 2021) has a population one
level higher than that of Chengkou, the incidence rate has not remained high. The specific
reasons for these discrepancies need to be further investigated.

The obvious area of high dysentery incidence rates along the Yangtze River basin may
be due to the low NDVI and DEM values in this area, leading to high dysentery incidence
rates. Therefore, further optimization and research involving dysentery incidence rate
prediction models should be conducted.

5. Conclusions

To fill the gap resulting from the lack of fine-grained scale dysentery incidence rate
products at the grid scale, this study constructed an IGBDT hybrid machine learning
model using socioeconomic factors (NTL, NDVI, and population), meteorological factors
(precipitation, relative humidity and temperature), topographic factors (DEM and slope)
and air quality factors (PM2.5 and PM10) as explanatory variables, and the dysentery
incidence rate as the output variable. The model was used to map annual statistical
dysentery incidence rate data from various districts in Chongqing from 2015 to 2021 to the
grid scale, thereby producing a dysentery incidence rate grid (1 km) product for Chongqing.
The grained scale products of dysentery incidence rate were evaluated by using the total
incidence of the population of Chongqing and each district in Chongqing with assessment
R2 results of 0.7369 and 0.5439, respectively. These results show that the model has a
certain predictive effect. Comparing the IGBDT hybrid model with other models, such
as the RF and GBDT models, it is proven that the IGBDT effect is better than that of
either the RF or GBDT, individually. Then, the spatial distribution of the incidence of
dysentery in Chongqing and the importance and correlation of its related factors were
discussed. The results showed that the impacts of socioeconomic factors on the incidence
of dysentery were the main factor, accounting for 43.32% of the impact, of which the NTL
and NDVI showed negative correlations, and the population showed a positive correlation;
meteorological factors accounted for 33.47%, of which the minimum temperature, mean
temperature, precipitation, and relative humidity were positively correlated, while the
maximum temperature was negatively correlated. However, the effects of topographic
factors (the DEM and slope were negatively correlated) and air quality factors (PM2.5 and
PM10 were positively correlated) were relatively weak.

The dysentery incidence rate grained scale products for Chongqing (1 km) produced
fill the gap left by the absence of detailed dysentery incidence rate products. It provides
researchers and public health institutions with a more comprehensive foundation for
their studies. This product allows researchers to delve deeper into the analysis of factors
related to dysentery, revealing their significance and correlations. This, in turn, better
supports the monitoring and control of dysentery. Furthermore, this grid product serves as
a powerful tool for various sectors of society, assisting government and health institutions
in accurately pinpointing potential high-risk areas of dysentery within densely populated
and economically underdeveloped regions. It provides a more precise basis for resource
allocation, enabling targeted governance and monitoring measures to reduce the spread
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of dysentery. Compared to traditional methods based on administrative divisions, this
fine-grained monitoring is more accurate and effective, holding promise for reducing the
transmission of dysentery. In addition, the research approach and methods presented in
this paper offer fresh ideas and references for the study of other diseases.

This study also has certain limitations. First, the dysentery incidence rate dataset
included only 266 data from Chongqing between 2015 and 2021; this sample size is relatively
small and may result in the overfitting of the model. Although the MAE, RMSE, and R2

values of the testing set performed well in this study, when using the incidence population
for verification, the R2 value was only 0.56. The evaluation result R2 value was not very high,
further indicating that the model may have some limitations and cannot accurately predict
the incidence of dysentery. Therefore, further research is needed to improve the accuracy of
the model in the future to better cope with the prediction and control of dysentery. Second,
due to the limited data considered in this study, the incidence of dysentery in Chongqing
was mapped to the 1 km grid scale. In the future, obtaining data from a larger area
would enable the production of a larger-scale grained scale product of dysentery incidence.
Additionally, the feature selection in this study was limited. For example, hydrological
factors greatly impact the spread of dysentery but were not considered here. Future
work needs to include more influencing factors to predict and downscale the incidence of
dysentery and to study its impact. Finally, in the application of the dysentery incidence grid,
this study only analyzed the importance and correlations of influencing factors, and the
results can represent only the study area. Further applications, such as refined prevention
and control, should be conducted using dysentery incidence products obtained herein.
Overall, this study has certain limitations, and future research should expand the dataset,
consider more factors, and conduct more comprehensive application analyses.
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