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Abstract: COVID-19 has brought several harmful consequences to the world from many perspectives,
including social, economic, and well-being in addition to health issues. However, these harmful
consequences vary in intensity in different regions. Identifying which cities are most vulnerable to
COVID-19 and understanding which variables could be associated with the advance of registered
cases is a challenge. Therefore, this study explores and builds a spatial decision model to identify
the characteristics of the cities that are most vulnerable to COVID-19, taking into account social,
economic, demographic, and territorial aspects. Hence, 18 features were separated into the four
groups mentioned. We employed a model joining the dominance-based rough set approach to
aggregate the features (multiple criteria) and spatial analysis (Moran index, and Getis and Ord) to
obtain final results. The results show that the most vulnerable places have characteristics with high
population density and poor economic conditions. In addition, we conducted subsequent analysis to
validate the results. The case was developed in the northeast region of Brazil.

Keywords: COVID-19; multiple criteria; vulnerability analysis; spatial analysis

1. Introduction

SARS-CoV-2, the coronavirus that caused the COVID-19 pandemic, was discovered in
December 2019. The first known cases were detected in samples obtained from a patient
from Wuhan, Hubei province (China), who had pneumonia of a then-unknown origin. The
phylogenetic homogeneity of SARS-CoV-2 has characteristics that are distinct from those of
other human respiratory viruses such as SARS-CoV, MERS-CoV, and the seasonal influenza
virus [1,2]

The virus quickly spread worldwide, and in 2020, the World Health Organization
(WHO) declared an outbreak. The outbreak of the new coronavirus reached Latin American
countries later than other continents. In Brazil, the first case was confirmed on 26 Febru-
ary [3], and community transmission was detected on 13 March [4]. Nonetheless, in 2021,
Brazil has been among the countries with the most cases and deaths registered, remaining
third in the rankings in 2022 [5]. The high ranking is attributable to inefficient crisis man-
agement standards within the Brazilian national government [6,7] and local governments
(states and municipalities), use of unsuitable tools for epidemiological surveillance [8],
insufficient measures to implement social distancing [4], and scarce RT-PCR testing and
diagnoses [9]. Also, limited resources bring large pressure on health system facilities [10].
The first wave of the pandemic in Brazil started in its principal cities (the largest and
most affluent cities with intense economic activities), especially in São Paulo and Rio de
Janeiro [4]. Eventually, the virus spread to smaller cities, and unfortunately, unlike urban
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centers, these cities have a scarcity of medical supplies, health facilities, hospitals, beds,
and health professionals [11].

The diversity of societal issues caused by COVID-19 requires research from different
perspectives. One of these concerns is the association between COVID-19 propagation
and economic, demographic, and environmental factors, e.g., comparing the incidence of
the disease in urban and rural municipalities according to local features [12], taking into
account the aspect of the vaccination policies of the demographic [13] and verifying the size
of towns corroborated to the spread of the virus [7]. Another issue that deserves further
discussion is the geographic spatial aspects. The research conducted in [14] shows that the
spread of COVID-19 has occurred more in urban areas with high inhabitant density than
in rural areas. However, the density cannot be considered as the unique explanation for a
high number of COVID-19 cases, as demonstrated in [15]. In Brazil, the factors driving the
spread of COVID-19 were supposedly mostly unknown in the early stages and checked
afterwards to be related to the movement of people ahead of several other factors [16].

Considering the context and knowledge about similar situations involving conta-
gious diseases, this paper explores and identifies socially vulnerable groups, for whom
socioeconomic and environmental questions in relation to COVID-19 would be highly
relevant. Therefore, a spatial decision model (multiple criteria evaluation and clusters
spatial analysis) was structured to determine vulnerable municipalities in the northeast
region of Brazil, based on social, economic, territorial, and demographic aspects. With this
framework, plans to provide solutions to regions that are most vulnerable to COVID-19
must then be devised and enacted.

2. Theoretical Review

Since the outbreak was declared a pandemic, researchers from diverse fields have
conducted academic projects to contribute to and propose solutions to avoid the harmful
effects of COVID-19. In this section, we explore the relationship between COVID-19 and
social, economic, territorial, and demographic features to support the objective of this study.

In one of the first such studies, [17] conducted a geospatial analysis of COVID-19 in
Germany involving 368 variables to identify patterns among geographic, socioeconomic,
infrastructure, and environmental characteristics. They determined a strong association
between COVID-19 and churches, unemployment registries, and public transport sta-
tions. In a study on Beijing, [18] identified demographic density and distances within
manufacturing areas, hospitals, financial centers, industrial neighborhoods, educational
facilities (museums, schools, and libraries), and shopping centers as relevant features. A
vulnerability index was proposed by [19], considering variables such as population density,
unemployment, and health status (obesity or diabetes).

In [20], smartphone mobility technology was used in Delhi, India to track patients
with symptoms. However, the unavailability of smartphones and barriers related to social,
economic, territorial, and demographic aspects contributed to creating an exclusionary
environment in some areas. In a study on the United States, registered COVID-19 cases were
correlated with socioeconomic data using cluster analysis and geospatial regression [21].
They revealed that age, race, occupation, and living in vulnerable situations are important
for identifying the susceptibility of a population to COVID-19. In addition, correctly
selected variables may be useful to provide valuable information for developing targeted
interventions for certain areas and periods as demonstrated in [22].

Similar studies have also been conducted regarding Brazil, demonstrating the associa-
tion between COVID-19 cases and several variables. In [4], all Brazilian territories were
mapped, locating which urban centers were disadvantaged and which regions were nearby.
Places with higher densities also accelerated the spread of the disease. Similar results were
obtained for Salvador, the most populous principal city of the Brazilian northeast, which
included economic disparities and race as relevant factors [23].

Brazilian research papers on each northeast state have been published. In the state of
Ceará, spatial clusters and the human development index had a positive association with
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COVID-19 cases [24]. In Fortaleza (the capital of the state of Ceará), there was evidence
that spread of the disease started in a neighborhood with a wide socioeconomic profile,
including poor groups and high population density [25]. Similar results were obtained for
the Recife municipality, in the state of Pernambuco [26]. In Salvador (the capital of the state
of Bahia), areas with better economic conditions were at an advantage in relation to the
contagiousness of the disease [27].

Understanding these associations contributes as a reference for the creation of public
health policies in related collective welfare. From this perspective, a methodology should
be constructed with these associations as an underlying principle for consistent results.
Table 1 presents a summary of Brazilian research papers, with a focus on consolidating
social, economic, and demographic data.

Table 1. Summary of Brazilian research papers correlating social, economic, and demographic aspects
with COVID-19.

Objective Approaches Factors Spatial Units Findings References

COVID index to verify capability
of hospital structures to deal

with COVID-19

Data envelopment
analysis (DEA)

approach

Respirators
Intensive care units (ICU)

Hospital beds
Physicians

Nurses

Microregional
administrative units

Patterns of
socioeconomics

inequalities
[11]

Comparison of SARS before and
during COVID-19

Logistic regression
model

Municipal human
development index

Proportion of population
vulnerable to poverty

Proportion of extremely poor
Presence of federal highways

Macroregional health
offices

Municipalities

High population
density and urban

mobility are the factors
that most contribute to

the spread of COVID-19

[28]

Identify data gaps in large slum
communities, considering

socio-economic, demographic,
and physical variables

Earth observation (EO)
(satellites images)

Population
Buildings

Road and pathway types
Local markets

Health facilities

Pixels

Provides guidelines on
which locals need

further investigation via
EO and gathers

procedures to support
COVID-19 responses

[29]

Trends in analyses of social
distancing and living conditions

based on the social distancing
index and living conditions index

of municipalities

Aggregated score

Distribution of residents by
per-capita monthly income
Proportion of black people

Schooling rate
Households connected to

regular water supply
network

Neighborhood

Social distancing
measures must consider

the place; the most
vulnerable

neighborhoods are
weak at responding to

the pandemic

[27]

Identify most vulnerable areas,
considering risk of arrival cases

and local transmission

Probabilistic models
and multivariate cluster

analysis

Population per age group
Infant mortality
Life expectancy

GINI index

Microregional
administrative units

Several microregional
administrative units

considered as
vulnerable

[4]

Employ additive models into
spatial patterns considering

factors such as race/ethnicity,
service occupation, and

household size

Generalized additive
models and Poisson

framework

Race/ethnicity, service
occupation household size,
cases, and hospitalizations

Cities

Percent minority,
average household size,

and percent service
industry keep positive

association with
COVID-19 risk

[30]

Explore spatial patterns (initial
stages) of COVID-19 cases with

social determinants

Density spatial analysis
and statistical

correlation

COVID-19 incidence, asthma
cases, per capt income,

education, housing, multiple
unit structures

Counties

Greatest number of
cases associated with
senior living facilities,
cases in places with

high population density
and asthma

hospitalization

[31]

3. Data and Methods

The methodology presented in this paper follows a linear step-by-step procedure,
comprising data gathering, selection of locality to study, pre-analysis, spatial modelling,
and analysis of outcomes. Our study objectively investigates a set of variables which char-
acterize the municipalities, taking into account the COVID-19 case records and performs a
classification procedure to measure the vulnerability level. A holistic approach was used to
build a multicriteria model, and decision rules were generated to classify the municipalities
and adapted from [32]. Throughout this process, spatial analysis was conducted in two
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phases to ensure better results. The proposed method follows four steps: (a) data treatment,
(b) variable exploration, (c) multiple-criteria decision model, and (d) spatial inference.

3.1. Data Treatment

In the first step, the municipalities to be analyzed were defined, and their representa-
tive features were selected. Before achieving these features, we investigated similar studies
using multiple criteria evaluation in a COVID context. In [33], the analytical hierarchy
process (AHP) method was employed to establish a regional vulnerability index for the
COVID-19 virus, considering criteria such as: population density, permanent resident
population, passengers-kilometers, and the numbers of students with a college degree or
above. In [34], 15 features were used to model COVID-19 vulnerability using a GIS platform
and AHP method. In addition to the social criteria used (population density and urban
population), physical vulnerability (hospital and road network) and epidemiological (active
cases, vaccinated people, and total deaths) criteria were included. The AHP was employed
to prioritize policies against COVID-19 in Turkey, which included aspects such as gender,
age, and occupation [35]. In [36], the GIS and multiple criteria evaluation were used for the
vulnerability index analysis also with criteria such as social and urban characteristics. All
these finds have shown a satisfactory analysis with the features used.

We built a set of explanatory variables, which are associated with the spread of COVID-
19, based on five aspects: social, economic, demographic, territorial, and COVID-19 cases.
From these aspects, a set of 19 variables were defined (Table 2). The features include
aspects regarding population, demographic density, employment rate, educational level,
household income, the human development index (HDI), the gross domestic product
(GDP) and poverty. Primary data were collected from the Brazilian Institute of Geography
and Statistics [37]. Lastly, the territorial perspective concerns the subdivisions of each
municipality (urbanization and rural zones). Each Brazilian city has several administrative
divisions (census tracts, neighborhoods, counties borders, etc.). For the present study,
areas of space were obtained using a combination of rural x urban x high density features,
characterizing three categories of counties. The first considers territories of all counties
as space variable. The second considers only territories with urbanization (high and low
settlement), while the third variable considers only areas with high densities of buildings
(having calculated the density of inhabitants). In total, we explored a set of 19 features
which are described in Table 2. Additionally, data regarding COVID-19 registers (daily case
reports) were also explored as a possible feature.

Table 2. Attributes used in the study.

Variable Description

Pop_estim Absolute population in estimated values per municipality

Peop_ocup Percentage of total population that are currently employed ([number of employed individuals in the
municipality/total population of the municipality × 100) (2019)

Income_m Average monthly income of formal workers (2019) BRL USD

Pop_ocu Number of employed people in the municipality (%) (2019)

Income_prop
Percentage of population with nominal monthly income per capita of up to 1/2 minimum wage:
[Population residing in permanent private households with monthly income of up to 1/2 minimum
wage/Total population residing in permanent private households] × 100 (2010)

Esco_1 Absolute number of schools that offer basic education in the municipality (2020)

Escol_2 Absolute number of schools offering secondary education in the municipality (2020)

MHDI Municipal human development index, based on the following dimensions: income, education, and
health (2010)

GPD Gross domestic product (2018)
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Table 2. Cont.

Variable Description

Schollar_prop [Population residing in the municipality aged 6 to 14 years old enrolled in regular education/Total
population residing in the municipality aged 6 to 14 years old] × 100 (2010)

SUS Establishments that offer basic health services and are part of the Unified Health System [Sistema
Único de Saúde] (2009).

Sewage
[Total resident population in permanent private households with sewage system belonging to the
general network and septic tank/Total resident population in permanent private households] × 100
(2010)

Area Total area of the municipality based on rural areas, urban areas, urban core, rural core, and urban
areas with high densities of buildings

Area1 Total area of the municipality based on urban core, rural core, urban areas with high densities of
buildings, and urban areas with low densities of buildings

Area2 Total area of the municipality based on urban core and urban areas with high densities of buildings

Den Population density: [Absolute population in estimated values by municipality/Area]

Den 1 Population density1: [Absolute population in estimated values by municipality/Area2]

Den 2 Population density2: [Absolute population in estimated values by municipality/Area3]

COVID-19 registers Daily COVID-19 cases included as attribute feature

3.2. Variable Exploration

In step (b), we explored the correlation between the selected features and COVID-19
records by means of statistical and spatial analysis. Firstly, we investigated the relationship
using the ordinary least square (OLS) regression approach and with Spearman’s rank
correlation coefficient. Furthermore, we used spatial autocorrelation analysis to evaluate
the spatial clustering patterns of COVID-19 registries via Global Moran’s I index [38] for
several weeks, so that the behavior of the spread of the disease could be examined along
with the evolution of new records. Regarding inference, spatial analysis was also used
considering vaccination hesitancy correlated with factors such as per capita income, age,
mobile homes, and uninsured people. This index was employed as follows (Equation (1)):

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
Xi − X

)2 , (1)

where Wij represents the weights of the spatial relationship between elements I and j,
(Xi − X) represents the deviation of the attribute value of element i from its mean, and n
denotes the total number of elements. The value of Global Moran’s I is within the range
[−1, 1]. If the index has a value close to 0, then the distribution of COVID-19 cases has a
random pattern. If the index is close to −1, the virus spread has a dispersed distribution,
whereas if the index is close to 1, the pattern of COVID-19 cases is clustered [18].

3.3. Multiple-Criteria Decision Model

We sought to classify the municipalities comprising Northeast Brazil in terms of
vulnerability to COVID-19 according to the impact of multiple criteria that represent
characteristics of these places. For this analysis, three categories representing vulnerability
levels have been defined:

• ClLow—low vulnerability
• ClModerate—moderate vulnerability
• ClHigh—high vulnerability

In this regard, we applied a method called dominance-based rough set approach
(DRSA), which consists of exploring knowledge in a holistic manner based on inferences
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from previously known information [39]. The DRSA is a method for sorting problems
using the non-classical multiple criteria decision approach [40].

Each application of the DRSA [39] is based on a data table formally represented by
a four-tuple information system S = {A, Q, V, f }, where A is a non-empty finite set of
objects, and Q is a non-empty finite set of attributes. The application of DRSA requires the
establishment of a set of attributes and objects, with attribute q ∈ Q and object a ∈ A. The
Vq is the domain of attributes q and V = ∪q∈QVq, and f : A×Q→ V is a total function
defined such that f (a, q) ∈ Vq for each attribute q ∈ Q and object a ∈ A. The set Q is
often divided into a subset C = {c1, c2, . . . , cm} of condition attributes with C 6= ∅ and
a subset D 6= ∅ of decision attributes, such that C ∪ D = Q and C ∩ D = ∅. Moreover,
reference objects consist of reference objects (or learning objects).

The DRSA is enriched by introducing an outranking relation <c into A∗ with respect
to the attribute c ε C, such that a∗1 <c a∗2 means that a∗1 is at least as good as a∗2 with respect
to attribute c.

For the sake of simplicity, in the following, we shall consider the case of a single deci-
sion attribute, i.e., D = {d}. More formally, let Cl = {Clt, t ∈ {1, . . . , n}} be a set of classes
of A such that each a∗1 ∈ A belongs to one and only one class Clt ∈ Cl. Suppose Clr and Cls
are two predefined classes with r, s ∈ T, a∗1 ∈ Clr, and a∗2 ∈ Cls. If r > s, then a∗1 < a∗2 . In

this study, the set of decision class is represented by: Cl =
{

ClLow > ClModerate > ClHigh

}
.

The DRSA introduces the concept of an approximation of a set of objects (a union of
decision classes) with respect to a set of attributes (or criteria). For P ⊆ C, the collection
of all objects that can be classified into Cl≥t that without any ambiguity constitutes the
P-lower approximation of Cl≥t . The collection of all objects that could be classified into Cl≥t
constitutes the P-upper approximation of Cl≥t . Analogously, one can define the P-lower
approximation of Cl≤t and the P-upper approximation of Cl≤t .

For every P ⊆ C, the quality of approximation of the ordinal classification Cl by the set
of attributes is considered to be the ratio expressed by the cardinality between the universe
A and all P-correctly classified alternatives (Equation (2)).

γP(Cl) =

∣∣∣A− (∪t=1,...,nBnP

(
Cl≤t

))
∪
(
∪t=1,...,nBnP

(
Cl≥t

))∣∣∣
|A| (2)

γP(Cl) can be seen as a degree of consistency of the objects from A, where P is the set of
attributes, and Cl is the ordinal classification considered.

These approximations are explored to induce decision rules of the type “if . . . , then
. . . ” which are used to assign the objects into unions of classes Cl≥t and Cl≤t . Five types
of decision rules may be considered [39], but we describe the rules used in the study as:
i: certain D≥-decision rules generated from the lower approximation P(Cl≥t ); ii. certain
D≤-decision rules generated from P(Cl≤t ).

The method creates a set of decision rules based on a training table and additionally, a
training map. To build the table, we selected a subset of objects (called reference objects) to
be assigned to only one class Clt according to its vulnerability level. All evaluations for
choosing reference objects were made in the GIS environment to avoid the use of tables. To
obtain the decision rules, DomLEM algorithms (Blaszczynski et al., 2013) were used.

3.4. Spatial Inference

The last step comprised gathering the classification via the dominance-based rough set
approach (DRSA), applying two spatial analyses, and identifying the cluster spatial classifi-
cation. The Luc Anselin Local Moran’s I (LISA) [41], similar to the spatial analysis in step
3.2, was applied, except this method made it possible to locate and identify spatial clusters
induced by other individual municipalities in global statistics and outlier evaluation. The
statistical test sorted the clusters into four significant groups: clusters of high values (HH),
clusters of low values (LL), outliers in which a high value is primarily surrounded by low
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values (HL), and outliers in which a low value is primarily surrounded by high values
(LH). The index was obtained using Equation (3):

I =
Xi − X

S2
i

∑n
j=1,j 6=i Wi,j(Xj − X), (3)

where Xi is an attribute for feature i, whereas Xi is the mean of the corresponding attribute.
Wi,j is the spatial weight between feature i and j, and S2

i is the standard deviation.
The second spatial statistic Getis and Ord (Gi∗) [38] is a measure of a statistical sig-

nificance test related to clusters with high values (hot spots) and low values (cold spots),
taking into account the sum of the performance for the area targeted in the study. The Gi∗

assay is a set of alternatives for measuring the degree of association of each performance to
its neighborhood, to predefine distance. Equation (4) shows the calculation:

Gi∗ =
∑j Wij(d)Xj

∑j Xj
in which j 6= i, (4)

where Xj is the weight value for a given feature, and Wij(d) is a symmetric one/zero spatial
weights matrix, with ones for all links defined as being within distance d (or contiguous
municipalities) of a given region i; all other links are zeros. In both cases (LISA, and
Getis and Ord), the feature targets were considered based on the level of vulnerability to
COVID-19 obtained in the previous DRSA step.

4. Results

As previously mentioned, this research was conducted to create a panel of associations
regarding COVID-19 in the northeast region of Brazil. Figure 1 shows the nine federa-
tive units (Brazilian states) that constitute the northeast region (Figure 1b). Each of them
has an administrative government and is composed of municipalities. The capital is the
municipality where the head office of the state government is located. In total, there are
1793 municipalities in the nine states (Figure 1c). This region has approximately 57 million
inhabitants, corresponding to 27.2% of the entire Brazilian population. The climate is
semiarid in most areas, with drastic conditions (drought and rain scarcity) adversely affect-
ing human development, agriculture, and the food industry [42,43]. Compared to other
Brazilian regions, the northeast does not perform well in the socioeconomic index, unem-
ployment, child mortality, and per-capita income, although industries have experienced
significant growth in some areas [44]. Moreover, with regard to health infrastructures, its
rural zones have a scarcity of medical supplies.

To conduct the experiments, we established four groups based on the selected features
(outlined in Table 2), defining categories that involve social, economic, territorial, and
demographic aspects. These groups were used to obtain and compare the results. Thereby,
we referred to these groups as follows: Group I, Group II, Group III, and Group IV. The
groups also include COVID-19 registries (daily case reports) as criteria to verify their impact
on the quality of the extracted knowledge of the model, i.e., if/when the decision rules
relay this information to obtain vulnerability classification. With regard to the period
outbreak, three different days were chosen with peaks of COVID-19 cases registered in the
Brazilian northeast counties. The variables created (Area 1, Area 2, Den 1 and Den 2) were
included in all groups too due to the importance of characterizing the geographic spaces of
the counties. The groups were defined as follows: Group I was considered as the “group
control” (all variables). The other groups were divided by similar characteristics. Table 3
shows the features of each group, whereas Table 4 presents the descriptive data.
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Figure 1. Study area: (a) Brazil borders; (b) The 26 Brazilian federative units and the federal capital,
highlighting (red color) units that belong to the northeast region of Brazil; and (c) 1793 municipalities
in the nine northeastern states.

Table 3. Groups and variables.

Variable Group I Group II Group III Group IV

Pop_estim ** ** **

Peop_ocup ** ** **

Income_m ** **

Pop_ocu ** ** **

Income_prop ** **

Esco_1 **

Esco_2 **

MHDI ** ** ** **

GPD ** ** ** **

Schollar_prop **

SUS **

Sewage **

Area ** ** ** **

Area1 ** ** ** **

Area2 ** ** ** **

Den ** ** ** **

Den1 ** ** ** **

Den2 ** ** ** **

Day_1 (06/24)—2020 ** ** ** **

Day_2 (06/27)—2020 ** ** ** **

Day_3 (06/30)—2020 ** ** ** **
** criteria used for each group.
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The evolution of COVID-19 records followed the expected trend, with rapid spread
in urban centers and later, contagion in small and medium municipalities. Small munic-
ipalities have few medical resources, and any sudden new cases alerted the local health
service capacities. On the other hand, small cities also have low population densities, which
probably reduced the chances of contagion.

Over the months that were analyzed, we observed spatial statistical significance among
the COVID-19 records in the northeast region (Table 5). On the first three dates (15 March,
30 March, and 15 April 2020), no statistical significance was observed among the records
assigned by Global Moran’s I as random events. Nonetheless, from 30 April, significance
was observed for the cluster pattern. This finding is explained by the high numbers of
records for urban centers and around cities.

Table 4. Descriptive features.

Variable Mean Min Max SD

Pop_estim 31,813 1246 2,872,347 119,072

Peop_ocup 5295 59 849,711 37,919

Income_m 1.80 0.80 6.50 0.37

Pop_ocu 8.94% 1.00% 79.40% 5.59%

Income_prop 51.54% 22.70% 64.10% 4.84%

Esco_1 28 1 1173 53

Esco_2 4 0 307 14

MHDI 0.591 0.443 0.788 0.043

GPD 11,207.52 3285.04 253,895.58 11,181.27

Schollar_prop 97% 81% 100% 2%

SUS 12 1 367 19

Sewage 25.37% 0.00% 97.30% 22.09%

Area 865.20 18.61 15,634.33 1355.32

Area1 12.73 0.18 421.88 29.89

Area2 6.66 0.06 293.36 17.67

Den 98.27 0.84 9503.20 456.85

Den1 3681.23 202.18 39,399.11 2930.72

Den2 6357.30 281.86 122,002.24 6861.10
Max: maximum value; Min: minimum value; SD: standard deviation.

Table 5. Spatial autocorrelation observed for several days.

Date (DD-MM) 15-03 30-03 15-04 30-04 15-05 30-05 15-06 30-06

Moran’s index 0.000152 0.000012 0.000470 0.001537 0.002523 0.004999 0.006344 0.006194

z-score 0.583468 0.649571 0.954859 1.726499 2.568552 4.373238 5.183223 4.957213

p-value 0.559579 0.515969 0.339649 0.084258 0.010212 0.000012 0.000 0.0000

Model Random Random Random Clustered Clustered Clustered Clustered Clustered

The groups selected for the experiments were then analyzed for correlations of features
and reference days (30 June 2020) (Table 6), obtaining a highly explanatory statistical power
(adjusted R2 above 90%), except for Group IV. The results in terms of AIC are close with a
significant correlation (p-value). Thus, the proposal to use the four groups as separate sets
of attributes to evaluate reference objects (municipalities) is attractive and allows for the
following step of using DRSA to explore decision rules.
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In the third step, we applied DRSA aiming to explore its resulting decision rules. For
each group, we retried the reference object and established the decision class based on
30 June 2020 as the reference day. The records were observed in groups of 100 thousand
inhabitants, which were divided according to Jenks natural breaks algorithm. This method
helped to classify the feature target (COVID-19 cases) based on the best sorting arrangement,
aiming to reduce variance inside each class and maximize the variance between classes.
Afterward, we retried the decision-maker procedure to select the remaining decision classes.
Figure 2 represents accumulated data of COVID-19 confirmed cases until 30 June 2020,
sorted by natural breaks. These results were used to build the reference objects.
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Table 6. Statistical correlation and OLS used on the groups.

Group
OLS

Adjusted R2 AICc p-Value

Group I 0.95 26,186.30 0.0000
Group II 0.93 26,366.51 0.0000
Group III 0.93 26,450.05 0.0000
Group IV 0.051 28,178.83 0.0000

A randomized procedure was performed to select reference objects, and each object
was assigned a decision class: Cl =

{
ClLow > ClModerate > ClHigh

}
. The decision classes

represent the three levels of vulnerability related to COVID-19. With the support of the
results from Figure 2, a holistic analysis was performed to assign each selected reference
object for all groups (I, II, III, and IV). The procedure allows the extraction of strong
information about which criteria may represent the knowledge for classification, providing
decision rules (If . . . Then . . . Cl).

Furthermore, for all groups, the same sets of objects were considered, varying only
the attributes for each group. There were 18 objects for the high vulnerability level, 47 for
the moderate vulnerability level, and 116 for the low vulnerability level, which results in a
total of 181 objects to gather decision rules. For all groups, the following DRSA parameters
were analyzed: quality of approximation, reducts, and core (Table 7).

Table 7. Parameters generated via DRSA in relation to reference objects.

Group Reducts Core Quality

Group I 4 Esco, sewage, area, den 0.989

Group II 4 Pro_ocup, MHDI, area, den, den1, c3006 0.901

Group III 7 Income_m, MHDI, area, den, den1, c3006 0.917

Group IV 1 Peop_ocup, MHDI, GPD, area, den, den1, den2, c2406, c3006 0.901

The exception among the groups was Group IV, for which only one reduct was ob-
tained. By comparison, at least four reducts were obtained for each of the other groups.
This result indicates that for Group IV, information can be observed based only on at-
tributes of that reduct. With regard to the cores, the intersections between the reducts
were attributed to population (density), economic aspects (gross domestic product and
income), and municipality area. In contrast with Group I, the COVID-19 registries were
often observed for Groups II, III, and IV. All groups had qualities of approximation that
were above 0.90, although the consistency of representation was maintained.

A separate analysis in groups (Group I to IV) is justified due to the advantage of reveal-
ing different sets of attributes and different features, with good quality of approximation.
Having different set of features allows the generation of and, somehow, the comparison of
decision rules and patterns of vulnerability that is useful for decision making. Furthermore,
holistic decision-making models require prior knowledge (preferential knowledge) that
might be difficult to assess when there are a high number of attributes. Studies of biases in
decision making show that when there is too much information, the human mind tends
to focus on a subset of information to make judgments [45]. Although the DRSA is able
to reduce the number of attributes, it is desirable to explore different subsets of attributes
leading to similar results.

Subsequently, the decision rules that were obtained served to classify the entire set of
municipalities and compare the results obtained with each group of criteria. According to
experiments using DRSA, the vulnerability levels in terms of all Group I attributes could
be represented by 62 decision rules and in Group II by 58, whereas Groups III and IV
each produced 56 rules. The difference in the number of decision rules among groups
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was a consequence of being proportional to the quantity of both reference objects and
attributes used. With regard to the types of union approximation class (At Least and At
Most), the ones that prevailed were At Most 1, At Most 2, and At Least 3 also because of
the number of reference objects for each class. Table 8 presents a sample of the decision
rules for each group.

Table 8. Sample of decision rules obtained from DRSA.

Group Rules

Group I

IF pop_estim >= 42,130.0 AND esco <= 0.926 THEN At Least 3
IF sewage <= 0.377 AND area >= 567.78 AND den >= 68.225369 THEN At Least 3
IF Income_m >= 1.7 AND c3006 >= 8.0 THEN At Least 2
IF pop_estim >= 28,933 AND esco <= 0.959 THEN At Least 2
IF ocup_mei >= 0.539 AND den <= 17.578066 THEN At Most 1
IF Peop_ocup <= 463.0 AND den <= 30.431274 THEN At Most 1
IF mhdi <= 0.548 AND c2706 <= 9 THEN At Most 2
IF Peop_ocup <= 862.0 AND c2706 <= 0 THEN At Most 2

C: 90.05
I: 9.95

Group II

IF area >= 270.752 AND c2706 >= 50.0 AND c3006 >= 20.0 THEN At Least 3
IF area >= 842.106 AND c3006 >= 22 THEN At Least 3
IF den >= 124.146236 AND den2 <= 10,760.08 THEN At Least 2
IF pop_estim >= 28,933.0 AND mhdi >= 0.592 AND den >= 88.545652 THEN At Least
2
IF pib <= 51,697.69 AND den <= 13.66 THEN At Most 1
IF pro_ocup <= 0.054 AND c2706 <= 2 THEN At Most 1
IF mhdi <= 0.534 THEN At Most 2
IF area2 <= 1.88 AND c3006 <= 7 THEN At Most 2

C: 90.05
I: 9.95

Group III

IF area >= 270.752 AND c2706 >= 50 AND c3006 >= 20 THEN At Least 3
IF area >= 755.59 AND c2706 >= 37 THEN At Least 3
IF pib >= 25,892.88 AND den >= 19.24 THEN At Least 2
IF area2 >= 4.24 AND c2406 >= 7 THEN At Least 2
IF Peop_ocup <= 421 AND pib <= 7434.96 THEN At Most 1
IF Income_m <= 1.7 AND den <= 19.593458 AND den2 >= 16,998.68 THEN At Most 1
IF den <= 17.57 AND c2406 <= 14 THEN At Most 2
IF mhdi <= 0.548 AND c2706 <= 9 THEN At Most 2

C: 88.40
I: 11.60

Group IV

IF area >= 270.752 AND c2706 >= 50 AND c3006 >= 20 THEN At Least 3
IF area >= 385.583 AND c2406 >= 16 AND c3006 >= 24 THEN At Least 3
IF den1 <= 493.20 THEN At Least 2
IF den >= 124.14 AND den2 <= 10,760.08 THEN At Least 2
IF mhdi <= 0.534 AND pib <= 6811.66 THEN At Most 1
IF pib <= 11,566.03 AND den <= 19.59 AND den2 >= 16,998.68 THEN At Most 1
IF den1 >= 7400.67 THEN At Most 2
IF area2 <= 2.17 AND den <= 73.11 AND c3006 <= 2 THEN At Most 2

C: 89.50
I: 10.50

Figure 3 shows the results of the classification of all municipalities in terms of vul-
nerability to COVID-19 cases, considering the decision rules from DRSA. Each map is
associated with the reference objects groups that were used. Strong similarities between
the groups were verified, and, in all of them, there was a high prevalence of the low and
moderate vulnerability levels, besides a few distinguished the high vulnerability level
areas. In general, the results remain similar even when changes in attributes were applied.
There were small variations within groups in municipalities between low and moderate
vulnerability classes, whereas, between groups, few municipalities were considered to be
of high vulnerability in some groups and of moderate vulnerability in others. We observed
that almost all coastal zones were revealed to be moderately vulnerable to COVID-19,
where the populations are higher than in the inside zones.

In relation to the COVID-19 cases registered on the three days used as input in the
model, our findings confirm such features contribute to obtaining satisfactory results. Ob-
serving the results on the four groups (Figure 3) and density accumulated cases (Figure 2),
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there is a pattern around the distribution at the classes. There are concentrations of one of
type of classification pattern on the littoral zone (moderate vulnerability), and on the inside
of the map, there are other pattern classification types (low vulnerability).
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The fourth step of modelling consisted of exploring the spatial clusters sourced from
DRSA, applying two techniques widely discussed in the literature: LISA, and Getis and
Ord (Gi∗ ). Both methods locate the cluster formations taking into account the feature target,
which was the vulnerability classification measures obtained from DRSA. Figures 4 and 5
present the results, distinguishing the nature of each cluster. The purpose of the clusters is
to identify the concentration of decision classes from Figure 3.

The LISA approach identified four types of regions (clusters and outliers). HH clusters
were most evident for coastal zones, where municipalities have similar classifications.
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On the other hand, HL municipalities indicated moderate and high vulnerability levels,
involving dissimilarities among the alternatives. Finally, LH and LL were less highlighted
than the other clusters. Meanwhile, analysis using Getis and Ord (Gi∗ ) resulted in other
cluster formations but had similar results compared to those of LISA. The results show
more concentrated clusters (hot and cold formations). An analogous zone of similar
classifications was also revealed for the coastal regions.
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The validation procedure consisted of an exploration of a new analysis to identify
vulnerable places for COVID-19 at the final second outbreak phase (2021). For the new
analysis, a change was implemented: registered COVID-19 cases were used as input to
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create decision rules whilst maintaining the other criteria (Table 9). The objective was to
check if it was possible to accurately identify vulnerable areas by only uploading data from
new, registered COVID-19 cases. The analysis was again performed for the four groups
considered, and the days chosen were: 22 June, 24 June, and 26 June. For the northeast
Brazilian region, 69,038 cases were registered on 22 June, and 17,051 on 24 June. On
24 June, there were 11,499 COVID-19 cases officially confirmed. To provide the new results,
we included 180 reference objects to perform the second analysis, excluding the registers
applied on the 2020 analysis. The reference objects were also changed to verify the quality
of information used. The quality of reference objects presented small fluctuations when
observed between the groups. In relation to the number of “Reducts” and “Core” obtained
from the DRSA approach, the values were the same for all. Notably, the quality decreased
for all groups compared to the reference objects used in 2020. However, with this same
parameter above 70%, we can keep the objects with existing evidence and continue to use
the data to obtain the decision rules.

Table 9. Parameters generated via DRSA in relation to reference objects in 2021.

Group Reducts Core Quality

Group I 1 Income_m, pro_ocup, ocup_mei, MHDI, pib, esco, sewage, area,
den, den1, den2, c2206, c2606 0.872

Group II 1 Pro_ocup, odhm, pib, area, den, den1, den2, c2206, c2406, c2606 0.739

Group III 1 Income_m, prop_ocup, ocup_mei, MHDI, pib, area, den, den1,
den2, c2206, c2406, c2606 0.789

Group IV 1 Mhdi, pib, area, den, den1, den2, c2206, c2406, c2606 0.722

The vulnerable municipalities identified on the second analysis revealed more “High
vulnerability class” in comparison with the 2020 results (Figure 6). Considering the sum
for the three days, in 2021, a total of 97,588 cases occurred, while, in 2020, there were 41,318
cases. If we compare Figure 3 to Figure 6, 2020 has more municipalities sorted as “Low”,
while, in 2021, there were more municipalities allocated to the moderate and high classes.
It can be seen that only updating the cases registered is necessary to reveal the vulnerable
municipalities. In relation to the groups in 2021, the results achieved for Group I show more
municipalities allocated to the low vulnerable classification than other groups. The Group
II and Group III have similarities in classes. In Group IV, their contiguous surfaces are
classified as low, moderate, and high vulnerabilities. We highlight that the municipalities
that are more vulnerable (high) are closer between Groups II, III, and IV than the results
shown for Group I. Table 10 summarizes both results.

Table 10. Distribution of municipalities for the vulnerable classes for groups observed in
2020 and 2021.

Group I Group II Group III Group IV

Year 2020 2021 2020 2021 2020 2021 2020 2021

High 22 209 15 104 11 109 16 100

Moderate 461 549 554 1532 561 1537 578 1149

Low 1311 1035 1225 544 1222 147 1200 544
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Figures 7 and 8 show the distribution of the classification with regards to the spa-
tial analysis clusters used (LISA, and Getis and Ord). According to LISA analysis, the
concentration of high-high municipalities were associated in the same positions as the
municipalities classified as showing a high vulnerability. We observed that, for Group I,
there were more clusters formed than the other groups due the variability of information.
In addition, the high concentration clusters presented as high-high in the northeast sector
of the figure contrast with municipalities allocated as low-high. Moreover, there is an
important detail present in the results obtained from the LISA analysis: all groups (I, II,
III, and IV) have the presence of municipalities allocated as low-low which means more
registered cases concentrated in few places. In fact, in 2020, the ten first municipalities with
more cases represented 44% of the cases of the total registers in the northeast Brazilian
region, while, in 2021, the ten top municipalities represented 53% of total registers. The
results achieved by Getis and Ord show similar concentration when compared to the LISA
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results but include information related to the cold clusters, allowing a deep analysis of the
less vulnerable (low class) of municipalities. Finally, in both results, in the Rio Grande do
Norte (RN) state, there are concentrated regions marked as high-high (LISA) and hot spots
with 99% significance (Getis and Ord). On the three days analyzed, this state represented
59% of all the cases registered.
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We also compared the criteria resulting from assignments given by the application
of decision rules induced on reference objects and the number of rules created. Table 11
describes the criteria used to create the decision rules. It is fruitful to note that the criteria
considered were essential to identify vulnerable places, as well as employing registered
cases as criteria. Concerning the criteria used to perform vulnerability classification, we
confirm that the model is suitable to employ several related factors: social, economic, and
demographics. In addition, aspects related to population, density population, and income
have a deep impact because they are associated with the movement of people in urbans
areas. Indirectly, other aspects (GPD and sewage) could be used to support decisions.
Therefore, based on both results, we judge that the methodology for COVID-19 used here
has great potential to help policies planners to make public decisions.



ISPRS Int. J. Geo-Inf. 2022, 11, 449 20 of 23

Table 11. Criteria used on decision rules for groups in 2020 and 2021.

Groups 2020 2021

Group I
#62
Den, den1, den2, pop_ocup, GPD, MHDI, sewage,
Schollar_prop, Esco_1, area, June days 2020 (24; 27; 30)

#96
MHDI, den1, den2, income_m, peop_ocup, area,
sewage, June days 2021 (22; 24; 26)

Group II
#58
Den, den1, MHDI, area, GPD, income_prop,
pop_estim, June days 2020 (24; 27; 30)

#50
Area, pop_ocup, MHDI, GPD, den, den1, den2, June
days 2021 (22; 24)

Group III
#56
Area, den1, den2, MHDI, peop_ocup, MDHI, June
days 2020 (24; 27)

#52
Area, income_m, MHDI, den2, income_prop, GPD,
income_m, June days 2021 (22; 24)

Group IV
#56
Sewage, income_m, area, pop_ocup, den, den2, GPD,
income_prop, MHDI, June days 2020 (24; 27)

#47
Area, den1, den2, GPD, MHDI, June days 2021 (24; 22)

The outbreak of the COVID-19 pandemic has spurred the emergence of a broad field
of research about the virus and the factors associated with its spread. The study presented
in [14] showed similar patterns assigned with high density counties (the virus spread faster
than small counties). However, large cities also must not be seen as at risk to maximum
exposure COVID-19, highlighting that, in these cities, there are more facilities available [15].
For instance, Brazil has presented a gap in hospital units available in small cities, which
has led to patients being transported to the capital of the states [16]. Moreover, our study
contributes to the identification of characteristics such as population density, income, and
the size of counties associated with the measure of the vulnerability level. As a consequence,
such aspects must be considered when making decisions related to the prevention of the
disease and the mitigation of registered cases.

5. Discussion and Final Remarks

We introduce a model capable of revealing the main attributes and conditions that
characterize municipalities in relation to levels of vulnerability. The model is able to identify
the main municipalities vulnerable to COVID-19, integrating several methods based on
spatial analysis and multiple-criteria decision making. Northeast Brazil was the region
examined and on which the model was demonstrated. Firstly, a set of attributes was selected
for evaluation along with daily recorded cases. Spatial analysis techniques and DRSA were
then used for data treatment and the measurement of vulnerability, respectively. Afterward,
two expressive cluster analyses were performed, showing several hot spot areas based on
the DRSA results. To create a comprehensive model, we applied new reference objects to
June 2021 to check the accuracy the model, considering the increase in occurrences.

The DRSA method is a holistic approach that maintains the quality of information,
taking into account essential attributes. It also returns decision rules which helped to reveal
distinctive patterns among municipalities that make them alike concerning the spread of
COVID-19. Accordingly, the methodology was particularly useful for exploring the data in
our study. The classification (measure of vulnerability) is the result of the observation of four
main aspects: social, economic, demographic, and territorial. We conclude that population,
gross domestic product, income, and population density are important characteristics for
identifying which cities may require further investigation. In addition, these same variables
contribute to classification into moderate and low vulnerability levels. On the other hand,
daily COVID-19 records, population density, and territorial area are the most important for
the entire classification. Nevertheless, the DRSA method based on four distinct groups of
attributes is able to evaluate both the small and large cities in the northeast region of Brazil.

In relation to cluster analysis, a search for places with similar vulnerability levels was
performed. As a consequence, it simplified the comprehension about which areas require
the same (or even opposite) harshness of administrative measures to prevent the spread of
the disease. Moreover, the findings of our study are similar to those of other studies, since
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we demonstrated that urban centers have a greater propensity to disseminate the virus
and are more affected by it. However, this information is not limited to large urban zones;
rural zones were also evaluated. The findings of this research may support several public
policies on health assistance to alleviate the adverse consequences of COVID-19.

In a pandemic context, the findings here serve to tell the trajectory of the COVID-19
cases in urban and rural places beyond the variables associated with the cases registered.
To achieve the answers across maps in [46], visualizations bring several benefits to the
understanding of the effect on society and economy, for example. Regarding the spread
and dissemination of the virus, our study revealed a strong concentration of cases in
metropolitan areas around the administration of capital states, with similar results found
in [14,31]. It does not occur as a random event, but the places are connected to each
other [47].

The variables used here (demographic density, area, income, and daily cases) give
crucial insights to aspects about spatial analysis (OLS), and the results from DRSA might
also be used by spatial analysis (LISA, and Getis and Ord hot spot). Our results align with
similar results that used social and inequality variables with regards to COVID-19 and
show how these variables achieve important results related to spatial inferences [25,26,30].
In addition, the spatial dimension using a large space (the Brazilian northeast) reveals how
small towns even classified as showing high vulnerability or moderate vulnerability are
isolated precisely because they are not connected to associated urban spaces.

Finally, the contribution of this study consists in associating several factors (socioe-
conomic, demographic, and territorial) with COVID-19, specifically in Brazilian regions.
The proposed method would be useful for performing vulnerability evaluation and for
guiding decision makers. However, we also have to address some limitations, such as the
consideration of update data and other features regarding the municipalities for further
analysis, which may be explored in future research.
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