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Abstract: Increasing urbanisation has inevitably led to the continuous construction of buildings.
Urban expansion and densification processes reshape cities and, in particular, the third dimension
(3D), thus calling for a technical shift from 2D to 3D for property valuation. However, most property
valuation studies employ 2D geoinformation in hedonic price models, while the benefits of 3D
modelling potentially brought for property valuation and the general context of digital twin (DT)
creation are not sufficiently explored. Therefore, this review aims to identify appropriate urban
3D modelling method(s) for city DT, which can be used for 3D property valuation (3DPV) in the
future (both short-term and long-term). We focused on 3D modelling studies investigating buildings
and urban elements directly linked with residential properties. In total, 180 peer-reviewed journal
papers were selected between 2016 and 2020 with a narrative review approach. Analytical criteria
for 3D modelling methods were explicitly defined and covered four aspects: metadata, technical
characteristics, users’ requirements, and ethical considerations. From this, we derived short-term and
long-term prospects for 3DPV. The results provide references for integrating 3D modelling and DT in
property valuation and call for interdisciplinary collaboration including researchers and stakeholders
in the real estate sector, such as real estate companies, house buyers and local governments.

Keywords: 3D modelling; digital twin; 3D GIS; 3D city model; built environment; property valuation;
high-rise building; real estate appraisal; hedonic price model

1. Introduction and Background
1.1. General Introduction

Urbanisation has taken place worldwide at an unprecedented rate since the last century.
Currently, 55% of the world’s population, approximately 4.4 billion, live in urban areas [1].
Attracted by flourishing economic activities and public service, the number of urbanites
will increase to accommodate about 6.7 billion people by 2050, 68% of the world popula-
tion [2]. Due to limited land availability, urban areas will become continuously compact with
increased numbers of residential high-rise buildings to shelter urban residents [3]. Rising
property prices in the residential market can be observed globally, especially in metropolitan
areas and fast-developing countries [4–6]. Target 11.1 of the Sustainable Development Goals
(SDGs)—safe and affordable housing of sustainable cities and communities—encounters
grave challenges [2]. Is the property price worth its market transaction value, and what
external factors influence it? Such questions need to be addressed by property valuation to
determine a fair value based on price-influential factors measured objectively. As a proxy
among various stakeholders in the real estate sector (e.g., government, real estate company,
and buyer), property valuation plays a critical factor in every country’s economy with various
functions, such as maintaining a healthy property market and ensuring affordable housing [7].

Undoubtedly, the continuous high-rise residential building construction has increased
the spatial complexity in the third dimension (3D) (e.g., changing the city skyline). It also
adds uncertainties to residents living therein concerning living quality issues (e.g., whether
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the apartment has satisfying sunlight conditions). Figure 1 simulates a 3D environmental
scenario with different external 3D factors. Sunlight conditions may vary significantly from
the 1st to the 30th floor due to blocks from adjacent buildings and trees. In addition, the
properties close to the road may have worse air quality and louder noise than those remote
from the road due to traffic influx [8]. Nevertheless, as evidenced by the literature, most
valuation studies apply 2D geoinformation to generate 2D factors in the hedonic price
model (HPM), a model that has been widely adopted for estimating property prices by
setting a variety of attributes [9–12]. Environmental, locational, and physical attributes
are commonly included in HPM, whereas 3D attributes cannot be reflected if 3D is not
considered. Models lacking 3D geoinformation lower the reliability of the valuation results
and are less informative and comprehensive in complex urban areas with large amounts of
high-rise buildings.
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Nevertheless, the lack of 3D geoinformation can be compensated by creating a digital
twin (DT) to bridge the physical and virtual worlds. A DT refers to a digital replica of
physical objects and systems, in which they can integrate sensors and internet of things
(IoT) data and apply artificial intelligence (AI) and data analytics for 3D model creation,
performance optimisation of real-time representations, and dynamic simulations [13,14]. It
has been extensively applied to fields such as manufacturing and industry design [15], and
the current research on buildings and cities is a hot issue worth exploring [16]. To create
city DT models, on one hand, various 3D modelling methods, which we will reflect on
later for more details, have been used [17]. On the other hand, the increasing availability
of 3D data and software provides opportunities to understand the complexity of urban
areas from a 3D perspective. Researchers have attempted to analyse and visualise urban
elements varying in 3D, such as air quality [18], noise [19], and solar potential [20], but less
attention is paid to property valuation. Studies on building frameworks for 3D property
valuation (3DPV) within different country contexts [21–23] dive into legal and theoretical
aspects. The empirical literature is fragmented, with different foci, methods, and data.
Thus, research transferability is questioned [4,21].

Currently, 3D models for DT creation in urban areas are observed at various scales,
from a single building to a continent-scale, for different research purposes. Several re-
views already report state-of-the-art progress, including subjects such as 3D city mod-
elling, building information models (BIM) and geographical information systems (GIS).
Biljecki, Stoter [22] focused on 3D city modelling and DT applications, and later, Biljecki,
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Kumar [23] focused on the developments of the City Geography Markup Language Ap-
plication Domain Extension (CityGML ADE). Trubka, Glackin [24] reviewed different
platforms/software capable of 3D visualisation. Liu, Wang [25] and Wang, Pan [26] re-
ported BIM and GIS integration progress. Kalogianni, van Oosterom [27] studied the
current status of 3D land administration. However, a research gap exists in identifying
suitable urban 3D modelling methods and creating city DTs specifically for 3DPV [22,28,29],
and this review endeavours to fill this gap. Relevant research is still in its embryonic state.
3DPV requires a tailor-made solution to support different stakeholders in the real estate
sector and provide robust socio-economic explanations of property values. These facts
make 3DPV distinguishable from purely technical fields, which may be relatively isolated
and thus lack operationalisation in practice.

To be concise, the research objective of this themed review is to identify appropriate
urban 3D modelling method(s) for city DTs, which can be used for 3DPV. The main
contributions include (1) providing the background of 3DPV with relevant research and
identifying its essential features, (2) creating a literature inventory of urban 3D modelling
methods for 3DPV, (3) constructing a detailed analysis based on self-defined analytical
criteria, and (4) proposing prospects for 3DPV. Our analysis may provide references when
researchers attempt to apply 3D modelling and DTs for 3DPV. We would like to highlight
the following key points:

• We focus on the residential properties of high-rise buildings in urban areas.
• 3D factors refer to those changing with the building height in the vertical dimension

(e.g., daylight and viewshed). They can be quantified by 3D modelling and be a proxy
in HPM for property valuation.

• The terminology is slightly different in the literature, in which “property value”,
“property price”, and “housing price” are considered the same.

The remainder of this paper proceeds as follows. Section 1.2. provides a background
of 3DPV with relevant research and its features. Section 2 outlines the methodology with
a detailed search strategy and self-defined analytical criteria. A detailed analysis of 3D
modelling methods is in Section 3. Based on Section 3, we propose prospects for 3DPV
to deal with challenges in various stages as knowledge advances by steps, not by leaps
(Sections 4.1 and 4.2). They are organised according to the analytical criteria (Section 2.4) to
provide an overview of which requirements they may satisfy. We also deliver the comparison
between the two prospects in Section 4.3. Section 4 scratches ideas of how 3DPV can be
conducted and developed in the future, considering no mature paradigm or guideline has
been put forward in this field. This review finishes with a conclusion in Section 5.

1.2. The Background of Property Valuation and Its Development toward 3D
1.2.1. What Is Property Valuation?

Property valuation has a long research history since people started to study how
to measure the actual value of properties. It is a professional activity of considering a
variety of factors and estimating the property value at a given time by qualified valuers [30].
Therefore, it requires interdisciplinary knowledge of legal, technical, and economic aspects.
Currently, there are three widely-used valuation methods [28]: the comparative approach,
the income approach, and the cost approach. Valuers widely adopt them in practice, yet
they are more suitable for the valuation of single cases. When a large number of valuation
results are needed in a relatively short time, mass property valuation aiming for solid
modelling and automation is preferred to reduce the cost and human resources [31]. Thus,
methods with greater statistical capabilities and computational efficiency should be adopted
to handle the spatial heterogeneity among the properties. As introduced earlier, HPM is
currently the most frequently used for mass property valuation [32,33].

Based on the theories proposed by Lancaster [12] and Rosen [11], HPM has been widely
recognised as a consistent and general theoretical basis for estimating the property value by
deconstructing the property characteristics in different attributes (e.g., structural, locational,
and environmental attributes) [34]. There are several factors under each attribute. The
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property value includes a variety of factors, and each of them contributes to the total value.
In this way, in the valuation process, an economic value to the non-market components
such as environmental amenities can be added [35]. The structural attributes consist of
physical characteristics of the property, such as the floor area and the number of rooms.
The locational attributes include access and distance to public goods and specified facilities
(e.g., park and hospital). The environmental attributes include the characteristics of the
property’s surroundings (e.g., noise and air quality). The above-mentioned attributes have
extensively been explored in 2D [36–38]; however, the third/vertical dimension receives
less attention. Without including 3D factors, the influence of vertical spatial heterogeneity
on property value is ignored, especially in dynamic, developing urban areas with generous
amounts of high-rise buildings. Moreover, with the technological revolution, it becomes
more possible to extract 3D factors. In this way, 3DPV brings new perspectives and therefore
improves the credibility of the valuation results. Thus, we proceed with a brief review of
the relevant research on 3DPV in the following section.

1.2.2. The Relevant Research of 3DPV

In general, only a few studies have paid attention to this topic [39]. The existing papers
can be classified into three types: empirical case studies, overarching conceptual design,
and 3D visualization of property prices (Figure 2).

(1) Case studies. In these studies, different 3D factors were quantified in software and
added to HPM. View in different forms is the most frequently-used factor among
them and shows high efficiency in HPM [41]. Yu, Han [21] proved that the sea view
promoted the property price by an average of 15%. Yin and Hastings [42] confirmed
the positive economic impact of Niagara Falls’ views on hotel revenues, in which view
corridors, shadow effects, and view potentials were analysed. Based on their findings,
the ease of building height regulations to allow high-rise hotels were suggested.
Chen, Liu [43] explored the potential of geo-tagged user-generated images in housing
price estimation and considered if can be used as a supplementary data source. Lee,
Lee [44] proposed a visual perception model to analyse natural landscape views
on the housing prices of apartments in Seoul. They proved that natural landscape
views influenced the prices positively with unequal marginal impacts (e.g., the higher-
priced apartments had higher price appreciation). In addition to this, Ying, Koeva [4]
used four 3D factors in HPM: viewshed, SVF, building orientation, and daylight.
Their comparison of 2D and 3D models reflected that the 3D one estimated property
values more accurately. On a more refined scale, Celik Simsek and Uzun [45] built
a 3D virtual BIM with condominium units and obtained 3D-quantified factors that
affected the value of each condominium, such as sunlight, wind status, and openness
of view. Their findings proved the feasibility of constructing a 3D spatial analysis
on a condominium-scale. Overall, we observe an extensive utilisation of ready-
to-go software while the unique methods and lack of follow-up research hinder
generalisation and transferability to other areas.

(2) Overarching conceptual design. These studies focus on conceptual design rather
than solving real-world problems. 3D Cadastre may be the best-known among
published attempts, and progress has been greatly achieved in countries such as the
Netherlands [39], Turkey [29], and Slovenia [46]. 3DPV and 3D cadastre can be mutual-
beneficial. On one hand, 3DPV use accurate legal documentation from 3D cadastre
to generate more accurate estimates of values; on the other hand, the values can
serve as a 3D legal attribute for cadastre. A 3D cadastre is a reliable and verified data
source to provide structural, locational, and environmental attributes of properties. In
addition, Kara, van Oosterom [47] proved that 3D data support property valuation
within the land administration domain model (LADM), one of the main topics in
3D cadastre, in which visibility and viewshed analysis were the research foci. El
Yamani, Hajji [28] investigated the 3D factors that may pose a significant influence on
property value and proposed the corresponding 3D technical requirements, which can
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be referred to for further studies. Nevertheless, only having a 3D cadastre at the legal
aspect is not enough if spatial analysis, visualisation, and other dynamic interactive
functions are not realised. Han, Zhang [48] presented a conceptualised monitoring
platform of the house price index based on 3D GIS in Shenzhen, China. It adopted
a browser/server (B/S) and three-layer structure with a database, a data interface,
and a function framework to provide the latest and accurate property price-related
information for stakeholders in the real estate sector. Similarly, Emekli and Guney [49]
proposed a 3D web-based framework for property selection decision-making, which
consists of basic structured query language (SQL) spatial queries, geometric and
semantic information storage, and different visualisation modes. The two studies
were user-oriented to provide an optimal structure for property-related data storage
and services to different stakeholders. These frameworks/platforms were designed
theoretically or experimented with small datasets. More experiments in both technical
and theoretical fields are essential before putting into practice.

(3) 3D visualisation of property prices. Zhang, Lu [50] visualised the spatial morphology
of housing prices in 3D by digital elevation model (DEM)-based analysis in Wuhan,
China, which enhanced the spatial interpretation of the complex spatial pattern of
housing prices. Agarwal, Fan [51] created 3D heat maps to represent the value
dynamics from 1995 to 2017 in Singapore, and they managed to capture spatio-
temporal changes in price appreciation. Belej and Figurska [40] revealed spatial
discontinuities of property values in Olsztyn, Poland. These works visualised either
spatial or temporal heterogeneity of property prices in 3D, which intuitively reflected
the peak and bottom in the property market and thus helped with decision-making
and policy-framing.
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Another cutting-edge technique in 3D visualisation is virtual reality (VR), which has
received considerable attention in architecture- and engineering-related industries [52]. In
the past decade, it has been introduced into the real estate industry as a visualisation tool
(e.g., virtual home and virtual environment), mainly used by real estate companies. VR
aims to create immersive environments for buyers and facilitate their understanding of the
indoor and outdoor environments of the properties [53]. Current works have, on one hand,
suggested VR plays an important role in housing purchase decision-making [54,55]; on the
other hand, its usefulness in a flourishing housing market, the credibility to reflect reality,
and the high cost were questioned as well [8]. The potential of VR rather than visualisation
only deserves to be further explored.

In summation, the relevant research of 3DPV is still in the embryonic stage. Pilot case
studies lack follow-up investigations, and conceptual frameworks need practical applications
for improvement. There is still plenty of room for both theoretical and technical development.
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1.2.3. The Features of 3DPV

Based on the relevant research of 3DPV [56,57], its essential features are distinguished
as follows (Figure 3).
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Interdisciplinary and user-centred design. 3DPV is highly interdisciplinary and in-
volves diverse stakeholders with their expertise and interests. We need property valuers
for their valuation knowledge, academic researchers for their knowledge, real estate devel-
opers for their pricing policy, buyers for their housing preferences, local government for
their housing policy and census data, geospatial companies for their remote sensing data,
and business companies for their technical support. Obtaining stakeholders’ opinions let
researchers know whether the valuation model satisfies users’ requirements in different
dimensions, then what is of utmost importance can be understood.

The balance between socio-economic and technical aspects. Commonly, property
valuation studies apply HPM to build connections between factors from different attributes
(e.g., physical, environmental, and locational attributes) and property value. The 2D
factors concerning socio-economic aspects have been extensively studied to investigate their
economic influence on property value, such as education resources [58], park proximity [59],
and shopping malls [60]. Conversely, 3D modelling for city DT creation is dedicated to
quantitative spatial analysis and visualisation, often highly computational. Therefore, it
may be applicable for a limited number of buildings [61–63], but not feasible for a city with
thousands of buildings. The balance, i.e., trade-off, between the socio-economic aspect
(property valuation) and the technical aspect (DT) should be acknowledged.

Fit-for-purpose (flexibility, scalability, functionality). Fit-for-purpose (flexibility, scal-
ability, and functionality) should also be prioritised. Regarding flexibility, spaces should
be reserved for future extensions, as missing data may be identified and analytical tech-
niques may be improved. For example, it should not interfere with the existing datasets or
generate significant errors in methodology when putting in a new factor. Second, the most
relevant factors influencing property value can vary by location (e.g., Paris VS Shanghai),
time series (e.g., five decades ago vs. the past five years), and scales (e.g., district-scale vs.
city-scale); therefore, 3DPV shall be flexible to be tailored to local contexts. Scalability is
another crucial issue for both visualisation and spatial analysis. Similar to the level of detail
(LoD) in CityGML, which has five levels from coarse to detailed, 3DPV shall also work in
scalable scenarios. For example, in city-scale analysis, the 3D factors can be aggregated
as regional building height and building density to get an overview of the whole city. In
the district- or community-scale analysis, single building height, SVF, and view area may
be more optimal to evaluate individual properties. Last, functionality means satisfying
users’ requirements and being useful. For instance, AI algorithms may promote modelling
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efficiency and accuracy; a user-friendly methodology may improve the practicability for
diverse stakeholders as they may have different understandings of one issue.

Data usability. Property valuation deals with data from various sources—census data,
vector shapefiles, remote sensing images, socio-economic index. Alternative data as a
backup is important if specific data is not available [64]. Here, the data usability focuses on
quality, reuse, and open-source. First, high-quality data are necessary to provide accurate
estimations of property values, an important indicator for the macroeconomy [65]. The
quality includes, but is not limited to, its resolution, scale, and timeliness. Second, reusing
data from existing studies with other research purposes is not only cost-effective, but also
reduces redundancy caused by repetitive data collection. Third, the open-source choice
encourages cooperation and flexibility particularly meaningful for developing countries.
It is noted that currently, 3D data openness is a complex issue in most countries, but
open-source is the way forward.

2. Materials and Methods
2.1. Overarching Review Design

We adopted a narrative review approach, which does not follow specific protocols and
can be tailored for different purposes [66]. Figure 4 shows the overarching methodology,
which finally has two deliverables, (1) a 3D modelling review and (2) 3DPV prospects. In
parallel, based on the property valuation background (Section 1.2.1) and relevant 3DPV
literature (Section 1.2.2), we identified the features of 3DPV (Section 1.2.3). For the 3D
modelling review component, on one hand, we decided on the key concepts in this themed
review to set up the keywords in the literature search (Section 2.2) and developed a search
strategy to form the literature inventory to be reviewed (Section 2.3). In addition, we
self-defined a set of analytical criteria (Section 2.4) to review 3D modelling methods and
to analyse their appropriateness for 3DPV in different aspects (Section 3). After that, we
proposed 3DPV prospects in the short-term and long-term (Section 4).
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2.2. Key Concepts

1. Which methods do we focus on?

3D modelling for DTs is applied in diverse fields, thus we may be easily lost if the
review scope is not clearly defined. With understanding of the contexts of 3DPV, this review
focuses on the urban 3D modelling methods for city DTs that are suitable to support 3DPV
through the procedures and techniques to create a virtual built environment rather than a
legal or theoretical framework.

2. Where do we focus on?

We focus on urban areas, not areas mainly covered with natural landscapes (e.g., forest,
grass, rock, bare land, desert, and agricultural areas). The underground area is excluded.

3. What are the research objects?
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Buildings are the main research objects, as we focus on properties in high-rise res-
idential buildings. Apart from the static blocks, there are a large number of dynamic
interactions that exist between human activities and the built environment in the vertical
dimension. They form unique 3D spatial characteristics to be proxied as 3D factors in
HPM for property valuation. It is reasonable to assume their impact on the property prices
of high-rise buildings because existing literature has proven the spatial heterogeneity of
specific 3D factors. In Zhao, Liu [20], noise distribution had a clear impact: the closer the
proximity to the road, the higher the concentration; the higher the storey level, the lower the
concentration. Ying, Koeva [8] confirmed that people had diverse 3D housing preferences,
e.g., more people preferred to live at a high-storey level in a high-rise residential building.
In analogy, air quality also partially depended on the 3D building configuration [67].

2.3. Search Strategy

The keywords were defined at first based on the key concepts (Section 3.2) before the
formal literature search. Table 1 provides an overview of the keywords. In the table, the
relation of the keywords within the same row is OR, and the relation between different rows
is AND. Therefore, we created the statement “method” AND “where” AND “research objects”
to search for concrete and field-specific studies supporting 3DPV and to avoid being generic.
We did not directly search for 3DPV literature because of the limited number returned in the
keyword search. The full statement can be seen in the later stage of this section.

Table 1. The overview of the keywords.

Keyword Note

3D, “Digital Twin”, “3D model * ”, “3D GIS” 1 The methods
Urban, city, cities, “built environment” The geographical coverage we focus on
Building, human, “urban morpholog *” The research objects

1 Asterisk (*) represents any character to extend search range and simplify keyword combinations in WoS.
For example, 3D model * includes but is not limited to 3D model, 3D modelling, and 3D models.

Figure 5 shows the flow of literature identification and selection. Google Scholar was
first excluded due to the difficulty of using advanced search and varying literature quality.
We adopted Web of Science (WoS) and Scopus as two main online academic databases [68]
for trial searches. They both have extensive and authoritative literature coverages built at
similar scales and breadth, but they may behave slightly differently in individual scientific
fields. We performed trial searches with identical keyword combinations and randomly
picked 200 papers from each for preliminary filtering. We noticed Scopus returned with
broader coverage than WoS (1145 vs. 847) but had more noises, e.g., inconsistent digital
object identifiers (DOIs) and journals with hard-to-verify reputation. Eventually, WoS was
adopted as the online academic database for the literature search.

The literature search settings were as follows. First, we set a time frame of 2016–2020
to focus on 3D modelling progress for city DT creation within the five-year frame. Second,
only “article” journal papers were selected for representativeness of original research.
Conference proceedings were excluded because lack of information and duplication were
observed in the trial searches. Third, the language was restricted to English for authors’
understandability. After identification, it resulted in 847 articles.
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The first phase of screening excluded 570 records for the following reasons: 165 were
not studied in urban areas, 310 did not take properties/buildings as the main objects
for 3D modelling, 70 were without identifiable information (e.g., authors, affiliations, or
DOIs) or not in full-length, 23 were duplicates, and 90 were considered not helpful to
property valuation by authors (e.g., chemistry, physics, and mathematical modelling and
geological modelling). This process left 189 records to assess for eligibility by screening
the full-text articles. The second phase of screening excluded 19 articles because they were
purely theoretical proposals without applications or practices. Based on the remaining
170 papers, we further adopted a snowball sampling strategy to pick up the highly-cited
ones to maximise literature inclusiveness. In total, 180 articles were included in the final
reviewing process. The complete search statements in WoS are illustrated below:
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• Setting: the keywords/synonyms are combined using Boolean operators (AND, OR)
to search in the topic, a field compromising of title, keyword, and abstract. The search
statement is: (“3D” OR “3D model*” OR “3D GIS” OR “Digital Twin”) AND (urban
OR city OR cities OR “built environment”) AND (building* OR human OR “urban
morpholog*”)

• Time: 01-01-2016–31-12-2020.
• Document type: “Article” from the Science Citation Index Expanded (SCI-EXPANDED)

and Social Sciences Citation Index (SSCI).
• Language: English.

2.4. Analytical Criteria

The analytical criteria were designed to answer research questions framed from the
targeted audiences’ angles, i.e., researchers interested in applying 3D modelling for city
DTs and stakeholders in the real estate sector (e.g., government, real estate company,
buyer). Therefore, we conducted online expert interviews with researchers and industry
professionals. The interview aimed to obtain their opinions on how DTs and 3D modelling
can support 3DPV from a technical perspective. The experts were selected based on our
network (and snowballing). An overview of the experts is listed in Table 2. We used their
suggestions as the basis to form our analytical criteria and continuously received feedback
from experts during writing to improve our analysis according to the most advanced
research (Section 3), and they inspired how we proposed 3DPV prospects (Section 4). The
key questions in the interviews were as follows:

1. Which urban 3D modelling method/combination of methods/data are suitable for
residential building modelling and property valuation?

2. What is the spatial analytical capability of these methods? What are the effects/outcomes,
and how can they be measured?

3. What is the scalability, applicability, and flexibility of the method if it shall be adjusted
for property valuation?

Table 2. The overview of the experts.

Position, Number Country Specialisation

Academic researcher, 1 United Kingdom Property valuation
Academic researcher, 2 Finland Real estate economics/3D model
Academic researcher, 1 The Netherlands Real estate economics

Urban planner, 1 United States of America Urban planning
Business consultant, 2 The Netherlands Property valuation

Table 3 lists the analytical criteria with four main attributes and their respective factors.
(1) Metadata refers to the data features used by that method, covering resolution, source,
volume, composition complexity, interoperability, lifecycle, and data management. The
first three factors describe the data itself, and the latter four factors address how they
interacts with the external environment. (2) Technical characteristics consist of the essential
technical factors of the respective method, namely scalability, complexity, analytical capa-
bility, validation, and extension. (3) Users’ requirements cover the demand from those who
mainly develop that method and use the final product (e.g., government bodies, buyers,
and real estate companies). The factors are software, cost, visualisation, understandability,
applicability, and transferability (local edit possibility). (4) Ethical considerations refer to
possible ethical issues regarding personal privacy and data sensitivity. Last, a score was
given according to each attribute in the analytical criteria. We selected the Likert scale [4],
ranging from 0 to 5, to quantitatively represent its suitability for 3DPV. For example, a lower
score means the metadata are easier to access, technical characteristics are less intensive,
the users’ requirements are easier to satisfy, and there is no concern about ethical issues. In
contrast, a higher one means it proposes higher requirements on metadata and techniques,
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and the users’ requirements become more advanced with more ethical issues. It is worth
highlighting that the scores here are for reference only.

Table 3. The overview of analytical criteria.

Attribute Factor Question Examples

Metadata

Resolution What is the data resolution requirement?

Source What kind of data format is used? Is it
open-source or proprietary?

Volume Is the data volume large/moderate/small?
Composition complexity Is the data source single or hybrid?

Interoperability Is it compatible with different software?
Lifecycle Can the data be reused/updated in the future?

Database management Is the data organised in a database?

Technical
characteristics

Scalability Is it possible to apply in different scales (e.g.,
building- and city-scale)?

Complexity Is the workflow (e.g., building reconstruction)
complex?

Analytical capability What kind of spatial analytical tasks can it fulfil?
(e.g., spatial query)?

Validation Are visualisation and spatial analysis results
validated?

Extension Is an extension possible? Are there rich
alternatives?

Users’
requirements

Software Is the software open-source or proprietary?

Cost Is it cost-effective in different stages (e.g., data
collection, computation, labour)?

Visualisation Is the visualisation generic or detailed?

Understandability Is it easy for users to understand the modelling
technique and visualisation?

Applicability Is it feasible to be applied in practice currently or
in the future?

Transferability (local edit
possibility)

Can the method be adapted to transfer to another
study area or for another research purpose? Is it
possible to edit according to local conditions?

Ethical
considerations

Personal privacy Do any issues regarding personal privacy arise?

Data sensitivity Does the concerned data have high
confidentiality?

3. Discussion of Distinct Categories of 3D Modelling Methods for City DT Creation

We categorized the 3D modelling methods, which serve as a base for DT creation
according to the initially used input data. The sections are organized as follows: image-
based 3D modelling methods (Section 3.1), point cloud-based 3D modelling methods
(Section 3.2), and hybrid 3D modelling methods (Section 3.3) (here the hybrid means the
method has multiple data source inputs (e.g., vector, raster, and point)). The full list of
publications used is in Table 4. We have to note that some papers were put under more
than one category. For example, Sun, Olsson [69] discussed integrating BIM data into 3D
city DTs, so it was put under both “3D city DT” and “BIM”.
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Table 4. Full list of (n = 180) publications categorized by initially used input data.

Category Citations

Imaged-based DT

Wu, Xie [63], Wolberg and Zokai [70], Nishida, Garcia-Dorado [71], Ribelles, Gutierrez [72],
Bittner, Korner [73], Wang, Tian [74], Song, Huang [75], Sharma, Agrawal [76], Peeters [77],
Nishida, Bousseau [78], Misra, Avtar [79], Ma, Li [80], Liu, Krylov [81], Lee and Yang [82],
Jiao, Yu [83], Jhaldiyal, Gupta [84], Guo, Wang [85], Gong, Zeng [86], Costanzo, Yao [87],
Campanaro, Landeschi [88], Bulatov, Burkard [89], Bittner, d’Angelo [90],
Alavipanah, Schreyer [91], Ahmed, Tarig [92], Rothermel, Gong [93]

Point cloud-based DT

Zhao, Wu [61], Albano [62], Babahajiani, Fan [94], Ni, Lin [95], Cao, Zhang [96],
Zhang, Li [97], Yi, Zhang [98], Ye and Wu [99], Widyaningrum, Peters [100],
Wang, Cheng [101], Wang, Yan [102], Wang, Xu [103], Wang, Lu [104], Wang, Xu [105],
Wang and Xu [106], Templin and Popielarczyk [107], Sun, Shen [108], Soilian, Riveiro [109],
Shirowzhan and Sepasgozar [110], Pirasteh, Rashidi [111], Park, Lee [112], Nys, Poux [113],
Hao, Wang [114], Li, Zhang [115], Li, Hu [116], Li, Chen [117], Lai, Yang [118],
Jung, Jwa [119], Heo, Lee [120], Golombek and Marshall [121], Du, Zhang [122],
dos Santos, Galo [123], Ding, Liu [124], Diaz-Vilarino, Boguslawski [125], Chen, Zhu [126],
Chen, Liu [127], Chen, Yi [128], Bartonek and Buday [129], Balado, Diaz-Vilarino [130],
Dollner [131], Austin, Delgoshaei [132], Bienert, Georgi [133], Cavegn and Haala [134],
Pan, Guan [135]

3D city DT

Lu, Parlikad [13], Zhao, Liu [20], Doner and Sirin [29], Kara, van Oosterom [47],
Sun, Olsson [69], Dollner [131], Zieba-Kulawik, Skoczylas [136], Zirak, Weiler [137],
Zhi, Liao [138], Zheng, Weng [139], Xie and Feng [140], Yang and Lee [141],
Wang, Tindemans [142], Viana-Fons, Gonzalvez-Macia [143], Varol, Yilmaz [144],
Torabi Moghadam, Coccolo [145], Taubenbock, Kraff [146], Schrotter and Hurzeler [147],
Tutzauer, Becker [148], Saretta, Bonomo [149], Saeidi, Mirkarimi [150],
Rossknecht and Airaksinen [151], Rodriguez, Duminil [152], Redweik, Teves-Costa [153],
Peronato, Rey [154], Park and Guldmann [155], Nouvel, Zirak [156], Noor, Ibrahim [157],
Murshed, Picard [158], Murshed, Al-Hyari [159], Munoz, Besuievsky [160],
Mao and Harrie [161], Ma, Geng [162], Luo, He [163], Liu, Gong [164], Liang, Shen [165],
Liang, Gong [166], Liang and Gong [167], Kim, Kim [168], Kaynak, Kaynak [169],
Jovanovic, Milovanov [170], Hu, Dai [171], Hsu [172], Hecht, Herold [173],
Ham and Kim [174], Eriksson, Johansson [175], Eicker, Zirak [176], Dembski, Wossner [177],
Dutta, Saran [178], Cerreta, Mele [179], Buyukdemircioglu, Kocaman [180],
Bshouty, Shafir [181], Bodis-Szomoru, Riemenschneider [182], Biljecki, Ohori [183],
Biljecki, Ledoux [184], Ayadi, Scuturici [185], Adjrad and Groves [186], Agius, Sabri [187],
Adjrad, Groves [188], Adjrad and Groves [189], Peronato, Rastogi [190], Julin, Jaalama [191],
Lehner and Dorffner [192], Liu, Wang [193], Farella, Torresani [194]

3D GIS

Julin, Jaalama [191], Zhang, Cheng [195], Yeo and Yee [196],
Torabi Moghadam, Toniolo [197], Saretta, Caputo [198], Trubka and Glackin [199],
Taleai and Amiri [200], Saran, Oberai [201], Richards-Rissetto [202], Rafiee, Dias [203],
Machete, Falcao [204], Landeschi, Lindgren [205], Koziatek and Dragicevic [206],
Kelly, Femiani [207], Guo, Sun [208], Guo, Sun [209], Erener, Sarp [210], Eicker, Weiler [211],
Dell’Unto, Landeschi [212], Xiong, Zhu [213], Gevaert, Persello [214], Biljecki, Ledoux [215],
Fernandez-Palacios, Morabito [216]

BIM

Fernandez-Rodriguez, Cortes-Perez [67], Eriksson, Johansson [175],
Dembski, Wossner [177], Atazadeh, Kalantari [217], Chen, Lu [218],
Fadli and AlSaeed [219], Hamieh, Ben Makhlouf [220], Olfat, Atazadeh [221],
Shojaei, Olfat [222], Sun, Mi [223], Boje, Guerriero [224]

BIM-GIS
Sun, Olsson [69], Zhang, Cheng [195], Amirebrahimi, Rajabifard [225],
Amirebrahimi, Rajabifard [226], Catulo, Falcao [227], Deng, Cheng [228], Lu, Gu [229]
Deng, Cheng [230], Zhang, Hou [231]

Voxel
Zhao, Wu [61], Liang and Gong [167], Saran, Oberai [201], Anderson, Hancock [232],
Bonczak and Kontokosta [233], Casalegno, Anderson [234], Chen, Feng [235],
Golub, Doytsher [236], Hu, Yan [237], Lin, Wang [238]

Procedural modelling

Munoz, Besuievsky [160], Luo, He [163], Liang, Gong [166], Kim, Kim [168],
Agius, Sabri [187], Richards-Rissetto [202], Machete, Falcao [204],
Landeschi, Lindgren [205], Koziatek and Dragicevic [206], Catulo, Falcao [227],
Oskouie, Becerik-Gerber [239], Tekavec, Lisec [240]
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3.1. Image-Based DT

In this category, the studies mainly serve three purposes. (1) Visualisation based
on a large number of photos [70–72]. Due to relatively coarse granularity, spatial ana-
lytical functions and data updates are restricted. (2) Simple DT building reconstruction
without surrounding environment [73,76,78,80,85]. (3) Urban analysis in diverse scales
(e.g., neighbourhood- and city-scale) and for different purposes (e.g., solar potential [75],
population estimation [74], and shadow recognition [77]). Data volume is moderate since
normally only several images are involved, but they can also be computational-intensive.
For example, façade separation only requires a single image input, but the needed number
of images used for algorithm training is significant [71,78].

Among the image sources, satellite images are one of the most used for DT creation,
and the majority of the studies use 3D reconstruction based on stereo images [93]. This
approach can provide abundant geoinformation with broad coverage. However, spatial
and temporal resolution vary in public and private domains. Presently, open-source
images (e.g., Landsat and Sentinel) have become increasingly available and provide low-
cost solutions, especially for developing countries [79]. Peeters [77] demonstrated the
feasibility of automatic shadow recognition using a QuickBird satellite image. In addition,
ground-level view images, which take a different angle from satellite images, have also
become increasingly popular as they capture the building façade textures and thus improve
image quality. One typical example is the publicly available Google street view (GSV).
Wolberg and Zokai [70] used GSV to reduce visualisation errors of the objects close to
the ground. The extensive collection of images with fixed-height camera, captured over
one city, provides a rich image library for creating DTs [72]. In general, image-based 3D
modelling is user-friendly when there are clear technical requirements in place. In recent
years, AI-developed algorithms have extensively been used for image-based modelling.
However, one of the most important challenges in that respect remains the need of a rich
image data source for training and testing processes [71,78].

Our literature review shows the limited usages of image-based modelling methods
applied for 3DPV. Among the few examples, researchers have outlined the use of satellite,
aerial, and street view images as valuable input data that have been researched. A variety
of ML algorithms have been combined and explored by experts in the field to extract
qualitative and quantitative information for valuation purposes. Examples include the use
of DL approaches to assess the relationship between street visual features and property
values, and the comparison of the classic HPM with the ML model [241]. Results proved
the benefits of including factors such as vegetation (tree features, varying in 3D) in addition
to the traditional attributes such as structure, location, and neighbourhood environment
characteristics (2D). In addition, the researchers proved that the combination of aerial
and terrestrial images improved the geometrical accuracy [63]. In addition, studies have
been focused on 3D rooftop parameters and building footprints extracted from different
types of images [75,83]. The above-mentioned 3D geoinformation can be utilised in 3DPV.
The technical challenges lie in the validation, transferability, and scalability. Researchers
validated their classification accuracy by pre-acquired reference datasets [63,73,79,84], but
the availability is limited; thus, the robustness is hard to verify, which makes transferabil-
ity harder [77,78]. Ethical issues may arise as well from people who do not want their
properties to be visible and identified in very high resolution (VHR) images or GSV.

3.2. Point Cloud-Based DT

Most point cloud-based DT studies focus on building reconstruction in boundary repre-
sentation (b-rep) form (e.g., façade segmentation and building outline extraction) [62,123,210]
and share similar methodologies: (1) they assign point data with semantical labels (e.g.,
window, door, and roof) and (2) use AI to deal with the large data volume and increase clas-
sification accuracy [62,105,111,129,131,132]. Other studies focus on topics such as visibility
analysis [61,126], smart city [170], and indoor pathing [125].
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Point cloud data are mainly obtained by light detection and ranging (LIDAR), a
method that can accurately collect high-resolution 3D information of ground features in
large-scale urban scenes [61,98,139]. Point cloud data represent raw data or geospatial
objects in a consistent and well-defined form [131]. Different LIDAR platforms were
employed such as ALS [111,113,123], terrestrial laser scanning (TLS) [120,129], and mobile
laser scanning (MLS) [101,126,127]. Specific platforms, sensors, and proprietary software
propose high technical requirements on data utilisation [107]; parallel computing is one
of the solutions to ease heavy computation [96,97]. Cao, Zhang [96] further showed the
importance of a spatial database to organise data. Geometric accuracy and visualisation
quality are two aspects of validation [129]. The former applies official benchmark datasets
such as ISPRS datasets [62,97,103,119,122] and Dutch BAG (Basisregistratie Adressen en
Gebouwen) [100,127] or manually-created reference data [108]. Visual quality control is
frequently used for validation. Wang, Yan [102] compared the wireframe model and point
cloud data to assess the modelling accuracy. Heo, Lee [120] used the fish-eye images
captured at the same viewpoint to verify sky view factor (SVF) estimation.

Naturally, point cloud data are characterised by high point density and large vol-
ume [101]. However, they is prone to inaccuracies such as occlusion from trees [115], noise
corruption [106], and loss of small-size objects [119]. Whether this type of errors have
significant influence on 3DPV depends on the scalability. For a city-scale valuation study,
the errors may be tolerated, but for a building- or property-level study, it is possible to
generate bias. The open-source solution is limited, as Nys, Poux [113] was found to be the
only study showing the possibility of not using any proprietary solutions. Open-source
data are criticised for not being advanced enough to capture detailed features [78].

To sum up, solely using point cloud data for 3DPV is still challenging [95,116]. Point
cloud provides abundant 3D data and visualises the vertical dimension straightforwardly,
e.g., building and surface heights and the occlusion from trees and other buildings. How-
ever, the data processing requires a central processing unit (CPU) and is memory intensive,
but is necessary for running AI algorithms. It means raw point cloud data should be cleaned
and processed before they become a ready-to use product. Consequently, it increases the
learning cost for both developers and end-users, which does not avail for a topic that is
still in an embryonic state. Second, most studies covered a small study area (e.g., several
buildings or one street block) due to large data volume and expensive collection costs,
which is considered relatively limited in valuation studies. Third, transferability remains
an issue (e.g., algorithms for MLS data processing have to be developed separately from
ALS/TLS) [100,242]. Despite various challenges, the potential of point cloud data remains
huge. They provide height information and depict the building outline accurately, and
this kind of advanced visualisation of elements, such as roofs and facades, adds significant
value to DT visualisation and semantic information input for 3DPV. Gevaert, Persello [214]
classified informal settlement by height variation of the point cloud, which can be referred
to as 3DPV when distinguishing different housing qualities by the building height. TLS and
MLS may be supplementary for small-area data collection if certain data are missing or the
aim is to model the environment precisely (e.g., for a pilot project). AI algorithms can also
be supportive in data collection and processing, as well as in extracting domain-specific
semantics [131,132]. For example, Pan, Guan [135] used a convolutional neural network
(CNN) for land use classification based on ALS data, and their model was superior in
computational performance and classification accuracies. Moreover, as point cloud does
not collect personally-identifying information, it may not lead to ethical issues.

3.3. Hybrid DT

This section involves studies using hybrid data sources, including 3D city DT
(Section 3.3.1), 3D GIS (Section 3.3.2), BIM (Section 3.3.3), BIM-GIS (Section 3.3.4), voxel
(Section 3.3.5), and procedural modelling (Section 3.3.6).
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3.3.1. 3D City DT

3D city DT is the most widely used method based on the literature inventory. The
terminology, i.e., what is exactly a 3D city DT, remains a considerable ambiguity [22]. In
general, it is a digital representation of urban areas describing the geometry, structure, and
covering data of buildings, infrastructure, vegetation, terrain, and various morphological
elements [191]. The research purposes range from noise mapping [20] and urban spatio-
temporal change detection [136] to energy applications [137]. They fulfilled more complex
spatial analytical tasks than those for classification purposes only.

There are various approaches for 3D city DT creation, and they are generally costly and
time-consuming [106,180,181]. Therefore, researchers have been making efforts towards
automation and standardisation. First, the data are stored in a relational database manage-
ment system (DBMS), such as PostGIS, whose structured data schemas ease the pressure of
a mass of data management. The databases are linked with specific-developed 3D city DT
tools, such as 3DcityDB [151] and DB4Geo [161]. Lu, Parlikad [13] showed a complicated
but systematic example of creating a DT for their campus, involving five critical stakehold-
ers, heterogeneous data sources, and different model layers. Second, 3D city DT adopts a
structured data schema for transferability to other study areas (e.g., CityJSON [113]), in
which CityGML is the most widely supported data schema [243]. It is an open geospatial
consortium (OGC) standard for multi-hierarchical geographical, topological, and semantic
representation [244]. It has been supported by a wide array of proprietary and open-source
software. In total, five LoD (LoD 0 to LoD 4), from coarse to detailed, are embedded in
CityGML [184], i.e., there are a number of visualisation alternatives. Third, extensions are
developed to serve field-specific purposes, such as SimStadt from TU Stuttgart for energy
simulation [151,156]. Agugiaro, Benner [245] provided a list of Energy ADE in CityGML.

Nevertheless, several limitations of 3D city DT should be noted when employing for
3DPV. Julin, Jaalama [191] reported the difficulty of being scalable and modified and the
limited number of research purposes. More work should be dedicated to validating the
geometrical relationships of 3D buildings and accurate measurements [26], as validation
is now accomplished by manually comparing modelling results with true datasets [162].
Lehner and Dorffner [192] mentioned the temporal incoherence existing in heterogenous
data sources in 3D city DT, which should be paid attention. Property value is sensitive to
the changes of the surrounding environment, while the temporal gap may fail to capture
the changes, which may cause a significant bias. Lastly, the availability of 3D city DT is still
limited, and the current data schema is not designed to support property valuation [166].

We consider 3D city DT a powerful solution for 3DPV. First, the dynamic LoD visuali-
sation helps with the fit-for-purpose feature. For example, low LoD focuses on large-scale
building information extraction (e.g., volume, height, density), while high LoD investigates
nuanced 3D influence, which may be neglected due to coarse data resolution (e.g., trees may
put shadows on properties on low-storey levels). Second, the 3D visualisation overcomes
the 2D limit, thus benefiting different stakeholders in the real estate sector [179]. Buyers
recognise the property in a 3D helicopter view to compensate for information asymmetry.
Urban planners can optimise the regional planning policy with more 3D inclusiveness.
Third, it can also visualise property values in past, current, and future. The temporal
analysis of property can be simulated in a dynamic way for predictions in support of
government, buyers, and real estate companies. However, a 3D city DT with all data may
mean data redundancy and a lack of specific analytical techniques for 3DPV. For example,
the systematic architecture of creating a DT may be overwhelming regarding data and
cost [13]. Due to its inherent complex schema with hundreds of tables in the database,
most applications only use a small part (e.g., energy applications use only energy-relevant
data) [161]. Instead, an extension specifically for 3DPV could be the possible solution: it
provides information that 3DPV specifically needs according to users’ requirements and
still can call out other types of data on demand. It improves data use efficiency, conducive
to future data updates. In addition, the requirements of the citizens are also dynamic,
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therefore the factors included in 3DPV should be updatable. The chosen approach for DT
should provide technical possibilities for easy and continuous data updating.

3.3.2. 3D GIS

Current property valuation studies have extensively used GIS to study the locational
and environmental characteristics of the properties in 2D and analyse the impact on the
property values using HPM, while information from 3D is somehow neglected [246–248].
3D GIS connects diverse topological relationships from different data sources and adds a
3D perspective on a 2D basis. Extensive spatial analytical tasks are carried out by 3D GIS,
such as sky view factor and visibility analysis [84,86,202,215].

The technical requirements are eased compared to other emerging 3D modelling
methods for DT creation. A ready-to-go software list from proprietary and open-source
sectors, together with the automation of iterative and procedural analysis, guarantee the
performance of tasks on a large scale [199,204,208], such as reconstructing large numbers of
buildings with high levels of repetition and symmetry. The software is compatible with
diverse data formats, ranging from raster images [144], LIDAR point cloud [212], and
vector files (e.g., building footprints) [179]. Extensions are also available. For example, a
connection with Web-GIS can provide interactive functions to different stakeholders with
its immerse experience of surroundings and reduced size of digital contents (e.g., VR and
Google Earth) [179,216]. DBMS, such as PostgreSQL with PostGIS [84], are widely used for
data management [77,141,212].

3DPV would benefit much from 3D GIS regarding its users’ friendliness and mature
applications, which significantly ease the learning cost and increase the understandability
of different involved stakeholders at the same time. With the DBMS extension, data
safety and storage are guaranteed, and it is possible to reuse the data to update the
temporal analysis of values when the surrounding environment receives significant changes
(e.g., a shadow is casted by a newly-built adjacent building). 3D GIS provides satisfying 3D
visualisation and is cost-effective for 3DPV at a city-scale considering the spatial analytical
capability. The limitation mainly exists in accuracy when the research goes to property- or
building-scale because nuanced differences are hard to be captured under the complexity
of the urban environment. Trees are sources of errors; they cause shadows, and affect the
daylight hours and ventilation in properties of low-storey levels [120]. However, shadows
may be neglected in GIS files, which is likely to cause an estimation bias depending on the
application and research scales. Moreover, the flexibility for developing functions excluded from
the software scope is restricted, i.e., it would be hard to design new spatial analytical processes.

3.3.3. BIM

BIM covers geometry, spatial relationships, geographic information systems, and
various building components (e.g., supplier details and physical infrastructure). It creates
a digital 3D environment to manage the full lifecycle of an entire building, from prelimi-
nary design to the final dismantling, with rich semantic and geometric information [220].
BIM is a powerful solution targeting individual building(s), such as cultural heritage
management [219] and indoor path navigation [220].

Naturally, BIM has a large data volume with great informative richness because it
contains building information from different physical and functional categories. Thus, it
puts forward high technical data storage and maintenance requirements and demands
substantial investment in software and labour [218]. The proprietary data formats and
software are still the majority in the BIM field, and different platforms use their data
formats and workflows [221]. If the data are transferred between different platforms, it may
lead to potential conflicts. The most popular data schema is Industry Foundation Classes
(IFC), which is well supported by most BIM software [67]. All the building components
can be modelled, stored, and represented in IFC schema [223]. A recognised industry
standard of IFC promotes the transferability and reproducibility of the building models.
Despite the strict technical requirements, BIM has been widely used by a wide range
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of stakeholders, such as industry, academia, and individuals, making it a promising 3D
modelling technique.

BIM is intrinsically associated with aspects of building construction, such as cost,
maintenance, and construction time [67]; however, information in these dimensions may
be redundant for 3DPV and thus may increase pressure on data storage. Data management
becomes inapplicable with a large number of buildings on a city-scale [218], and researchers
have attempted to reduce the intensive computation. In Lu, Gu [229], a study consisting
of over 600 buildings from GIS data, only several important buildings were constructed
in BIM, which can be regarded as a trade-off between efficiency and cost. Amirebrahimi,
Rajabifard [225] replaced redundant attributes such as cost and materials with references to
their definitions to avoid redundancy [67]. Second, BIM data collection and modelling are
costly, an unaffordable solution for a city-scale 3DPV. Third, BIM often stands alone and is
not georeferenced, i.e., the spatial influence from the surroundings remains unknown. It
is a severe deficiency as property valuation must take the locational and environmental
characteristics as essential indicators for the property value. Lastly, we should also consider
the legal issues, because BIM integrates information of indoor structure which comes from
different infrastructure providers [177].

BIM can still provide references to 3DPV as follows. First, it can serve as high-
quality complementary data. For example, when specific valuation data are out of date
(e.g., building construction material, energy consumption) [69], adding BIM data can reduce
information asymmetry in the property market. Second, it is considered a feasible approach
for accurately managing land and property administration data, especially for high-rise
buildings (e.g., precise representation of legal boundaries and property floor plans) [217].
So far, there is no capacity for documenting ownership and legal information [129,217].
Therefore, a schema extension adds great value to its applicability and transferability. In
addition to this, on a theoretical level, the information richness that BIM holds may bring
new insights into how property value can be decomposed and which indicators have
significant influences on the value. In general, although the topic of 3D modelling and DT
have been emerging in the past decades, the actual collaboration between different sectors
and actors are still weak [224]; therefore, using BIM data for 3DPV needs support from the
world outside the BIM community.

3.3.4. BIM-GIS

Precise individual building models can be related to the real-world environment by
fully utilising the respective advantages of BIM and GIS. The rich information in high
LoD of individual models (BIM) and relative geographical surroundings (GIS) extend the
applicability.

Compared to using either BIM or GIS alone, BIM-GIS is more demanding in technical
requirements and user skills (e.g., data volume is larger, users’ learning cost is rising, and
ethical issues are concerned) [69,228]. To sum up, the difficulties are doubled. Data format
harmonisation becomes the top priority because of the different data structures. There are
a large number of attempts focusing on the bidirectional conversion of IFC and CityGML,
the two most popular data schemas at building-scale and city-scale [175]. However, the
conversion can still be challenging, especially for higher LoD [110]; on a best-effort basis,
the extendibility is still under exploration from the authors’ knowledge. Moreover, GIS
and BIM data are processed by different software, which increases the data processing
complexity and the operational requirements of the professionals [228].

Despite the difficulties, the combination also brings opportunities. First, the spatial
analysis can be performed on a finer scale based on 3D GIS, such as seismic vulnerability
assessment [226,227]. Zhang, Cheng [195] combined GIS and BIM to build a platform for 3D
visualisation, accurate urban management, and dynamic interactions with users. In Deng,
Cheng [228], indoor and outdoor features can be mutually reflected immediately for 3D
noise mapping. BIM is no longer an island without surroundings’ information, and GIS is
enriched by semantics and 3D geoinformation. Currently, the problem of coordinate system
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transformation has been well studied, such as in Deng, Cheng [230], Zhang, Hou [231].
Second, it is flexible to meet different demands [229]. For example, Amirebrahimi, Ra-
jabifard [226] built a micro-scale framework for flood damage assessment, in which the
elevation model was from GIS and the building information was from BIM. This scenario
is ideal for the property market, where diverse stakeholders come with different purposes
(e.g., urban planners may focus on the large-scale development while buyers look at the
environment of their residences within a small region, such as accessibility to shopping
malls and schools). In this way, cost-effectiveness and efficiency are improved. For more
information, the review by Zhu and Wu [249] concerning BIM-GIS data integration is
highly recommended.

The main challenge of BIM-GIS lies in the data. As mentioned earlier, data format
harmonisation and compatibility among different software should be tackled first for 3DPV.
More efforts in data collection are necessary because the study areas where BIM and 3D
GIS data are simultaneously available can be highly restricted.

3.3.5. Voxel

Voxels are used to aggregate sparse point data in predefined spacing (e.g., 1.5 m by
1.5 m by 0.5 m) [167]. In analogy, voxels are similar to a 2D pixel extended at 3D, carrying
both horizontal and vertical information. Voxels for city DT creation have been used
for topics such as visibility analysis [236], land surface extraction [233], and landscape
measurement [121]. Most studies were conducted within a small area (e.g., one street with
several buildings) [238], which partially explained the high data collection and processing
cost (e.g., the data collected by vehicles is restricted to specific areas and needs arrangements
for professionals and instruments). Voxel size is a significant factor affecting precision and
accuracy [61,120,128]. In general, a smaller voxel size can capture more details with higher
computational demands [61]. Sometimes down-sampling is used to reduce the calculation
amount [118]. A bigger voxel size may miss information but ease the computation pressure.
From the users’ perspective, voxel is relatively user-friendly. There are both proprietary
(e.g., AutoCAD) and open-source (e.g., SketchUp, QGIS, and Minecraft) software. The
voxel visualisation has distinct boundaries, i.e., stacking cubes, the modelling logic is clear,
and the construction has easy-to-follow pipelines [201]. No ethical issues are mentioned in
the existing attempts. The above-mentioned features are beneficial for users’ understanding
and applicability.

With the intrinsic characteristics of the voxel as a cube, dealing with buildings in
irregular outlines is challenging [101]. In the case of 3DPV, residential high-rise buildings
can be less influenced, as they always have regular building outlines. Nevertheless, seman-
tic information loss needs attention. Liang and Gong [167] reported the loss of semantic
information and spatial relationships after voxelisation in an octree-based model for solar
radiation.

In 3DPV, it is important to consider the balance of computing efficiency and the final
product quality. The voxel size should differentiate according to research scale, city-scale, or
per property, while it brings out another concern: assigning each voxel with semantic labels
per property is problematic [167], which is prone to error and labour-intensive. Building
façade segmentation is one of the main research directions in voxel modelling [94,128];
however, the 3D visualisation enhancement helps little with the spatial analysis of 3DPV,
though it does increase the computational intensity. Voxel may not have much additional
value as the primary modelling technique; nevertheless, existing studies reveal what we
may add in 3DPV. Anderson, Hancock [232] shows the necessity to treat urban vegetation as
a 3D volume rather than a 2D-based attribute. Casalegno, Anderson [234] also pointed out
that images cannot capture the sub-canopy structure. As mentioned earlier, objects close to
the ground are easily ignored in DT creation, which can cause a significant bias. The tree is
a typical example, vital to living quality and thus becomes an important factor for property
valuation. Several urban indexes, such as building mass, volume, and compactness, may
help understand urban morphology in the built environment [233].
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3.3.6. Procedural Modelling

Procedural modelling creates 3D objects for city DTs based on existing geometric
vector files (e.g., GIS vector shapefiles, land use, or cadastral plots) using programmed
grammar [168,206]. It is cost- and time-effective to create numerous buildings; thus, it has
been widely adopted for large-scale urban studies, such as 3D visualisation [160], urban
ventilation analysis [163], solar estimation [160,204], and visibility analysis [166]. The
commonalities are: (1) buildings are in mass quantities and (2) the study does not focus
on individual buildings. Procedural modelling is a user-friendly rule-based technique:
it is a collection of semi-automatic processes that is easy to learn for end-users; the data
basis—2D footprint files—is accessible at a low cost, and the data volume is expected
to be moderate; it generates 3D contents and executes multiple simulations in a simple
manner with a wide range of software such as SpeedTree, Random3DCity, ArcGIS, and
CityEngine [202,240]. For example, CityEngine is a 3D modelling software that takes 2D
GIS files to construct a city DT with exclusive computer-generated architecture (CGA) shape
grammar rules [187,206,227,239]. 3D objects are generated by assigning different CGA rules
on existing geometric files, and 3D geosimulation can be implemented, including SVF,
visibility analysis, and sunlight simulation. The 3D visualisations can be shared online via
web scenes [187], in which users can navigate the models and search for information. End-
users can develop the CGA rule library to generate a city DT quickly with low learning costs
and enjoy high flexibility in writing their CGA scripts. In analogy, procedural modelling
scripts are reusable and sharable, significantly increasing their transferability to other study
areas. However, it is worth highlighting that creating a script to generate ideal output is
difficult and time-consuming, even for experts [78].

The simplification of procedural modelling brings standardisation and ignores noise.
Munoz, Besuievsky [160] standardised the building sizes and retained their approximate
volumes and positions but did not consider the peculiarities of individual buildings. For
example, complex rooftops may be reconstructed as plain ones to ease calculation, which
may somehow influence analytical outputs (e.g., shadow simulation).

We consider procedural modelling a handy solution for 3DPV, especially at the city-
scale, which requires generating large amounts of buildings in a short time and executing
spatial analysis across large areas. It has been proven efficient at city-scale in different
urban analytical tasks [4,227]. The key 3D analytical functions and scripts in software can
now be well utilised in 3DPV to identify significant 3D factors influencing property prices
(e.g., daylight hours, visibility, and shadow) and optimise 3D visualisation of city DTs
(e.g., using texture mapping on the building façades with street view images). The fu-
ture works shall tackle the following concerns. Firstly, higher LoD capabilities should be
exploited to supplement the lack of semantics in procedural modelling [206]. Secondly,
direction towards AI combination shall be emphasised so that modelling buildings with
irregular footprints and rooftops become more applicable. Nishida, Garcia-Dorado [71],
Nishida, Bousseau [78] revealed a promising future to create city DTs in procedural mod-
elling scripts even more quickly and accurately.

3.4. Summary

To summarise, the analysed methods for DT creation are shown in Figure 6, and a
detailed breakdown of the scores has been visualised. The score is calculated based on the
0–5 Likert scale in each attribute, as proposed in Section 2.4. From the analysis, all the above-
mentioned 3D modelling methods should be applied in righteous scenarios to fully utilise
their advantages; therefore, there is no best or worst. Procedural modelling and voxel may
have the utmost user-friendliness and most minor technical demands, while information
richness (e.g., semantics) may be insufficient if applied on the building-scale or property-
scale. They are more suitable for 3DPV at a large scale to create city DTs within a reasonable
time and manage to deliver simple visualisation and large-scale 3D factors (e.g., building
height and building density). Using either image data or point cloud data eases the pressure
of primary data collection, and there are a variety of methods and software that can be used
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for 3D analysis. 3D GIS is efficient at a large scale, and the relevant software and workflows
have been maturely developed. In contrast, BIM aggregates abundant data, while it also
means working on only few numbers of buildings. BIM-GIS can fully utilise the advantages
of corresponding methods, but sometimes integration is not straightforward. Existing
attempts are referred to in Zhu and Wu [249]. 3D city DTs include large data volumes,
longer data processing time, incorporate real-time sensor data, and thus are capable of
diverse types of urban analytical tasks (e.g., wind velocity, air quality, noise propagation)
on a refined scale. Combining such application and analysis with 3DPV brings added
value to explain how 3D factors change in the vertical dimension and influence property
values. Image-based modelling has been proven to provide abundant semantic data, which
is essential in monitoring the changes in the surrounding environment and the building
façades, which can significantly influence property values. It may bring a perspective
of urban mobility and sustainability into property valuation. For example, green façade
is proven to be an appropriate alternative to reduce building energy consumption [250].
Buildings with such façades have better sustainability and thus can be associated with
higher economic values, which should be monitored in time.
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Figure 6. The spider diagrams of different 3D modelling methods. The score is calculated based on a
0–5 Likert scale for each attribute.

The following aspects should be considered when applying 3D modelling methods for
3DPV: (1) Validation. The lack of reference datasets significantly influences the robustness
of 3D models for city DT creation. Among those who do not have references, some used self-
collected data in a small region, and some did not validate at all, which highly restricted the
transferability of 3D models for city DTs and the reuse of modelling algorithms/workflows.
More research toward cost-effectively generating validation datasets is one of the main
suggested paths for future work. (2) Computational resource. A large number of empirical
studies have proven that it took a long time and intensive computation to create their
3D models. It is foreseeable that AI is helpful to minimise manual efforts and provide
opportunities for fast and easy data updates. As mentioned before, the balance between
socio-economic and technical aspects should be reached for 3DPV.

4. The Prospects for 3DPV

To couple with requirements and expectations in different stages of 3DPV, we propose
two prospects, from short-term in large-scale (city-scale) to long-term in fine-scale (building-
or unit-scale), in Sections 4.1 and 4.2. They are organised according to the set of analytical
criteria (Section 2.4). Similarities and differences are summarised in Section 4.3. This Section
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is written based on: (1) the analysis of the 3D modelling methods and (2) the outcomes of
online expert interviews. We regard the 2D aspects as indispensable and 3D as an extension
to property valuation. The standard methodology/data for 2D property valuation is not
discussed here (see Coleman, Crosby [251], Wyatt [252]).

4.1. Short-Term and in Large-Scale (City-Scale)

In this initial stage, the overarching objectives include (1) setting up the fundamental
3D factors and spatial analytical functions and (2) preparing for future extensions. In sum-
mation, the localisation is prioritised, transferability is waived, involved stakeholders are
limited (possible researchers only), modelling is data-driven with moderate computational
intensity, and there is high flexibility regarding data collection, modelling, and storage.

Hybrid, open-source, and existing data are recommended because it is hard for a single
data source to provide all the information, and 3D data collection is costly. Open-source
data such as GSV and Sentinel-series satellite images are considered low-cost alternatives
for 3D feature extraction; apparently, there is a trade-off between the cost and the data
quality (e.g., resolution, timeliness, and coverage). In general, data processing at this stage
is primitive, e.g., no proper database management and a high level of manual involvement.
For example, the building height can be replaced by the number of total floors multiplied
by an assumed floor height (generally 3 metres), which is a common practice [4,253].

For the technical specifications, laptop workstations or small servers are enough
with manual modelling and semi-automation, so we suggest procedural modelling as
the primary method. While it may have trouble dealing with irregular shapes [71], it
is acceptable at this stage because (1) the research scale is at city-scale and (2) high-rise
residential buildings often have regular footprints. Furthermore, software with built-
in functions is preferential (e.g., CityEngine and 3D analyst module in ArcGIS). Spatial
regression models are recommended for property value modelling due to their robustness
and transparency, as reported in the existing literature and by valuation professionals in
our expert interviews.

Regarding users, it may be kept within the researchers. They are responsible for
developing the whole workflow from scratch to build a DT for 3DPV, i.e., deciding on input
data, use of software, type of analysis, and output 3D factors. We do not expect ethical
issues because only anonymised data are collected.

4.2. Long-Term and in Fine-Scale (Building- or Unit-Scale)

In this stage, the overarching objectives are more advanced, aiming for (1) improved
functionality (e.g., complex yet more accurate 3D spatial analyses), (2) category-specific
3D data, and (3) generalisation (transferability). To summarise, it is model-driven with a
workflow designed for 3DPV.

We still recommend hybrid data to fully utilise the advantages of the respective data.
When integrating a multi-source point cloud, as an example, ALS and TLS capture data
from the top or side view, with the former optimal for building outline extraction and
the latter for façade and ground object construction (e.g., street lamp and tree) [254]. The
combination of MLS and TLS can capture green coverage in urban areas, which can be
important to explore whether it has different impacts on properties on low-storey and
high-storey levels [133]. It is necessary to increase the accuracy of visibility analysis, as
the view of properties in a low-storey level may be blocked by various objects. Moreover,
several improvements are as follows. First, independent 3D data collection becomes
feasible because the existing datasets may not fully satisfy the requirements (e.g., timeliness,
coverage, and resolution). Second, more category-specific data are included to enhance
the explanatory power. For instance, sunlight and shadow conditions influence energy
consumption, and the façade materials impact noise absorption. They both may influence
the living quality and property values but remain to be investigated in property valuation
studies [255]. Third, data validation becomes essential to avoid error propagation and
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guarantee modelling accuracy. Lastly, a mature and open 3D data format is preferential, as
it avails transferability and extensions.

Similarly, the technical specifications should match the new requirements arising
from increased data volume and composition complexity. First, data storage and security
should be treated seriously when dealing with multi-source 2D and 3D data, so DBMS (e.g.,
Oracle and PostgreSQL) is suggested due to its functionality, such as data analysis and
interpretation and different levels of access authorities. The 3DcityDB is a typical example
developed based on a PostgreSQL extended with PostGIS [151]. Second, software capable
of feature manipulation, visualisation, and spatial analysis should be used. Here a better
visualisation is applicable by texture mapping concerning the roof and the façade. Third,
developing tailor-made software/platforms and cloud computing can be considered due to
increased computational intensity [256], but they are also costly [257]. AI algorithms (e.g.,
ML and DL) have been widely used for multi-tasks (e.g., image orientation or semantic
segmentation and estimating housing prices) to improve efficiency and accuracy [41,194],
but we should be aware of the potential risks. First, the training and testing for image
segmentation and classification asks for high-quality images input. Otherwise, as Liu,
Wang [193] mentioned, the occlusions and distortions would lead to a failure, making
the whole learning process meaningless. Second, the black box issue is highlighted, and
algorithms help us to identify where it focuses on, whereas property valuation needs robust
explanations of the influence of different factors.

We expect to satisfy users’ requirements from different stakeholders in the long term,
so the whole workflow should be assigned to specialists to fulfil tasks separately. Ethical
issues may arise due to personal information collection, especially in individual properties
(e.g., the specific locational data, the owner’s personal information and transaction records).
Therefore, data collection, storage, and sharing should strictly comply with local data
regulations, such as the general data protection regulation (GDPR) in the European Union
(EU) and the European Economic Area (EEA).

4.3. Summary: Similarities and Differences

It would be too early to provide paradigms for 3DPV, as it is only a research topic
in the embryotic state and needs exploration by different stakeholders. The features of
short-term and long-term prospects are highlighted in Table 5 as an answer to Table 3.
Figure 7 provides a bullet point overview of 3DPV development.
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Table 5. The highlights of short-term and long-term prospects.

Attribute Short-Term Long-Term

Overall aim Fundamental 3D spatial analyses and extension
spaces for future development.

A formal workflow with advanced 3D
spatial analyses.

Metadata

Hybrid data sources with existing and open
datasets.

Moderate resolution and volume.
Affordable details.

Separate and local storage.
A limited number of 3D factors at city scale.

Self-collected datasets.
Improved resolution and volume.

Enhanced accuracy.
DBMS/ cloud server.

The increasing number of 3D factors at
fine scale.

Technical characteristics

User-friendly workflow.
Laptop workstations.

Manual or semi-automation.
More labour-intensive yet less

computational-intensive.
3D spatial analysis at large scale with limited

purposes.
Spatial regression models.

Tailor-made workflow.
Cloud computing.
Semi-automation.

Less labour-intensive yet more
computational-intensive.

Advanced 3D spatial analysis at fine scale.
AI possibility.

Users’ requirements

A limited number of stakeholders (possibly
researchers only).

Simple 3D visualisation in blocks.
Scalability and extensions are not expected.

Suitable for a single study (no transferability).

Different stakeholders with distinguished
access authorities.

3D visualisation with improved
resolution and semantic information.

Scalable in different scenarios and with
extended functionality.

Transferability to other study areas,
suitable for different cities.

Ethical considerations Minimal concerns (e.g., copyright of images). Personal-identifying information
collection.

5. Conclusions

3D modelling for city DT creation has been a key way to visualise multiple high-
rise buildings in urban areas and implement urban analysis. Despite its popularity, 3D
modelling for city DT creation and property valuation are not well integrated; 2D-based
data currently dominate the latter, and literature of 3DPV is limited; however, there is an
urgent need for a shift from 2D to 3D due to fast urbanisation worldwide. The overarching
objective of this review was to find appropriate urban 3D modelling method(s) that can be
used for 3DPV. It is achieved in the following steps. Our analysis reveals a strong indication
for interdisciplinary collaboration because of the varying data sources, different software,
and respective professional knowledge. Property valuation requires data not only from
2D-based geographical aspects but also from semantic and legal aspects; therefore, there
are no perfect or one-size-fits-all 3D modelling methods for city DT creation for 3DPV at
the moment. A model with information from different categories will make remarkable
contributions to scalability, flexibility, and transferability. We also notice that the use of AI
has the potential to avail 3DPV significantly and has been involved in almost each stage of
city DTs for data collection, processing, and visualisation. Despite its many advantages,
we should still treat it carefully with property valuation due to the black box issue: the
transparency would be challenged without valid explanations of how certain factors impact
property values.

We highlight the importance of localisation in property valuation; thus, the factors
included in the valuation model should be flexible and updatable due to differences of local
people’s preferences, 3D data availability and resolution, and timing. For example, it is likely
that urbanites value the view of greenery more and people now value air quality more than
20 years ago. Developing alternative proxies to explain property values from a 3D perspective
has large potentials, i.e., unobserved links can be constructed between property values and
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specific factors, which will add stringency to 3DPV. For example, BIM for high-rise building
administration brings more opportunities to visualise legal connections of different land
rights [217]. In addition, this review was written during the COVID-19 pandemic, and we are
aware of how people’s mental and physical conditions can be influenced by a long time staying
at home, especially in urban areas where the majority live in apartments in high-rise buildings.
People’s mobility is restricted, and the importance of 3D stands out. For example, people now
have to stand the noise and bad air quality from streets and roads all day if they live in a
low storey level, and a property that enjoys more sunlight hours will have more value than
before. Such kinds of impacts can be quantified and visualised straightforwardly by different
3D modelling methods, which have been proven applicable by empirical studies [204,228].
Moreover, high-rise housing was already claimed to be less satisfactory than other housing
options [258], and it may become even worse in a pandemic situation as it increases the risks
of exposure for residents [259].

We would like to note there are still challenges ahead. Based on the literature, due to
the high collection cost and closed sources, 3D data availability (more importantly, the data
format harmonisation) is an important issue to be solved. This includes limited access and
coverage, and coarse resolution restrict DT creation; moreover, 3D modelling also inherently
proposes high technical requirements, which thus have pressure on mass property valuation
regarding the cost, thus developing a cost-efficient and affordable method for city-scale
modelling is a must-do. More importantly, behind the technical gap is the conceptual
gap, i.e., people may not have yet recognised the importance of understanding 3D factors
on the impact of urban lives with increasing amounts of high-rise buildings; thus, it is
challenging to realise the shift from 2D to 3D in property valuation. The shift is the first
step, after which we should be aware of how to update. The urban environment changes
over time, which highlights the temporal characteristics of value. How to update 3D factors
and quantify their influence on values in time is another challenge. We consider people’s
understanding of 3D for city DTs necessary to accelerate the shift, in which interdisciplinary
collaboration and openness would be the keys to success. Because more information is
included in the valuation process, less bias is the valuation result. This review can provide
references for different stakeholders in the real estate sector. Researchers may use it as
technical references to select the optimal one for their research purposes, i.e., beyond only
property valuation. It may also improve the recognition of local government concerning
the economic and aesthetic value brought by 3D in complex urban areas, so the future
housing policy may help create a city with equal access to 3D surroundings, which leaves
no one behind. Engineers can identify challenges and opportunities in 3DPV so that they
can target more applicable 3D modelling methods for valuation.

Lastly, it is important to acknowledge certain limitations of this review. First, the
perspectives of existing studies naturally restricted it, and non-English written literature
was not included due to authors’ readability. Nevertheless, we aimed to maximise literature
inclusiveness by applying expert interviews and the snowball sampling strategy. Second,
this review focuses on the literature published from 2016–2020, when few 3DPV case
studies were identified. It may impact the inferences of 3DPV prospects. Another review
for the next five-year period would be helpful to update the progress.
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