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Abstract

:

In indoor low-light environments, the lack of light makes the captured images often suffer from quality degradation problems, including missing features in dark areas, noise interference, low brightness, and low contrast. Therefore, the feature extraction algorithms are unable to extract the feature information contained in the images accurately, thereby hindering the subsequent target search task in this environment and making it difficult to determine the location information of the target. Aiming at this problem, a joint local and high-level semantic information (JLHS) target search method is proposed based on joint bilateral filtering and camera response model (JBCRM) image preprocessing enhancement. The JBCRM method improves the image quality by highlighting the dark region features and removing the noise interference in order to solve the problem of the difficult extraction of feature points in low-light images, thus providing better visual data for subsequent target search tasks. The JLHS method increases the feature matching accuracy between the target image and the offline database image by combining local and high-level semantic information to characterize the image content, thereby boosting the accuracy of the target search. Experiments show that, compared with the existing image-enhancement methods, the PSNR of the JBCRM method is increased by 34.24% at the highest and 2.61% at the lowest. The SSIM increased by 63.64% at most and increased by 12.50% at least. The Laplacian operator increased by 54.47% at most and 3.49% at least. When the mainstream feature extraction techniques, SIFT, ORB, AKAZE, and BRISK, are utilized, the number of feature points in the JBCRM-enhanced images are improved by a minimum of 20.51% and a maximum of 303.44% over the original low-light images. Compared with other target search methods, the average search error of the JLHS method is only 9.8 cm, which is 91.90% lower than the histogram-based search method. Meanwhile, the average search error is reduced by 18.33% compared to the VGG16-based target search method. As a result, the method proposed in this paper significantly improves the accuracy of the target search in low-light environments, thus broadening the application scenarios of target search in indoor environments, and providing an effective solution for accurately determining the location of the target in geospatial space.
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1. Introduction


With the emergence of new technologies, including computer networks and multimedia information processing, digital images have become the main way of obtaining information from people’s daily lives, work, and studies because of their wide range of contents. Therefore, efficiently searching for the location information of the target image from visually information-rich images has been a focus of attention. However, images acquired in indoor low-light environments often suffer from quality degradation problems, such as missing features in dark areas and noise interference. These issues limit the effectiveness of feature extraction and matching algorithms, preventing them from providing application value in following target search tasks. As a result, how to improve the quality of low-light images in order to complete the subsequent target search task and then determine the target’s location information is particularly critical.



In order to solve the quality degradation problem of low-light images, researchers have explored histogram equalization (HE)-based methods [1], Retinex-based methods [2], and deep-learning-based methods [3]. Although histogram equalization approaches can improve the contrast of low-light images, the enhanced images still have varying degrees of blurring, causing the number of extracted feature points to fall short of the requirements of the subsequent target search task.



In contrast to histogram equalization, methods based on Retinex theory divide the image into illumination and reflection components by a priori regularization or specific regularization, and use the estimated reflection component as the enhancement result, thereby reducing the loss of detail information in the original image. However, Retinex theory-based methods often ignore the treatment of noise during the enhancement process, which leads to a decrease in the accuracy of feature matching, thus reducing the accuracy of subsequent target searches.



Compared to the above two methods, the deep-learning-based method has made great progress in terms of accuracy, speed, and enhancement in low-light enhancement tasks. However, most deep-learning methods are still unable to balance noise control and luminance accuracy in the enhancement process, which makes the accuracy of feature extraction and matching degrade, thus reducing the accuracy of the target search. Aiming at the problem that the degradation of low-light image quality leads to the inability of the subsequent target search task, a joint local and high-level semantic information (JLHS) target search method is proposed based on joint bilateral filtering and camera response model (JBCRM) image preprocessing enhancement, as shown in Figure 1.



In the image preprocessing enhancement stage, the JBCRM image-enhancement method is composed of three parts: strengthening local features, denoising, and sharpening, in order to solve the problem of difficult feature extraction, thus providing better visual data for the subsequent target search task. Firstly, the indoor low-light images captured by a monocular vision camera (DJI Pocket 2, Shenzhen, China) are divided into an illumination component and a reflection component using the LECARM method. Secondly, the decomposed illuminance and reflection components are processed using the camera response model, thus obtaining the lighting-enhanced illuminance and reflection components, and these two components are fused to obtain the LECARM-processed image. Then, the OPJB filter is constructed by approximating the optimal parameters    σ d    and    σ r    through multiple experiments, thus rejecting the noise interference contained in the LECARM-processed image. Finally, the optimal parameter  μ  is chosen through several experiments to establish the OPUSM sharpening method, thereby accentuating the texture features of the denoised image. In the target search stage, the JLHS target search method consists of two parts: coarse search and fine search. Firstly, the target image and the offline database image are feature extracted using the rough search based on local feature SIFT (RLFS), respectively, and the corresponding feature vectors are generated and stored as corresponding npy files. Secondly, the BBF method is used to match the feature vectors in the offline database with the feature vectors of the target image, and the Euclidean distance is used to sort the matching results in descending order, so as to obtain the top six matching database images as the coarse search images. Then, the last layer of semantic information of each coarse search image and target image are extracted using the VGG16 fine search based on Keras (VFSK), respectively, and the corresponding feature vectors are generated and stored as h5 files. Finally, the KD-Tree method is used to match the h5 feature vector corresponding to each coarse search image and the h5 feature vector corresponding to the target image, and the cosine similarity is used to sort the matching results in descending order, thereby obtaining the coarse search image that is most similar to the target image. The position information of this coarse search image is the position information of the target image.



The main contributions of this paper are as follows:




	(1)

	
To address the issue of the difficulty in extracting feature information from low-light images, an image-enhancement method based on JBCRM is constructed. This method improves the image quality by strengthening the features of the dark region and reducing noise interference, so as to solve the problem of difficult feature information extraction.




	(2)

	
Aiming at the problem that current target search methods are unable to balance accuracy and search time, a target search method based on JLHS is designed. By combining local feature scale-invariant feature transform (SIFT) with high-level semantic features for image description, the method increases the matching accuracy between the target image and the offline database image, thereby improving the target search accuracy and reducing the target search time.









The remaining structure of this paper is as follows: Section 2 introduces the related work. Section 3 introduces the proposed JBCRM image-enhancement method, and the corresponding simulation experiments are carried out. Section 4 describes the designed JLHS target search method. Section 5 shows the simulation and analysis results of the target search. Section 6 summarizes the conclusions of the proposed method and prospects for future research directions.




2. Related Work


This section introduces two main parts: enhancement methods for low-light images and search methods for targets. (1) Current low-light image-enhancement methods are presented, which solve the problem of difficult feature information extraction by improving the image quality. (2) Existing target search methods describe the image content in different ways to improve the accuracy of feature matching, thus raising the accuracy of the target search.



2.1. Low-Light Image-Enhancement Methods


Currently, the methods to solve the difficulty of feature information extraction by improving the image quality are mainly classified into three categories: histogram equalization-based methods, Retinex model-based methods, and deep-learning-based methods.



The methods based on histogram equalization improve the brightness and contrast of low-illumination images by expanding the grayscale range. Reference [4] proposes an extended method based on histogram equalization called contrast limited dynamic quadri-histogram equalization (CLDQHE). The method splits the whole histogram into four sub-histograms and performs adaptive histogram cropping, thus overcoming the defects of over-enhancement and over-smoothing in traditional histogram equalization methods. Reference [5] describes an adapted contrast enhancement using modified histogram (ACMHE). This method divides the histogram of the input image into four sub-histograms based on the brightness median. Then, independent histogram equalization is performed on each partition, resulting in natural contrast enhancement and brightness preservation. Although histogram equalization-based approaches increase the contrast and brightness of low-light images to varying degrees, they nevertheless suffer from noise interference and color distortion, which degrade the accuracy of feature extraction and matching, thereby decreasing the accuracy of the target search.



To further improve the quality of low-light images, researchers have successively proposed the multi-scale Retinex (MSR) method [6] and the multi-scale Retinex with color recovery (MSRCR) method [7]. In order to better preserve the structural information of the original low-light image, reference [8] proposes an image-enhancement method that combines Zero—DCE and Retinex. This method first utilizes the Retinex model to decompose the image into an illumination component and a reflection component. Then, the illumination component is enhanced by using deep light curve estimation, and the reflection component of the image is kept unchanged, so as to achieve the purpose of maintaining the structural characteristics of the image. Ref. [9] proposes a global attention-based Retinex network (GARN) for low-light image enhancement by embedding global attention modules in different levels of the network. However, Retinex-based methods produce unnecessary halo artifacts and noise interference, which degrade the accuracy of feature matching, thereby reducing the accuracy of the target search.



With the immense success of convolutional neural networks in various computer vision tasks, deep-learning-based methods have been widely used in the field of image enhancement. Reference [10] proposes a trainable convolutional neural network (CNN) called LightenNet for enhancing low-light images. The method takes the low-light images as the input, outputs their illumination components, and then obtains the enhanced image based on the Retinex model. Retinex-Net [11] improves the image brightness by using an end-to-end image decomposition model and a continuous low-light enhancement network. Reference [12] presents a stacked sparse denoising autoencoder (SSDA) method to enhance low-light images. This method enhances the image by recognizing signal features in low-light images and adaptively enhancing the brightness of the image without over-amplifying the brighter parts of the image. Despite significant progress in low-light image-enhancement tasks using convolutional neural network-based deep-learning methods, there are still issues such as a loss of detail information and noise interference that prevent the number of extracted feature points from being sufficient for subsequent target searches.



To solve these problems, this paper proposes an image-enhancement method based on a joint bilateral filtering and camera response model (JBCRM). This method enhances the quality of the image by highlighting details in the dark areas and removing noise interference, thereby solving the problem of difficult feature extraction and providing better visual data for subsequent target search tasks.




2.2. Target Search Methods


Existing target search methods can be classified into three main categories based on their search principles: text-based image retrieval (TBIR), content-based image retrieval (CBIR), and semantic-based image retrieval (SBIR).



The TBIR approaches mostly employ text annotation to add keywords to images, thereby completing the target search task. Ref. [13] proposes a target search method based on embedding and scene text. The first step of this method involves utilizing the maximally stable extremal region (MSER) algorithm to detect candidate text regions. Then, geometric features and stroke width transformations are used to eliminate unwanted false-positive text regions. Simultaneously, keywords are formed using a neural probabilistic language model, and the detected keywords are used to index and search the text images. Ref. [14] presents a hybrid text–visual correlation-based learning method. The method mines textual relevance from image tags, and then combines textual relevance and visual relevance to accomplish the search task. Although TBIR approaches have increased the target search accuracy to some level, image annotation is required to complete the search operation, which increases this method’s manual expenditures.



The CBIR-based target search methods accomplish the search task mainly based on the features of the image content, thus avoiding the process of manually labeling the images. CBIR methods are mainly based on two types of visual features: local features and global features. The former captures underlying features from key points or salient blocks of an image. The latter considers the whole image as a salient region and convolves it, mainly including color [15], texture [16], and shape [17]. Compared to a local feature-based target search, the global feature-based target search method is relatively simple and computationally fast, but it is ambiguous, which means the semantic meanings expressed by images with similar features may be different, thus leading to a lower accuracy of the target search. The common method based on local features is the scale-invariant feature transform (SIFT) method [18], which generates 128-dimensional feature vectors for each key point. Meanwhile, the SIFT feature vectors are invariant to image scaling and rotation, with robustness to affine transformations, noise interference, and luminance transformations. [19] proposes a target search framework based on the VLAD model and speeded-up robust feature (SURF) descriptors. This framework converts 64-dimensional SURF descriptors into 8-dimensional SURF descriptors, and then constructs a codebook using a two-step clustering algorithm. After that, it uses an expandable overlapping segmentation method and a feature-fusion strategy to accomplish target search tasks. Although CBIR-based target search methods improve the accuracy of the target search to a great extent, they also face the problem of a semantic gap between low-level visual features such as color, texture, and shape and high-level abstract attributes such as emotion, filling, and expression in the human mind.



To improve the performance and accuracy of content-based target search methods, semantic gaps need to be reduced. With the advancement of machine learning and deep learning in recent years, numerous SBIR-based target search approaches have been presented. These methods can reduce the semantic gap between the low-level features of the image and the high-level concepts in the human mind, and improve the accuracy of the target search. Ref. [20] designs a color attention function to describe the importance of different image blocks and combines color with texture to construct candidate regions. Meanwhile, it is input into the deep neural network (DNN) for feature extraction, and a similarity function is designed to calculate the distance between different images, where the top-ranked image is used as the searched image. Ref. [21] proposes a target search method that combines deep-learning semantic feature extraction and regularized Softmax. The method first constructs the convolution depth Boltzmann machine (C-DBM) by combining the deep Boltzmann machine (DBM) and the convolutional neural network (CNN). Then, the Dropout regularized Softmax classifier is used to classify the image features, and the image is searched based on the sorted output. Ref. [22] presents a semantic target search method that fuses the visual saliency model with the bag-of-words model. This method uses a visual saliency-based segmentation method to segment the image into background regions and foreground targets. Then, multiple features, including SIFT features, are extracted and fused from the background region and foreground target, respectively. Meanwhile, the fusion z-score normalized chi-squared distance is used as the similarity measure to complete the target search. Although this method has a better target search performance, the computational complexity of segmentation is still large, and the performance of segmentation has a significant impact on the search performance. Allani et al. [23] propose a target search system that fuses semantic and visual features. The system automatically builds a modular ontology for semantic information and organizes visual features in a graph-based model. These two elements are then combined in a component called “pattern” for subsequent target retrieval. Chen et al. [24] present a method based on deep image search called deep semantic hashing (DSH). This method considers the visual and semantic features of the image based on deep learning and uses the semantic information to generate the hash function of the hash code, thus improving the accuracy of the subsequent target search. Although the target search accuracy is greatly increased by SBIR-based methods, they are still challenging owing to the limitations of present artificial intelligence and related technology. In order to improve the target search accuracy and shorten the search time, this paper constructs a joint local and high-level semantic information (JLHS) target search method. By combining the local feature SIFT with the high-level semantic feature, this method increases the feature matching accuracy of the target image and offline database images, thereby improving the precision and decreasing the search time for the target search.





3. JBCRM Image-Preprocessing-Enhancement Method


This section introduces two main parts: (1) Introducing the proposed image-preprocessing-enhancement method, JBCRM, in this paper. (2) Demonstrating the simulation and analysis of each mainstream image-enhancement method and the JBCRM method.



3.1. Construction of JBCRM Image-Enhancement Method


Under low-light conditions, the lack of light makes the captured images often suffer from quality degradation problems such as missing dark areas, low brightness, low contrast, noise interference, and color distortion. These problems make it difficult for the feature extraction algorithms to extract feature information from the image, thus failing to meet the number of feature points required for subsequent target searches. To address these issues, this paper improves LECARM [25] by introducing a new denoising model, known as a denoising model based on joint bilateral filtering and unsharp masking (JBUSM), in order to build a low-light image-enhancement method based on a joint bilateral filtering and camera response model (JBCRM). The specific steps of the JBCRM image-preprocessing-enhancement method are as follows.



According to the Retinex model, the illuminance arriving at the camera is first divided into the illuminance component and the reflection component.


  G = Z × F ,  



(1)




where Z and F are the illuminance and reflection components, respectively. G is the amount of illumination reaching the camera, which is also known as scene irradiance.



Next, the camera’s nonlinear process is described using the camera response function (CRF), which explains the link between image irradiance G and low-light image L, as shown in Equation (2):


  L = f  ( G )  ,  



(2)




where f represents the nonlinear function CRF.



According to Equation (2), Equation (1) can be written in the following form:


  L = f  (  Z × F  )  ,  



(3)







The irradiance G of an image produces a nonlinear transformation in many cases due to the nonlinear processing of the camera. Therefore, the mapping function between different exposure images can also be a nonlinear function, which is called the brightness transform function (BTF). The BTF describes the relationship between the L0 and L1 of two images taken under different exposures in the same scene, as shown in Equation (4):


   L 1  = g  (   L 0  ,   k  )  ,  



(4)




where g represents the BTF function and k denotes the exposure rate.



The CRF and BTF are the fundamental components of the camera response model, which describe the basic properties of image processing in the camera. Based on the definitions of CRF and BTF, the relationship between two images taken at different exposures of the same scene is represented by Equation (5):


  f  (  k × G  )  = g  (  f  ( G )  ,   k  )  ,  



(5)







The equation is known as a parametric equation, which describes the relationship between f and g and can be used to convert between the two functions.



As a result, Equation (6) can be used to calculate the enhanced image    L e    of a low-illuminance image L captured by the same camera in the same scene:


   L e  = f  (  F × 1  )  ,  



(6)




where 1 denotes a matrix whose all elements are 1 [26]. Based on Equations (1) and (5), the relationship between L and    L e    can be derived as shown in Equation (7):


   L e  = f  ( F )  = f  (  G ×  (  1 ⊘ Z  )   )  = g  (  f  ( G )  ,    (  1 ⊘ Z  )   )  ,  



(7)




where  ⊘  stands for the division of elements. Equation (7) adjusts the exposure of the input image L to produce the illumination-enhanced image    L e   . As a result, the output image    L e    can be written as follows:


   L e  = g  (  f  ( G )  ,    (  1 ⊘ Z  )   )  = g  (  f  ( G )  ,    k 0   )  ,  



(8)




where exposure    k 0    is a matrix representing the required exposure per pixel.



Then, Equation (9) is used to remove the noise from the illumination-enhanced image    L e    to obtain the denoised image    L j e   . The pixel value of any point p in image    L e    after the filtering process is    L j e   [ p ]   .


   L j e   [ p ]  =     ∑   y ∈ Ω    F   σ d     (  ∥ p − q ∥  )  ×  G   σ r     (  ∥  D p  −  D q  ∥  )  ×  L q e      ∑   y ∈ Ω    F   σ d     (  ∥ p − q ∥  )  ×  G   σ r     (  ∥  D p  −  D q  ∥  )    ,  



(9)




among them,


   F   σ d     (  ∥ p − q ∥  )  = e x p  (  −  [     (  x − u  )   2  +    (  y − v  )   2   ]  / 2  σ d 2   )  ,  



(10)






   G   σ r     (  ∥  D p  −  D q  ∥  )  = e x p  (  −  [     (   D p  −  D q   )   2   ]  / 2  σ r 2   )  ,  



(11)




where    L e    is the input image and Ω is the set of neighborhoods of the center pixel p. The coordinates of point p are (x, y) and the coordinates of point q are (u, v). Dp and Dq are the pixel values corresponding to the guide image position (x, y) and location (u, v), respectively. F and G represent the spatial domain filter centered on (x, y) and the value domain filter centered on (x, y), respectively.    σ d    is the standard deviation of the spatial domain, which is used to adjust the weight values of pixels with larger spatial distances.    σ r    is the standard deviation of the similarity factor controlling the gray range, which is used to adjust the weight values of pixels with larger pixel differences.



Finally, the denoised image    L j e    is sharpened by using Equation (12), thus resulting in the JBCRM-enhanced image    L  j b l    .


   L  j b l    (  x ,   y  )  =  L j e   (  x ,   y  )  + μ ×  [   L j e   (  x ,   y  )  − Q  (  x ,   y  )   ]  ,  



(12)




where  μ  is the enhancement factor.   Q  (  x ,   y  )    is the low-pass template with the expression:


  Q  (  x ,   y  )  =  1  M × N       ∑   i = x −  (  M − 1  )  / 2   x +  (  M − 1  )  / 2     ∑   j = x −  (  M − 1  )  / 2   y +  (  N − 1  )  / 2    L j e   (  x ,   y  )  ,  



(13)




where M × N is the size of the template and M = N.




3.2. Design of JBUSM Denoising Model


In order to better remove the noise interference and retain more structural information of the original image, the JBUSM denoising model consists of two parts: the optimal parameter-based joint bilateral filter (OPJB) and the optimal parameter-based USM-sharpening method (OPUSM). The specific contents of the JBUSM denoising model are as follows.



3.2.1. Construction of the OPJB Filter


As can be observed from Equation (9), the denoising effect of the joint bilateral filter depends on the parameters    σ d    and    σ r   . The larger the parameter    σ d   , the better the noise reduction effect. The smaller the parameter    σ r   , the better the noise reduction effect. To select the optimal parameters    σ d    and    σ r    for processing low-illumination images, this paper uses multiple experiments to approximate the optimal parameters    σ d    and    σ r   , thus building the OPJB filter. The details are as follows: firstly, two images are selected from the mainstream low-light datasets (LIME [27], LOL [28], MEF [29], SICE [30], GladNet [31], and actual scene images), including global low-light images and local low-light images. At the same time, the selected images are combined into a new low-light dataset (NLLD) containing different scenes, as shown in Table 1. Then, LECARM is employed to process the images in the NLLD. Finally, multiple experiments are used to approximate the optimal parameters    σ d    and    σ r   .



The steps for determining the optimal parameter    σ d    are shown below: firstly,    σ r    is kept constant. Then,    σ d    is taken in the range of 10–100 at intervals of 10, and the corresponding joint bilateral filters are formed. Finally, these filters are utilized to process the LECARM-enhanced image. Meanwhile, the peak signal-to-noise ratio (PSNR) and Laplace operator are introduced as evaluation metrics. For the images processed by different    σ d   , the corresponding evaluation indicators are shown in Figure 2.



As can be seen from Figure 2, the trend of the corresponding evaluation indexes after different    σ d    treatments is as follows: the value of the Laplace operator tends to increase between 10 and 30, which means that the clarity of the image is increasing. Between 30 and 100, the value of the Laplacian operator shows a downward trend, indicating that the clarity of the image continues to decline. Through the analysis, the PSNR value shows an increasing trend in the range of 10~100, which indicates that the noise interference in the image is continuously decreasing. Considering these results, this paper selects    σ d    = 30 as the optimal parameter to maintain the high definition of the image.



Similarly, the optimal parameter    σ r    is determined as follows: firstly, fix    σ d    = 30. Then,    σ r    is taken at intervals of 10 in the range of 5–50 to form the corresponding filters. Finally, these filters are utilized to process the LECARM-enhanced image. Meanwhile, the PSNR and Laplace operators are utilized as evaluation metrics. The comparison results of each evaluation metric are shown in Figure 3.



As can be seen from Figure 3, between 5 and 15, the value of the PSNR decreases as    σ r    increases, indicating a decrease in the denoising performance of the image. Between 15 and 50, as    σ r    increases, the PSNR value remains constant, indicating that the denoising performance reaches a stable state. Between 5 and 10, as    σ r    increases, the value of the Laplacian operator continuously increases, indicating an improvement in the clarity of the image. However, between 10 and 50, the Laplace transform tends to become unstable as    σ r    increases. Combining the results of the above analysis,    σ r      = 5 is selected as the optimal parameter in this paper for the better removal of noise interference from the image. Concurrently, the OPJB filter is constituted by combining    σ d      = 30, as mentioned above.



In order to evaluate the denoising effect of the OPJB filter, the PSNR and structural similarity index metric (SSIM) are introduced as evaluation indexes in this paper. For the NLLD, the average values of the PSNR and SSIM in the images before and after denoising using the OPJB filter are shown in Table 2.



From the comparison results in Table 2, the corresponding PSNR and SSIM values of the LECARM-enhanced images after OPJB denoising are significantly improved by 2.08% and 8.82%, respectively. These evaluation indicators show that the OPJB filter also eliminates the noise interference contained in the LECARM-enhanced image to a certain extent while maintaining the integrity of the original image structure information.




3.2.2. Construction of OPUSM-Sharpening Method


Since the OPJB filter inevitably removes the texture details in the image when removing noise, it is necessary to sharpen the denoised image to highlight the edge and texture details of the image. To address this problem, this paper proposes the OPUSM-sharpening method by highlighting the details of the image, thus further improving the visual effect of the image. As can be seen from Equation (12), the sharpening effect of the USM method depends on the size of parameter  μ . The larger the  μ , the better the sharpening effect and the richer the details. In order to select the optimal parameter  μ  for constituting the OPUSM-sharpening method, this paper uses several experiments to approximate  μ . The specific construction process of the OPUSM method is as follows.



Firstly, LECARM is used to process the images in the NLLD to obtain the illumination-enhanced images. Secondly, the illumination-enhanced images are denoised using the OPJB filter. Then,  μ  is taken at intervals of 10 in the range of 10–50, thus constituting the corresponding USM-sharpening methods. Finally, the OPJB-denoised images are processed separately using these USM-sharpening methods. Meanwhile, the PSNR and Laplace operators are introduced as evaluation metrics. The comparison results of each evaluation index are shown in Figure 4.



As can be seen from Figure 4, with the increase in  μ , the PSNR value of the image decreases and the Laplace operator value increases, indicating that the noise interference of the image increases and the detail information increases. Therefore, the  μ  should not be too large when sharpening the image so that the noise is not amplified. Based on the above analysis results, this paper takes the value between 1 and 9 at the interval of 1 near  μ  = 10, thus forming the corresponding USM-sharpening method to approximate the optimal parameter  μ . Then, these USM methods are used to sharpen the image after OPJB denoising. At the same time, the PSNR and Laplace operators are introduced as evaluation indexes. The comparison results of each evaluation index are shown in Figure 5.



As can be seen from Figure 5, between 1 and 9, the PSNR value of the image stabilizes around 11.80. The corresponding PSNR value is 11.80 for both  μ  = 6 and  μ  = 7. However,  μ  = 6 corresponds to a larger Laplace operator as compared to  μ  = 7. Therefore,  μ  = 6 is selected as the optimal parameter in this paper, thus constituting the OPUSM-sharpening method. Meanwhile, it is constructed as a JBUSM denoising model together with the OPJB filter mentioned above.



In order to evaluate the clarity of denoised images after sharpening by the OPUSM method, the Laplace operator is introduced as an evaluation index in this paper. For the NLLD, the average values of the Laplace operator in the images before and after sharpening by the OPUSM method are shown in Table 3.



As shown in Table 3, the average Laplacian value of the OPJB-denoised images increases dramatically after sharpening by the OPUSM method, increasing by 40.35%. This shows that the OPUSM-sharpening method has significantly improved the clarity and contrast of the OPJB-denoised images.





3.3. Simulation and Analysis of JBCRM Image-Enhancement Method


To scientifically analyze the JBCRM image-enhancement method suggested in this paper, the images in the NLLD are processed using MF [32], NPE [33], LIME [34], Al-Ameen [35], Dong [36], and the JBCRM method, respectively. Meanwhile, the PSNR, SSIM, Laplace operator, universal quality index (UQI), and mean square error (MSE) are introduced as evaluation metrics. The image-enhancement effect of each algorithm is shown in Table 4, and the comparison result of each evaluation index is shown in Table 5.



Table 4 shows that the images processed by MF and Al-Ameen exhibit blurred edge information. The images processed by NPE and Dong exhibit a slight halo and noise interference. LIME-processed images have more noise and less detail. The JBCRM image-enhancement approach suggested in this paper produces images with richer features, clearer texture structures, and more “realistic” colors when compared to existing image-enhancement methods.



For the four metrics, PSNR, SSIM, Laplace operator, and UQI, the larger the value, the less image noise, the more similar to the original image structure information, the higher the clarity, and the better the quality. For the MSE evaluation index, the smaller its value, the higher the image contrast. As shown in Table 5, compared with other image-enhancement methods, the PSNR of images processed by the JBCRM increased by 34.24% at the highest and 2.61% at the lowest. The SSIM has increased by 63.64% at most and 12.50% at least. The Laplace operator improved by a maximum of 54.47% and a minimum of 3.49%. The UQI has increased by 43.75% at most and 4.55% at least. The MSE has decreased by 46.66% at most and 0.91% at least. Combining the results of the aforementioned analyses, the JBCRM-enhanced low-light images have a higher quality, higher clarity, less noise, and structural information that is more akin to the original image. When compared to previous image-enhancement techniques, the JBCRM method presented in this paper takes the least amount of time. As a result, the JBCRM image-enhancement method proposed in this paper can significantly improve the quality of low-light images while also shortening the time required for image enhancement, thus providing better visual information and reducing the time required for image preprocessing for subsequent target search tasks.



To assess the impact of the JBCRM method proposed in this paper on feature extraction, four feature extraction algorithms commonly used for target search are used to extract features from the original image and the JBCRM-enhanced low-light image, respectively. These feature extraction algorithms are SIFT, oriented fast and rotated BRIEF (ORB), accelerated-KAZE (AKAZE), and binary robust invariant scalable key points (BRISK). The number of feature points for each feature extraction algorithm are shown in Table 6.



From Table 6, compared to the original images, the number of feature points in the JBCRM-enhanced images increases at the most by 303.44% and at the least by 20.51%. As a result, the low-light images enhanced by the JBCRM have a substantial increase in the number of feature points during feature extraction using the feature extraction algorithm, thus providing a sufficient number of feature points for the subsequent target search.





4. Construction of Target Search Method Based on JLHS


This section presents two main parts: (1) Introducing the process of constructing the JLHS target search method. (2) Simulation and analysis of the existing target search method and JLHS method in the real scenario. The details are as follows.



Currently, global features and local features are the main methods for characterizing image content in CBIR-based target search methods. Compared with the former, the latter can more appropriately characterize the feature information contained in images. The most widely used local features are SIFT local features, which produce 128-dimensional feature vectors for each key point. Compared with speeded-up robust features (SURF) and ORB local features, SIFT feature vectors are resistant to affine transformations, noise interference, and luminance transformations, and are unaffected by image scaling and rotation. As a result, SIFT local features are widely used in the field of target search. However, SIFT feature-based target search methods have a low accuracy and must be combined with other methods to increase target search precision. The success of deep-learning-based methods has provided an effective solution for this. Although deep-learning-based target search methods have a better search accuracy, they take a lot of time and computer resources. To improve the search accuracy and shorten the search time, a joint local and high-level semantic information (JLHS) target search method is proposed in this paper. This method consists of two parts: a rough search based on local feature SIFT (RLFS) and a VGG16 fine search based on Keras (VFSK). The specific construction process of the JLHS search method is shown in Figure 6.



In indoor low-light environments, the JBCRM image-enhancement method is used to preprocess the acquired image, and then, the JLHS method is used to search the image. The specific steps are as follows:




	(1)

	
In the offline feature database generation stage, firstly, a monocular vision camera (DJI Pocket 2) is used to collect low-light images of the selected experimental site, and the corresponding position coordinates of the images are recorded to form a low-light image database. Then, the images in the low-light database are preprocessed using the JBCRM image-enhancement method, thus obtaining the JBCRM-enhanced image database. Finally, the images in the JBCRM-enhanced image database are feature extracted using the feature extraction algorithm SIFT to form SIFT feature vectors, thus constructing an offline feature database.




	(2)

	
In the query stage, the target image is first taken using the monocular vision camera (DJI Pocket 2) at the same experimental site. Then, the JBCRM image-enhancement method is used to preprocess the target image. Finally, the feature extraction algorithm SIFT is used to extract the features of the JBCRM-enhanced image to form the SIFT feature vector, and the SIFT feature vector is stored.




	(3)

	
For the target search, the offline feature database’s SIFT feature vectors and the JBCRM-enhanced images’ SIFT feature vectors are first matched using the RLFS coarse search method, thus yielding the coarse search images with the top six numbers of matched points. Then, the last layer of convolutional features of the coarse search images and the last layer of convolutional features of the JBCRM-enhanced images are compared using the VFSK fine search technique. By arranging the results in descending order based on the cosine similarity, the most similar database image to the target image is obtained. This database image’s position coordinate is the target image’s position coordinate.









4.1. Construction of Offline Feature Database


In order to scientifically evaluate the effectiveness and feasibility of the JLHS target search method, this paper selected indoor corridors during morning and evening hours as the experimental site. In Figure 7, the center of Figure a is taken as the origin of the world coordinates, its horizontal direction is taken as the x-axis of the world coordinate system, and its vertical direction is taken as the y-axis of the world coordinate system. Meanwhile, five acquisition points are selected in the x-axis direction, and fifteen acquisition points are selected in the y-axis direction. Each acquisition point acquires images at 90° intervals in the clockwise direction, and a total of 300 images are acquired. The corresponding position coordinates of each image are recorded, thus forming a low-light image database. Then, the JBCRM image-enhancement method is used to preprocess the low-light database, thus obtaining the JBCRM-enhanced image database. Finally, the feature extraction algorithm SIFT is used to extract the SIFT features of the images in the JBCRM-enhanced image database. Meanwhile, SIFT features are generated into SIFT feature vectors and stored in the form of npy files, thereby completing the construction of the offline feature database. The process of building the offline feature database is shown in Figure 7.




4.2. Constructing RLFS-Based Coarse Search Technology


Aiming at the problem of the long search time of the traditional SIFT target search methods, this paper uses the best bin first (BBF) search method to match the target image with the offline database image. At the same time, this paper uses the Euclidean distance as the similarity measure of key points in two images to reduce the probability of a mismatch. The specific steps of the RLFS-based coarse search technique are shown in Figure 8.



Firstly, the JBCRM image-enhancement method is used to preprocess the image in the low-light image database and the target image, respectively, thus obtaining the corresponding JBCRM-enhanced image database and JBCRM-enhanced image. Secondly, the SIFT feature extraction algorithm is utilized to extract features from images in the JBCRM-enhanced image database, thereby acquiring the set of SIFT feature points and forming the feature vectors, which are saved as npy files. Simultaneously, the SIFT feature extraction algorithm is used to extract features from the JBCRM-enhanced image, yielding the corresponding SIFT feature points and constructing the feature vector, which is stored as an npy file. Thirdly, the SIFT feature vectors of the JBCRM-enhanced image database are matched with the SIFT feature vector corresponding to the JBCRM image by using the BBF search method, respectively. Then, the Euclidean distance is used to calculate the similarity between the JBCRM-enhanced image and each image in the JBCRM-enhanced image database, and the similarity is sorted in descending order. Finally, the top six similarity images in the JBCRM-enhanced image database are selected as the coarse search images. Among them, the details of the SIFT feature vector construction process are as follows.



4.2.1. Establishment of Scale Space and Detection of Extreme Points


The whole scale space establishment process of the image is as follows: for an image of size   N × N  , the image is convolved with the Gaussian kernel, thereby obtaining Gaussian spaces of different scales, which are expressed as:


  L  (  x ,   y ,   σ  )  = G  (  x ,   y ,   σ  )  ×  I D   (  x ,   y  )  ,  



(14)






  G  (  x ,   y ,   σ  )  =  1  2 π  σ 2     e  −  (   x 2  +  y 2   )  / 2  σ 2    ,  



(15)




where   G  (  x ,   y ,   σ  )    is the Gaussian function with variable parameters;  σ  is the scale space factor;   L  (  x ,   y ,   σ  )    is the spatial function at a specific scale.



To obtain stable Gaussian scale space extreme points, the original image is convolved with G with different scale factors. Then, the images of two adjacent Gaussian spaces are subtracted to obtain the difference of Gaussians (DOG), thus eliminating the unstable edge points, whose mathematical expression is:


  D  (  x ,   y ,   σ  )  =  [  G  (  x ,   y ,   k σ  )  − G  (  x ,   y ,   σ  )   ]    ×    I D   (  x ,   y  )  = L  (  x ,   y ,   k σ  )  − L  (  x ,   y ,   σ  )  ,  



(16)







To ensure the stability and uniqueness of the SIFT features, each sampling point on the DOG needs to be compared with 8 neighboring points at the same scale, as well as 18 points corresponding to the neighboring scales above and below, which are 26 points in total. If the DOG value of this sampling point is greater than or less than the other 26 points, the point is set as a local extreme point.




4.2.2. Precisely Determine the Location of the Feature Points


In the candidate set of local extremum points of scale space, there are many low-contrast and unstable edge points, which directly affect the stability and anti-interference ability of matching. Therefore, these edge points need to be removed to improve the accuracy of matching. The specific removal principle is as follows: the principal curvature value is relatively large in the direction of the edge gradient, while the principal curvature value is small along the edge direction. The principal curvature value of the candidate feature points is proportional to the eigenvalue of the 2 × 2 Hessian matrix. The expression of the Hessian matrix is:


  H =  [       D  x x        D  x y          D  y x        D  y y        ]  ,  



(17)







Let  α  and  β  be the eigenvalues of H, and the value of  α  is greater than  β . At the same time, let   α = r β  , and then, the trace Tr(H) and determinant Det(H) of H are as follows:


  T r  ( H )  =  D  x x   +  D  y y   = α + β ,  



(18)






  D e t  ( H )  =  D  x x    D  y y   −    (   D  x y    )   2  ,  



(19)






  R a t i o =      (  T r  ( H )   )   2    D e t  ( H )    =      (  α + β  )   2    α β   =      (  r + 1  )   2   r  ,  



(20)







If   R a t i o   ≤      (  r + 1  )   2   r   , it is retained as the feature point; otherwise, it is discarded.




4.2.3. Direction Distribution of Feature Points


To ensure the rotational invariance of the feature points, it is necessary to assign a principal direction for each feature point based on the magnitude and direction of the gradient. The specific process of determining the main direction of feature points is as follows: firstly, the direction of each feature point is calculated. Then, the gradient information of the pixels around the feature point is counted, and the corresponding gradient histogram is plotted at 45-degree intervals. Finally, the peak of the gradient histogram is selected as the principal direction of the feature point.



For the scale space image   L  (  x ,   y ,   σ  )   , the size and direction of the gradient at each feature point are as follows:


  m  (  x ,   y  )  =      (  L  (  x + 1 ,   y  )  − L  (  x − 1 ,   y  )   )   2  +    (  L  (  x ,   y + 1  )  − L  (  x ,   y − 1  )   )   2    ,  



(21)






  θ  (  x ,   y  )  = t a  n  − 1    (    L  (  x ,   y + 1  )  − L  (  x ,   y − 1  )    L  (  x + 1 ,   y  )  − L  (  x − 1 ,   y  )     )  ,  



(22)




where   m  (  x ,   y  )    is the magnitude of the gradient and   θ  (  x ,   y  )    is the direction of the gradient.




4.2.4. Generating SIFT Feature Point Descriptors


Through the above three processes, the position, scale, and direction information of the feature points are obtained successively. In order to improve the probability of the correct matching of feature points, it is necessary to establish corresponding feature descriptors for each feature point. The specific steps are as follows: firstly, rotate the coordinate axis to align with the main direction of the feature points mentioned above. Then, take a 16 × 16 window centered around the feature point within the same scale domain. Next, divide the window into 4 × 4 sub-block regions (seed points), as shown in Figure 9. Finally, the gradient histograms of each seed point in eight directions (every 45° is a direction) are counted based on Equations (21) and (22), and each gradient histogram is Gaussian weighted, so as to weaken the influence of the place far away from the feature points on the feature points.



In the left figure, its center position is the position of the feature point, and each cell represents a pixel in the scale space where the neighborhood of the feature point is located. The arrow in each small box corresponds to the direction of the gradient at the feature point, the length of the arrow represents the gradient magnitude, and the circle indicates the range of Gaussian weights. In the right image, the gradient histogram of eight directions is drawn in each 4 × 4 box, and the cumulative value of each gradient direction is calculated, thus forming a seed point. Each feature point consists of 4 × 4 seed points, each with vector information in eight directions, thereby producing a 16 × 8 128-dimensional SIFT feature vector.





4.3. Constructing VFSK-Based Fine Search Technology


VGG16 was proposed by the Visual Geometry Group of the University of Oxford in 2014, and its specific structure is shown in Figure 10. VGG16 consists of five convolutional blocks and three fully connected layers. The first two convolutional blocks consist of two convolutional layers and a pooling layer, while the last three convolutional blocks consist of three convolutional layers and a pooling layer. In this paper, convi is used to denote the ith convolutional block, convi_j denotes the jth convolutional layer of the ith convolutional block, and convi_pool denotes the pooling layer of the ith convolutional block. The number of filters in the 5 convolutional blocks is 64, 128, 256, 512, and 512, respectively. Compared with the traditional convolutional neural network model, the VGG16 network structure is very simple, which can enhance the richness and hierarchy of the feature representations, thus better capturing the visual features. Therefore, the VGG16 is chosen as the base model for the fine search in this paper.



After using the above RLFS coarse search, there is still the problem of mismatching, which leads to low accuracy in the target search. As a result, this paper builds the VGG16 fine search based on Keras (VFSK) in the fine search stage, thereby increasing the target search accuracy even more, as illustrated in Figure 10.



To improve the search accuracy and efficiency, VFSK fine search technology employs the VGG16 model to extract high-level semantic features from the conv5 layer, thus completing the accurate search of the target images. The details of the VFSK fine search technology are as follows: firstly, the convolutional feature mapping is extracted from the conv5 layer of each coarsely searched image and JBCRM-enhanced image, respectively, using the VGG16 model with a total number of channels of 512, thus constituting the corresponding h5 feature vectors. Then, the cosine similarity is used to calculate the similarity between the h5 feature vector corresponding with each coarse search image and the h5 feature vector corresponding with the JBCRM-enhanced image, and the obtained similarity is sorted using the K—means clustering method, thereby obtaining the coarse search image that has the highest similarity with the JBCRM-enhanced image. The position coordinates corresponding to this coarse search image are the position coordinates of the target image.



Among them, the calculation formula for the cosine similarity between two feature vectors is as follows:


  c o s  ( θ )  =   a × b   ∥ a ∥ × ∥ b ∥   ,  



(23)




where a and b are two different h5 feature vectors.   c o s  ( θ )    is the cosine similarity of the two h5 feature vectors, which ranges from [−1, 1]. The larger the cosine value, the more similar the two h5 feature vectors are represented.





5. Simulation and Result Analysis of Target Search


In order to evaluate the JLHS target search method proposed in this paper, 178 low-light images are taken at any position of the selected experimental site as experimental images for the target search. The specific content of the target search experiment is as follows: firstly, the 178 experimental images captured are preprocessed using the JBCRM method, thereby obtaining the corresponding JBCRM-enhanced images. Then, Höschl IV [37], Yin [38], Chhabra [39], Kopparthi [40], and the JLHS method proposed in this paper are used to match the JBCRM-enhanced images with the images in the offline database, respectively, thus obtaining the database image that is most similar to the target image. The position coordinates corresponding to this database image are the position coordinates of the target image. The performance comparison results of each target search method are shown in Table 7.



As can be seen from Table 7, compared with other target search methods, the average search error of the JLHS method is reduced by 91.90% at most and 18.33% at least. The average search time is reduced by 72.52% at most and 36.84% at least. As a result, the JLHS method proposed in this paper significantly increases the target search accuracy while decreasing the search time.



In 178 sets of target search experiments, the accuracy rate of each target search method is shown in Figure 11. Among them, the formula for the search accuracy is as follows:


  P =  m N  ,  



(24)




where P represents the accuracy rate, m represents the number of correctly searched samples, and N represents the number of searched samples.



As can be seen from Figure 11, compared to the other four methods, the JLHS method proposed in this paper has the least number of erroneous search samples and the highest search accuracy. Meanwhile, compared to the other four approaches, the JLHS method improves the accuracy by 12.83% at most and 1.16% at least. Therefore, the JLHS method proposed in this paper effectively overcomes the problem of a difficult target search in indoor low-light environments.




6. Conclusions


Aiming at the difficulty of target searching in indoor low-light environments, this paper proposes a JLHS target search method based on JBCRM image preprocessing enhancement. The JBCRM approach solves the problem of difficult feature extraction and gives superior visual data for the succeeding target search task by enhancing the dark area features and eliminating noise interference during the image preprocessing stage. Compared to other image-enhancement techniques, the PSNR of the JBCRM-enhanced images is boosted by 34.24% at most and 2.61% at least. The Laplace operator is increased by 54.47% at most and 3.49% at least. From the evaluation metrics, the JBCRM-enhanced images have less noise, higher clarity, and more details. In terms of feature extraction, the maximum increase in the number of feature points in JBCRM-enhanced images is 303.44%, and the minimum increase is 20.51% as compared to the original low-light images. In the target search phase, the JLHS method designed in this paper improves the matching accuracy between the target image and the offline database image by combining the local feature SIFT and high-level semantic features to describe the image, thus boosting the target search accuracy. Compared with other target search methods, the average search error of the JLHS method is only 9.8 cm, and the average search time is only 360 ms. Experimental results demonstrate the effectiveness of the proposed method in the task of target searching in indoor low-light environments, which is able to obtain the position information of the target more accurately. In our future work, we will reduce the dimension of the local feature descriptor SIFT by using the effective dimension reduction algorithm, which improves the efficiency of SIFT feature extraction and further shortens the search time.
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Figure 1. JLHS target search method based on JBCRM image preprocessing enhancement. 
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Figure 2. Evaluation indicators corresponding to different    σ d   ; they should be listed as (a) PSNR corresponding to different    σ d   ; (b) Laplace operators corresponding to different    σ d   . 
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Figure 3. Evaluation metrics corresponding to different    σ r   ; they should be listed as (a) PSNR corresponding to different    σ r   ; (b) Laplace operators corresponding to different    σ r   . 
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Figure 4. Evaluation indicators corresponding to different  μ  in the range of 10–50; they should be listed as (a) PSNR corresponding to different  μ ; (b) Laplace operators corresponding to different  μ . 
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Figure 5. Evaluation indicators corresponding to different  μ  in the range of 1–9; they should be listed as (a) PSNR corresponding to different  μ ; (b) Laplace operators corresponding to different  μ . 
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Figure 6. Structure of JLHS target search method. 
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Figure 7. Construction of offline feature database. 
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Figure 8. RLFS-based coarse search technology. 
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Figure 9. Generation process of SIFT feature descriptor. 
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Figure 10. Fine search technology based on VFSK. 
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Figure 11. Comparison of the accuracy of each target search method. 
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Table 1. Composition of the NLLD.






Table 1. Composition of the NLLD.





	Image Dataset
	LIME
	LOL
	MEF
	SICE
	GladNet
	Actual Scene





	Global

Low-light
	[image: Ijgi 12 00400 i001]
	[image: Ijgi 12 00400 i002]
	[image: Ijgi 12 00400 i003]
	[image: Ijgi 12 00400 i004]
	[image: Ijgi 12 00400 i005]
	[image: Ijgi 12 00400 i006]



	Local

Low-light
	[image: Ijgi 12 00400 i007]
	[image: Ijgi 12 00400 i008]
	[image: Ijgi 12 00400 i009]
	[image: Ijgi 12 00400 i010]
	[image: Ijgi 12 00400 i011]
	[image: Ijgi 12 00400 i012]










 





Table 2. Average value of each evaluation index before and after denoising of NLLD.






Table 2. Average value of each evaluation index before and after denoising of NLLD.





	Images before and after Denoising
	LECARM-Processed Images
	OPJB-Denoised Images





	PSNR
	11.56
	11.80



	SSIM
	0.34
	0.37










 





Table 3. Average values of the Laplace operator before and after image sharpening in NLLD.






Table 3. Average values of the Laplace operator before and after image sharpening in NLLD.





	Images before and after Sharpening
	OPJB-Denoised Images
	OPUSM-Sharpened Images





	Laplacian operator
	1481.22
	2078.82










 





Table 4. Visualization effect of the NLLD after enhancement by each algorithm.






Table 4. Visualization effect of the NLLD after enhancement by each algorithm.





	
Image-Enhancement Algorithm

	
Original Image

	
MF

	
NPE

	
LIME

	
Al-Ameen

	
Dong

	
JBCRM






	
LIME

	
Global

low-light

	
[image: Ijgi 12 00400 i013]

	
[image: Ijgi 12 00400 i014]

	
[image: Ijgi 12 00400 i015]

	
[image: Ijgi 12 00400 i016]

	
[image: Ijgi 12 00400 i017]

	
[image: Ijgi 12 00400 i018]

	
[image: Ijgi 12 00400 i019]




	
Local

low-light

	
[image: Ijgi 12 00400 i020]

	
[image: Ijgi 12 00400 i021]

	
[image: Ijgi 12 00400 i022]

	
[image: Ijgi 12 00400 i023]

	
[image: Ijgi 12 00400 i024]

	
[image: Ijgi 12 00400 i025]

	
[image: Ijgi 12 00400 i026]




	
LOL

	
Global

low-light

	
[image: Ijgi 12 00400 i027]

	
[image: Ijgi 12 00400 i028]

	
[image: Ijgi 12 00400 i029]

	
[image: Ijgi 12 00400 i030]

	
[image: Ijgi 12 00400 i031]

	
[image: Ijgi 12 00400 i032]

	
[image: Ijgi 12 00400 i033]




	
Local

low-light

	
[image: Ijgi 12 00400 i034]

	
[image: Ijgi 12 00400 i035]

	
[image: Ijgi 12 00400 i036]

	
[image: Ijgi 12 00400 i037]

	
[image: Ijgi 12 00400 i038]

	
[image: Ijgi 12 00400 i039]

	
[image: Ijgi 12 00400 i040]




	
MEF

	
Global

low-light

	
[image: Ijgi 12 00400 i041]

	
[image: Ijgi 12 00400 i042]

	
[image: Ijgi 12 00400 i043]

	
[image: Ijgi 12 00400 i044]

	
[image: Ijgi 12 00400 i045]

	
[image: Ijgi 12 00400 i046]

	
[image: Ijgi 12 00400 i047]




	
Local

low-light

	
[image: Ijgi 12 00400 i048]

	
[image: Ijgi 12 00400 i049]

	
[image: Ijgi 12 00400 i050]

	
[image: Ijgi 12 00400 i051]

	
[image: Ijgi 12 00400 i052]

	
[image: Ijgi 12 00400 i053]

	
[image: Ijgi 12 00400 i054]




	
SICE

	
Global

low-light

	
[image: Ijgi 12 00400 i055]

	
[image: Ijgi 12 00400 i056]

	
[image: Ijgi 12 00400 i057]

	
[image: Ijgi 12 00400 i058]

	
[image: Ijgi 12 00400 i059]

	
[image: Ijgi 12 00400 i060]

	
[image: Ijgi 12 00400 i061]




	
Local

low-light

	
[image: Ijgi 12 00400 i062]

	
[image: Ijgi 12 00400 i063]

	
[image: Ijgi 12 00400 i064]

	
[image: Ijgi 12 00400 i065]

	
[image: Ijgi 12 00400 i066]

	
[image: Ijgi 12 00400 i067]

	
[image: Ijgi 12 00400 i068]




	
GladNet

	
Global

low-light

	
[image: Ijgi 12 00400 i069]

	
[image: Ijgi 12 00400 i070]

	
[image: Ijgi 12 00400 i071]

	
[image: Ijgi 12 00400 i072]

	
[image: Ijgi 12 00400 i073]

	
[image: Ijgi 12 00400 i074]

	
[image: Ijgi 12 00400 i075]




	
Local

low-light

	
[image: Ijgi 12 00400 i076]
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[image: Ijgi 12 00400 i079]
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Actual scene

	
Global

low-light

	
[image: Ijgi 12 00400 i083]
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Local

low-light
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Table 5. Evaluation metrics for the NLLD enhanced by various algorithms.






Table 5. Evaluation metrics for the NLLD enhanced by various algorithms.





	Image-Enhancement Algorithm
	MF
	NPE
	LIME
	Al-Ameen
	Dong
	JBCRM





	PSNR
	11.80
	10.89
	8.79
	9.42
	11.50
	11.80



	SSIM
	0.32
	0.30
	0.22
	0.26
	0.32
	0.36



	Laplacian operator
	1911.25
	1613.16
	1756.32
	2008.72
	1320.16
	2078.82



	UQI
	0.23
	0.22
	0.16
	0.16
	0.21
	0.23



	MSE
	4895.78
	6132.78
	9094.23
	8085.09
	5068.32
	4851.21



	Average image processing time/s
	0.32
	1.37
	0.74
	0.35
	0.77
	0.028










 





Table 6. Number of feature points in the original and JBCRM-enhanced images.






Table 6. Number of feature points in the original and JBCRM-enhanced images.





	Feature Extraction Method
	SIFT
	ORB
	AKAZE
	BRISK





	Original images
	116.42
	152.83
	48.83
	160.67



	JBCRM-enhanced images
	331.00
	184.17
	197.00
	573.42



	Growth rate of feature points
	184.32%
	20.51%
	303.44%
	256.89%










 





Table 7. Performance comparison results of each target search method (* represents the process including image preprocessing and target search).






Table 7. Performance comparison results of each target search method (* represents the process including image preprocessing and target search).





	Search Method
	Höschl IV
	Yin
	Chhabra
	Kopparthi
	Ours





	Average search error/m
	1.21
	0.26
	0.31
	0.12
	0.098



	Average deviation angle/°
	3.29
	0.90
	0.89
	0.83
	0.52



	Average search time/s
	1.31
	0.98
	0.57
	0.58
	0.36



	Average whole process search time */s
	1.34
	1.01
	0.60
	0.61
	0.39
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