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Abstract: The classification of maritime boats and ship targets using optical satellite imagery is a chal-
lenging subject. This research introduces a unique and rich ship dataset named Very High-Resolution
Ships (VHRShips) from Google Earth images, which includes diverse ship types, different ship sizes,
several inshore locations, and different data acquisition conditions to improve the scalability of ship
detection and mapping applications. In addition, we proposed a deep learning-based multi-stage
approach for ship type classification from very high resolution satellite images to evaluate the per-
formance of the VHRShips dataset. Our “Hierarchical Design (HieD)” approach is an end-to-end
structure that allows the optimization of the Detection, Localization, Recognition, and Identification
(DLRI) stages, independently. We focused on sixteen parent ship classes for the DLR stages, and
specifically considered eight child classes of the navy parent class at the identification stage. We
used the Xception network in the DRI stages and implemented YOLOv4 for the localization stage.
Individual optimization of each stage resulted in F1 scores of 99.17%, 94.20%, 84.08%, and 82.13% for
detection, recognition, localization, and identification, respectively. The end-to-end implementation
of our proposed approach resulted in F1 scores of 99.17%, 93.43%, 74.00%, and 57.05% for the same
order. In comparison, end-to-end YOLOv4 yielded F1-scores of 99.17%, 86.59%, 68.87%, and 56.28%
for DLRI, respectively. We achieved higher performance with HieD than YOLOv4 for localization,
recognition, and identification stages, indicating the usability of the VHRShips dataset in different
detection and classification models. In addition, the proposed method and dataset can be used
as a benchmark for further studies to apply deep learning on large-scale geodata to boost GeoAI
applications in the maritime domain.

Keywords: deep learning; optical satellite image; ship classification; end-to-end approach; dataset

1. Introduction

Target classification from optical satellite images is an essential task in remote sensing,
which is implemented in various applications to identify geospatial objects such as air-
planes, buildings, and ships [1–3]. Optical satellite images have been extensively used in the
maritime domain owing to satellites’ capabilities to cover large areas very rapidly, provide
synoptic views and high-resolution spatial details, and obtain multi-spectral information.
These capabilities are used to produce valuable information for marine applications such
as fishery [4], water clarity [5], shoreline extraction [6], and habitat mapping [7]. Optical
satellite images are effectively used for patrolling the sea against illegal activities and
monitoring maritime traffic [8]. Moreover, their broad coverage in near real-time with high
spatial details makes optical satellites feasible for defense applications, such as automated
detection of different targets [9,10].

Parallel to the progress in optical satellite technology and image processing algorithms,
the outputs of the studies have evolved from detection through further stages [11,12].
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Researchers have focused on the methods and algorithm development for monitoring the
oceans since the first Landsat satellite launched in 1972. McDonnell and Lewis performed
one of the preliminary studies on vessel detection using optical satellite imagery [13]. In
early studies, defining a vessel from a satellite image was expressed as a classification.
However, the classification of ships requires further stages like Detection, Localization,
Recognition, and Identification (DLRI). Each stage has to be studied in detail according to
the application requirements.

Previous research focused on different aspects of the ship detection and classification
problem. Researchers applied different levels of preprocessing methodologies in previous
studies, such as background and foreground segmentation (sea, lake, or river where the
ship is located) using the Geographic Information System [14], Digital Elevation data [2],
statistical methods [15], and deep learning methods [16]. In addition, there are studies on
eliminating effects like clouds and haze [14] or minimizing the impacts of ocean waves [17].
While some studies aimed to detect ships in the open ocean [18] or inshore [2,19–21], some
studies went further and classified the ships according to different levels [22,23].

The dataset’s quality and extent (volume) are among the most critical factors in deter-
mining the success of various studies. Some researchers used open-source datasets (Table 1),
and some generated custom datasets [19,22,24] for their implementations. Furthermore,
some datasets include satellite images obtained from various sensors to differentiate the
objects in different levels of detail. Two previous research studies used Sentinel-2 images
with 10 m spatial resolution, which are open-source data but contain some limitations in
high spatial detail levels [25,26]. On the other hand, some of the studies used very high
resolution satellite images with a spatial resolution of 1 m or better [27,28]. Moreover, the
spectral bands used in different applications vary depending on the sensor characteristics.
While many studies concentrate on Red-Green-Blue bands, or their pan-sharpened versions,
some other studies benefited from NIR [29], SWIR [30], and thermal bands [31].

Different investigations have been conducted on various ship sizes regarding de-
tectable object sizes. According to Li et al., even though some studies define the minimum
size of the ship to be detected as between 2 and 150 m, most studies don’t specify any
limits [10].

Aside from these considerations, the theoretical approaches for DLRI stages have
evolved. McDonnell and Lewis employed fundamental statistical image processing meth-
ods in one of the first investigations in this area [13]. Today, numerous studies on different
levels of the ship DLRI process are based on optical satellite images. In early studies, the
outputs were limited to ship detection from the image without localization information
due to the low image resolution and image processing power [11]. Parallel to the advances
in optical satellite sensors, computational hardware, and software, classification of sin-
gle ship images, localization of ships from the images, and multi-level classification like
recognition and identification of ships have been performed using the threshold-based,
salient-based, shape-and-texture-based, statistical, transform domain, anomaly detection,
computer vision, or deep learning-based methods [12]. As is also the case in many other
engineering disciplines, deep learning-based approaches are being increasingly used in
the DLRI process of ships, especially with the success of Convolutional Neural Network
(CNN) structures.

Paper Contributions

This study focused on the following requirements regarding dataset and methodology,
which were not handled by the previous studies in detail.

• A database with a hierarchical level of classes which makes it suitable for all DLRI stages,
• A database that consists of a large variety of conditions in terms of geography, weather,

and spatial arrangement,
• A method that follows all DLRI stages to present a proper remote sensing solution,
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• A process that eliminates negative examples (images without ship), which are the
largest percentage of images used in the majority of applications, before getting
deeper stages,

• A method that forms a suitable base to adopt various deep learning networks and
enables end-to-end and repeatable evaluation metrics which exemplify real scenarios.

This research introduces a unique and rich ship dataset named Very High-Resolution
Ships (VHRShips). It proposes a unique deep learning-based Hierarchical Design (HieD)
approach for multiscale and multipurpose ship detection and mapping purposes. The
VHRShips dataset is specifically generated using Google Earth images obtained for different
geographical regions and under various atmospheric conditions. Although we selected
some images from offshore locations, most of the images in VHRShips contain complex
inshore parts. Additionally, the dataset has an extensive range of ship types, including
various maritime vessels and navy ship types. VHRShips enables the recognition of sixteen
parent classes and a customized identification of navy ship classes for the specified eight
categories matching the requirements of various maritime applications on different scales.

The proposed HieD is a multi-stage approach that follows a hierarchy of different
stages. The end of each stage is tied to the beginning of the next stage, and all stages have
a self-training and self-optimization process. This way, we get the flexibility to use the
independent methods for each stage of DLRI, which avoids the loss function optimization
for multi-stages. We also compared our proposed HieD approach with the commonly used
YOLOv4 model to evaluate the performance of the hierarchical methodology. This research
aims to contribute ship detection sub-domain of the maritime re-search field in these aspects:
(1) providing a benchmark dataset consisting of large ge-odata, (2) introducing a novel deep
learning approach to boost processing and analy-sis of object detection, and (3) automated
extraction of 2D geo-information from large satellite image-based geospatial dataset.

2. Related Works

Recent research examined a variety of deep learning algorithms for different stages of
DLRI. Some of these studies are summarized below.

Research by Zhang et al., was one of the initial ship detection studies conducted
with deep learning techniques [27]. They built a cascade structure joining the feature
extraction methods to CNN. The study claimed 99.1% precision for offshore ships and
95.9% for inshore ships. Tang et al., proposed a coarse ship location method by sea/land
segmentation and ship/non-ship classification using deep learning based on wavelet
coefficients [32]. They used 2000 SPOT-5 satellite images with 5 m resolution, and defined
ships, ocean waves, clouds, coastline, and islands as object classes. The accuracy of the
method was 97.58%. This study corresponds to the detection stage of our research. Zou and
Shi developed the Singular Value Decomposition Network (SVDNet), which uses CNN
structure and a SVD algorithm to detect images from optical satellite images [33]. The
results are reasonably good, with a high recall rate. Liu et al., used a CNN-based algorithm
to detect and classify ships among ten classes with a dataset generated from 1200 Google
Earth images [23]. They achieved 99% detection-localization and 92% classification accuracy.
Zhang et al., modified Faster RCNN for ship detection-localization [28]. They reached
precision values between 92.95% and 97.64% according to the different confidence and
intersection over union (IoU) values. Chen et al., used the Deep Residual Dense Network
(DRDN) to detect and classify ships [34]. Their classification stage comprised five different
non-ship (wave, island, landing stage, cloud, black background) and five different ships
(big, medium, small, multiple, with wake) and achieved a 94.21% F1 score. Shi et al., used
the BCCT200 dataset for their ship classification study [35]. Their architecture includes
multi-features extraction, CNN, and softmax layers. In the last part of the method, they
used the decision level fusion approach to vote on five different feature-based branches.
The results of this approach achieved 92.5% average classification accuracy for the four
classes of BCCT-200. Zhuang, Li, and Chen worked specifically on inshore ship detection.
They worked with the structured sparse representation model (SSRM), Google Earth, HRSC
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2016, and DOTA datasets, achieving 87.2% precision and 90.2% recall values [36]. Gao et al.,
emphasized the importance of negative examples in their work and proposed a method
without sea–land segmentation [37]. Feng et al. handled the localization and classification
separately [38]. They connected the location stage output to the classification input, the
same as HieD. Zhang et al., proposed a multi-level ship classification dataset called FGSC-23
and a deep learning-based ship classification model: attribute-guided multi-level enhanced
feature representation network (AMEFRN) [22]. The FGSC-23 dataset consists of 4080
images collected from Google Earth and the Gaofen-1 satellite. However, each image patch
includes only one type of ship class, and the dataset is not designed for ship localization.
Due to the existence of non-ship images, the dataset can be used for detection. The overall
classification accuracy of AMEFRN in FGSC-23 is 93.58% in the grained level (L3). Our HieD
approach and VHRShips dataset are feasible for classification, detection, and localization,
unlike AMEFRN and FGSC-23, which are suitable for classification and detection. Although
there have been many studies on DLRI [11,12,39], there are still plenty of gaps to be filled
in developing a practical ship DLRI application.

3. Materials and Methods
3.1. Background for Ship Dataset

The dataset used strongly influences the accuracy and validity of DLRI studies. The
number of total samples, the variety of the classes, the balance among the classes, the
quality, the originality, the validity, the foreground-background separation format, and the
accessibility of the datasets are the key specifications required for these studies [40].

This research is built explicitly for the DLRI process of ships from optical satellite
images. The main features of the optical satellite images are the number of spectral bands,
the spatial resolution, the incident angle of the sensor, and the radiometric resolution, which
are provided with the original satellite image and metadata file. On the other hand, deep
learning studies require the collection of a large and diverse dataset from satellite images for
target recognition/identification; a process that is time-consuming and expensive. When
using archive data, it is not always possible to obtain satellite images from the inshore and
offshore regions with enough data to represent the ship types. Beyond being ship-specific,
the requirement for an extensive dataset is valid for most geospatial applications where
objects need to be automatically extracted from high-resolution and very high-resolution
optical satellite images. However, such comprehensive datasets are not generally freely
available. Nevertheless, some open-source datasets can be used in DLRI studieswith some
constraints. Detailed information about the most popular open-source ship datasets is
provided in Table 1.

However, to process DLRI in an optical satellite image, the dataset must be suitable
and include the required number of images for the training, validation, and testing of
all DLRI stages defined in this research. Other requirements of an effective dataset are
given below.

• High definition images collected by optical satellites,
• Images with spatial resolution information to ensample a real scenario,
• Image metafile of an existing ship with location and class information,
• Defined recognition and identification levels of each ship in the dataset,
• Images from the inshore and offshore sea,
• Images with rural and urban coasts,
• Images from different locations around the world,
• Some images with clouds and wave clutter to sample a noisy background.

When we focused on the above-indicated requirements, we concluded that the existing
datasets were not eligible for this research.
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Table 1. Open-source ship datasets for DLRI.

Dataset Image Source Application Purpose
Number of Classes

/Number
of Ship Classes

Description
Assessment

VHR-10_dataset_coco
[41]

Optical Satellite
(Google Earth) Object classification 10/1

Ships on the images are
located yet not

classified.

NWPU RESISC45 [42] Optical Satellite Scene classification 45/1
Ships on the images are

located yet not
classified.

DOTA [43] Optical Satellite Object classification 15/1
Ships on the images are

located yet not
classified.

HRSC2016 [23] Optical Satellite
(Google Earth)

Ship
detection-localization &

classification
19/19

Mostly in-shore images.
19 classes in Level 3.
Experimental results

only for Level 2 with 4
classes.

Airbus Sandbox Ship
Detection ML [44] Optical Satellite (SPOT) Ship

detection-localization 1/1
Ships on the images are

located yet not
classified.

xView [45] Optical Satellite
(WorldView-3) Object classification 60/9

8 parent classes with 60
child classes (maritime

vessel parent. class
contains 9 different

child classes).

HRRSD [46]
Optical Satellite

(Google Earth and
Baidu Map)

Object classification 13/1
Ships on the images are

located yet not
classified.

FGSD [47] Optical Satellite
(Google Earth)

Ship
detection-localization &

classification
44/43

Mostly in-shore images.
There are two

classification levels.
Level 1 consists of

submarine, merchant
ship, aircraft carrier
and warship classes.

BCCT200 [48] Optical Satellite Ship classification 4/4

A broad class definition
with only gray-scale
ship images from the

RAPIER system.

MASATI v2 [49] Optical Satellite
(Microsoft Bing Maps)

Ship
detection-localization 1/1

Classes: Ship, multiple
ships, ship with no
coast, ship(s) with

coast, sea with no ship,
and land with no sea.

FGSC-23 [22]
Optical Satellite

(Google Earth and
Gaofen-1 Satellite)

Ship classification 23/23

Three classification
levels are defined

which are ship-non
ship (L1), coarse (L2)

and grain (L3).

3.2. VHR Ship Dataset

Considering the limitations of existing ship datasets, we generated a new dataset called
Very High-Resolution Ships (VHRShips) [50] by using Google Earth images. VHRShips
contains 6312 images from 52 locations collected between 26 June 2005 and 1 February 2021.
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The VHRShips dataset includes 1000 images without a ship and 5312 images with single or
multiple ships.

While forming the VHRShips dataset, the zoom scale of all images was kept near-
identical by using Google Earth Professional software (Google Inc., Mountain View, CA,
USA, version 7.3.4.8642)’s “eye altitude level adjustment” feature. All images were col-
lected at 500 m eye altitude level and in the high-definition spatial resolution format
(720 × 1280 pixels). Through this effort, all images in VHRShips artificially have the same
spatial resolution information, corresponding to 43 cm per pixel sampling. Some images
with higher or lower spatial resolution were downscaled or upscaled, respectively.

3.3. Class Definitions

The definition of each DLRI stage used in this research is justified by considering the
STANAG 3769 “minimum resolved object sizes and scales for imagery interpretation” as
a reference [51]. After reinterpreting these definitions according to the purposes of this
research and adding a new definition for localization, the DLRI stages can be described
as follows:

• Detection: The discovery of the ship’s existence (s) in the optical satellite image.
• Localization: Determination of the ship’s precise location (s) in the given optical

satellite image.
• Recognition: Defining the parent class of each image among the civilian and navy

ship groups.
• Identification: Defining the precise child class of each navy ship.

The parent ship classes were initially determined by Lloyd’s Register ship classi-
fication [52] and Jane’s Fighting Ship classification [53]. We re-arranged the classes of
VHRShips after analyzing the obtained satellite images and ship representations. Accord-
ing to the class definitions, the VHRShips dataset includes 11,179 ships in 24 parent and
11 child ship categories, which are given in Tables 2 and 3. The parent classes contain one
navy and 23 civilian ship class definitions, and stand for the recognition level classification.
On the other hand, the child classes detailed 11 navy ship classes of the navy parent class,
representing the identification level classification.

VHRShips is a diverse and comprehensive dataset aiming to represent various real-life
conditions. It includes complex backgrounds such as urban, civilian, navy shores, bridges,
breakwaters, forests, canals, small and big islands/cliffs, and industrial zones. The dataset
also comprises images with different ocean spectral properties, an advantage of worldwide
image selection strategy. Some images contain atmospheric disturbances such as fog, haze,
or clouds. Moreover, VHRShips includes some images of rough sea conditions and some
images of ship wakes. These properties make it challenging to obtain successful results for
all of the DLRI stages. Appendix A Table A1 demonstrates the geographic locations of the
collected images used to create this dataset.

Table 2. VHRShips dataset specifications.

Property Value/Description

Number of images 6312
Number of images with ship(s) 5312
Number of images without ship 1000

No. of ships 11,179
No. of classes 24 parent, 11 child

Image spectral channel red-green-blue
Image spatial resolution 1280 × 720

Image source Google Earth Professional
Bounding box (bBox) type Horizontal-rectangle

bBox statistics
(min–mean–max)

Length: 7–183–991
Width: 6–47–428

bBox area: 42–13,640–282,226
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Table 3. VHRShips dataset class distribution.

Class Distribution-Number of Ships

Parent classes (23 civilian classes and 1 navy class) and non-ship images

Lpg: 33 drill: 33 floatingDock: 51
Ferry: 99 Roro: 102 Offshore: 122

Passenger: 143 Dredging: 194 bargePontoon: 714
dredgerReclamation: 268 Coaster: 344 Undefined: 417

smallPassenger: 419 smallBoat: 891 Tug: 846
Yacht: 1581 Fishing: 37 Container: 580

oilTanker: 594 Tanker: 777 generalCargo: 655
bulkCarrier: 677 oreCarrier: 771 Navy: 831
nonShip: 1000

Child classes (navy):

Other: 27 Aircraft: 35 Landing: 34
coastGuard: 40 Submarine: 50 Cruiser: 68

Frigate: 71 patrolForce: 101 Destroyer: 90
serviceCraft: 151 Auxilary: 164

After conducting initial experiments, we re-arranged the original dataset to minimize
the confusion of some very similar ship classes. After this modification, this research
employed the DLRI process with sixteen parent ship classes for the recognition-level
classification, and eight child navy classes for the identification-level classification. This
specified dataset is generated from the original dataset by performing a re-group process,
which is detailed below:

• dredging and bargePontoon classes are grouped into bargePontoon (representing the
steady platforms),

• smallPassenger, smallBoat, tug, yacht, and fishing classes are grouped into smallBoat
(small size ships),

• oilTanker and tanker classes are grouped into tanker (common tanker group),
• generalCargo, bulkCarrier, and oreCarrier are grouped into generalCargo (cargo ships),
• cruiser, frigate, patrolForce, and destroyer are grouped into destroyer (combat navy

ship group).

Some image examples from VHRShips, which are; with/without ships, clear/noisy,
simple/complex, with/without land background, with calm/rough sea conditions, and
with urban/rural background, are given in Appendix B Figures A1–A6.

3.4. Hardware and Software Configuration

This research does not include any computational performance analysis since it is
research-oriented. Therefore, we used currently available mid-range hardware. The in-
formation related to hardware, software, and computing environments is provided in
Table 4.

Table 4. The hardware and software used in the study.

Hardware Parameters

Parameter Value/Type

Processor Intel Core i7-6700 CPU 3.4 GHz
RAM 32 GB

System 64 bit Windows 10
GPU Name NVIDIA GeForce GTX 1060 3 GB

GPU Compute Capability 6.1

GPU Total Memory 3.22 GB (2.5 GB available for computing)
1152 CUDA cores 128 bit
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Table 4. Cont.

Software Parameters

Software Name MATLAB 2021a Academic Version
Google Colaboratory

Software Libraries MATLAB Computer Vision Toolbox 10.0
MATLAB GPU Coder Support Package

MATLAB Parallel Computing Toolbox 7.4
MATLAB Deep Learning Toolbox 14.2

MATLAB Embedded Coder 7.6
MATLAB Coder 5.2

MATLAB Image Processing Toolbox 11.3
CUDA 10.1
cuDNN 9.0

3.5. Methodology

The proposed HieD approach is a multi-stage learning structure used for the DLRI
process of the ships in optical satellite images. The main difference between HieD and
the conventional multi-stage structures is its independent but hierarchical stage formation.
HieD provides extensive flexibility in terms of plugging any method to each stage. The
only link between the stages is the contribution of success and failure of different stages to
the next stage. Xception and YOLOv4 were chosen for this study, but the HieD method can
easily be used with other deep learning networks. The schematic representation of HieD is
given in Figure 1, and brief descriptions of the HieD stages are provided below.

3.5.1. Detection

In almost all optical satellite image-based applications, most of the images showing a
total background are labeled as negative examples. Before dealing with the ships in the
positive samples, eliminating the negative examples ensures suitable inputs for further
stages of DLRI. At this point, HieD’s detection stage accomplishes this task by classifying
images as positives (with ship(s)) or negatives (without ship), without regard for the
location of the ship(s). For this binary classification, well known deep learning classifier
networks like Alexnet [54], ResNet 18/50/101 [55], DenseNet 201 [56], GoogLeNet [57],
EfficientNet [58], and Xception [59] were implemented, and the highest overall accuracy
was achieved with the Xception architecture.

Most images have spatial (x and y) plus channel dimensions, which are handled as
a whole by the CNNs, generating a high computational load for the network. Chollet
proposes applying spatial convolution to each channel separately [59]. Additionally, 1 × 1
convolution kernels are used to build the cross-channel correlations to implement the depth-
wise separable convolution. Xception is a follow-up of Inception versions 1, 2, and 3 [60]. It
performs the convolution kernels first and then applies channel-wise spatial convolution.
There is no intermediate ReLU non-linearity layer in the Xception network. The parameters
to tune Xception in HieD are given in Table 5. In brief, the binary classification is applied to
the input images, and only the images labeled as “including ship(s)” pass through the next
stage, localization.
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Table 5. The parameters used in the detection stage.

Parameter Value/Type

Network Xception (MATLAB version 21.1.1)
pre-trained with ImageNet database

Network input 416 × 416 × 3 (original images are resized)
Network output ship/non-ship (binary classification)

Training optimizer Stochastic Gradient Descent with Momentum (SGDM)
Loss function Cross-entropy

Data augmentation Random rotation [0, 360] & random X and Y reflection
Initial learning rate (LR) 0.001

LR drop frequency Every 10 epochs
LR drop factor 0.1

Number of epoch 50
Mini-batch size 8

Detection threshold 0.2

3.5.2. Localization

Some image patches of VHRShips contain multiple or very small ships that cannot be
classified without extracting them from the background. This fact prevents implementing
the classification algorithm directly on the image as a whole. The general approach to
localizing the objects in the images is to divide the image into sub-images and propose the
regions that can contain ship(s). While the sliding window is the most straightforward
and least computationally efficient method to divide the images into sub-images, the
selective search, the regional proposal network, and the anchor-based search are newer
and more efficient approaches. In this research, YOLOv4 is chosen for the localization of
ships [61]. Indeed, the YOLO architecture is an end-to-end solution that covers localization,
detection, and classification. YOLO optimizes the classes and the bounding boxes (bBox)
simultaneously, unlike the proposed HieD. However, in the proposed approach, only the
bBox localization feature of YOLOv4 is used (Figure 2).
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Figure 2. YOLOv4 architecture used for localization.

For the localization stage, YOLOv4 provides a black-box procedure that gets the image
labeled with ship existence and exports the bBox of the ship(s) in [x, y, width, length]
format.

YOLOv4 is trained and tested with different parameters during the optimization of
the localization step. At first, YOLOv4 is trained with one class corresponding to the ship
as the foreground and the rest as the background to force the network to focus on only
the localization regression. However, the best result is achieved with two classes: the
navy and the civilian ships. Additionally, to suppress multiple detections of the same
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ship, Non-Maximum Suppression (NMS) is applied [1]. The rest of the parameters to tune
YOLOv4 for the localization stage are given in Table 6.

Table 6. The parameters used in the localization stage.

Parameter Value/Type

Network YOLO v4 pre-trained with Coco dataset
Backbone Cross Stage Partial Network Darknet-53

Network input 608 × 608 × 3 (original images are resized)
Network output [x, y, width, height] bBox with the score

Loss function Complete Intersection Over Union (CIoU)
Data augmentation Cutmix

Initial learning rate (LR) 0.001
LR decay factor 0.0005

Number of epochs 160
Batch size 64

Mini batch size 2
bBox score threshold 0.4

Ground truth overlap threshold 0.05
Non-maximum suppression threshold 0.75

3.5.3. Recognition

The ship bBox with various sizes was obtained as the output of the localization stage.
However, the input for the classification nets should have a fixed size. The general approach
to overcome this challenge was to resize input images according to the network require-
ments. The VHRShips dataset includes ship bBox ranging between 42 and 283,336 square
pixels in size (Table 2). If the standard image resizing is applied, some ships will be ex-
posed to extreme up-scaling, while others will be exposed to down-scaling. As previously
mentioned, this research aims to perform DLRI stages in the optical satellite images, which
are scaled. Thus, to avoid losing the scale information via down-scaling or up-scaling, it
was decided to keep the extracted ships at their original sizes except for the patches that
include ships bigger than the input sizes of the recognition and the identification stages.
Firstly, we implemented a zero-padding process around the ships to fit all the extracted
images into the input sizes of the classification stages. Afterwards, we determined that the
zero-padded pixels, especially in very small objects, should avoid the weights of networks
when adequately trained. Finally, the Pattern Forming via Mirror Overlaying (PFMO)
approach was proposed to overcome this problem. The PFMO approach follows the steps
indicated below.

• Analyzing the length-width ratios of the bBox and rotating it to ensure that the long
side is horizontally aligned.

• Putting the rotated bBox in the center and overlaying the rotated bBox around the
center bBox until the input size of the stage is filled.

• While overlaying the bBox, the reflection in the X and Y directions is applied to prevent
the unintended gradient forming.

The recognition stage uses the Xception network, the same as the detection and
identification stages. Even though the same network was used in the detection and the
recognition stages, few of the tuning parameters were optimized for the recognition stage,
which is briefly explained as:

• The input is gathered through PFMO with 416 × 416 × 3 patch size.
• The output is the probability of 16 parent classes.
• No threshold is applied at the classification level output, the class with the highest

score is selected.

Visualization of the PFMO process is provided in Figure 3.
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3.5.4. Identification

This stage is an extension of the recognition stage that takes the inputs recognized as
“navy ship” and identifies the child classes of “navy ship” as an output. This stage uses the
same tuning parameters as the recognition stage for the Xception network training, except
for using 8-child classes.

4. Results and Discussion

The results of the study are provided by three approaches. Firstly, the individual
performances of the stages are provided. Secondly, the end-to-end evaluation is presented.
Lastly, the performance comparison between HieD and one of the state-of-art networks,
YOLOv4, is provided. We separated the dataset for training, validation, and testing. While
80% of the VHRShips dataset are kept for the training and validation (64% training and 16%
validation), 20% of the dataset is used for testing. In summary, 4016 images are reserved
for the training, 1021 images are reserved for validation, and 1275 images are reserved for
testing. The images for the training, validation, and testing sets are selected considering
the equal class distribution among the sets. There are 200 non-ship images in the testing
set, and 1075 images with 2176 marked ships, 142 of which are navy ships.

4.1. Individual Stage Performances

The input of each stage is fed with entirely true samples while calculating the indi-
vidual stage performances. For instance, only images featuring ship(s) are used in the
localization stage. Only the navy class ships retrieved with the ground truth bBox are
provided in the identification stage. The individual stage results are summarized in Table 7.

Table 7. The performance of the individual stage (values in percentage).

Stage Accuracy Recall Precision F1-Score

Detection 98.59 99.81 98.53 99.17
Localization 89.04 91.04 97.60 94.20
Recognition 84.31 72.57 1 78.33 1 75.34 1

84.30 2 83.85 2 84.08 2

Identification 80.99 83.67 1 86.63 1 85.12 1

80.98 2 83.31 2 82.13 2

1 Arithmetic mean value; 2 Class sample weighted mean value.



ISPRS Int. J. Geo-Inf. 2022, 11, 445 13 of 25

The results showed that the accuracy decreases according to the level of the stage;
therefore, details increase. The accuracy of the detection phase is very high despite the
complex backgrounds. More importantly, the recall value for the next stage shows promise
for avoiding missing any ship(s) images. The confusion matrix of the detection stage is
given in Table 8.

Table 8. The confusion matrix of the detection stage (values in percentage).

Predicted Class

Non-Ship Ship
Tr

ue
C

la
ss

Non-ship 92 8

Ship 0.2 99.8

The localization stage also presents precise outputs, but the relatively lower recall
value causes some of the ships to be missed, thus resulting in lower accuracy in the
following stages.

The confusion matrix of the recognition stage is given in Table 9. The barge-pontoon,
the container, the general cargo, the LPG, the navy, the roro, the small boat, and the tanker
classes have close accuracy values to the overall accuracy of the recognition stage. On the
other hand, the coaster, the drill, the ferry, the floating dock, the offshore, the passenger,
and the “undefined” classes illustrate lower accuracy values than the overall value. When
the less accurate classes are analyzed, the following outcomes are deducted:

• The coaster class consists of small water tankers, ore carriers, or cargo ships, which
contain small ships that can be confused with small boats, as in this study. In particular,
relatively low-resolution images do not include precise details and fail to detect
compelling features of these small ships.

• Even though the number of ships in the drill ship class is minimal, the accuracy is
close to the overall accuracy. Additionally, the drill class features are very similar to
the barge-pontoon class. The drilling instruments in a drill ship are generally located
on a barge-pontoon.

• The floating dock class is another class with limited sampling, illustrating a mixture
with the barge-pontoon due to the similar shape form and the navy classes since
floating docks carry navy ships in the test set.

• The offshore ship class has two characteristics: the navigating bridge on the bow
side of the ship and a high bow freeboard. It seems that the number of samples in
this class and the level of the differential features wasn’t enough to perform over the
overall value.

• Some big yachts in the small boat class can be confused with passenger ships. A
decline in accuracy regarding the passenger class relative to the overall results from
this variety can be noted.

• The “Undefined” class comprises ships with different features from the defined classes
or having a pure resolution that makes them impossible to be classified. Most ships
in the “undefined” class do not have common features to be learned by the network.
Thus, the low accuracy in this class is an expected result.
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Table 9. The confusion matrix of the recognition stage (values in percentage).
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bargePontoon 81.7 0.6 1.1 0.6 3.9 5.0 0.6 4.4 1.7 0.6 82
Coaster 3.7 31.5 1.9 7.4 1.9 29.6 13.0 11.1 31

Container 0.9 78.4 20.7 78
dredgerRec 3.7 94.4 1.9 94

Drill 16.7 66.7 16.7 67
Ferry 11.8 47.1 5.9 5.9 17.6 5.9 5.9 47

floatingDock 25 50 8.3 16.7 50
generalCargo 1.7 0.7 1.0 90.4 0.5 0.2 1.2 2.4 1.9 90

Lpg 100 100
Navy 2.1 0.7 1.4 0.7 1.4 79.6 0.7 7.0 2.1 4.2 80

Offshore 8.0 4.0 4.0 68.0 4.0 4.0 8.0 68
Passenger 3.7 3.7 70.4 14.8 7.4 70

Roro 5.0 5.0 5.0 85 85
smallBoat 1.2 1.2 0.4 3.6 0.1 0.3 91.7 0.5 0.9 92

Tanker 0.8 1.5 0.4 3.4 0.4 0.4 2.3 91.0 91
Undefined 15.2 2.5 1.3 1.3 7.6 6.3 3.8 1.3 22.8 2.5 35.4 35

Precision 76 46 92 100 80 62 86 86 88 69 74 76 94 91 89 46

The confusion matrix of the identification stage is given in Table 10. The aircraft, the
destroyer, the landing, the service craft, and the submarine classes have close or higher
accuracy values according to the overall accuracy of the identification stage. On the other
hand, the auxiliary, the coast guard, and the “other” classes are under the overall value.
When the less accurate classes are analyzed, the following outcomes are deduced:

• The auxiliary class is mainly confused with the destroyer class. Both classes have
similar sizes, and some auxiliary classes have similar features such as helicopter decks,
sensor masts, and a navigational bridge at the bow.

• The same confusion exists between the coast guard and the destroyer classes. The
coast guard ships mainly have the same form as the destroyers (especially with the
frigates or the patrol ships). They differ in color (white for the coast guard class and
navy gray for the destroyer class).

• The “other” class case is the same as the “undefined” class in the recognition stage.

Table 10. The confusion matrix of the identification stage (values in percentage).
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Aircraft 100 100
Auxiliary 5 60 30 5 60

coastGuard 70 30 70
Destroyer 1.8 3.6 1.8 92.7 93
Landing 100 100

Other 33.3 66.7 67
serviceCraft 10 10 80 80
Submarine 100 100

Precision 67 89 88 75 75 100 100 100

4.2. End-to-End Performance

The HieD DLRI for optical satellite image is formed when all stages are attached
end to end. The conventional metrics are insufficient for analyzing the multiple stages
necessary to evaluate the HieD approach. Therefore, falseNegative2 and falsePositive2
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terms are defined, and their meanings are clarified in Table 11. While HieD offers several
flexibilities in designing the stages, it introduces the error cycle due to the serial connection.
We deduced the following outcomes when we evaluated the output metrics in Table 11.

• The detection stage has the same results as the individual because it is the first stage
to stay out of the error cycle. Only two images are missing, and each of them have
one ship. The results of the detection phase are very satisfactory, except for the
false positives.

• The localization stage is also not affected by the error cycle. Sixteen false true images
detected in the previous stage are eliminated in this stage with true negative labeling.
Thus, the results are very close to the individual evaluation. The number of missed
ships is a bit high, which lowers the recall values of the following stages. On the other
hand, a low false positive value increases the precision value of the next stages.

• The recognition starts with 274 errors from the previous two stages. For this reason,
the accuracy and recall values are lower than they are in the individual evaluation.

• The identification evaluation metrics are a bit higher than 50 percent. Even though
this may seem low, the relatively low number of ships belonging to navy classes, the
compulsory samples in the dataset, and the below-average recognition performance
(falseNegative and falsePositive2) of the navy class generated these results.

Table 11. The performance of the end-to-end HieD approach.

Metric Detection Localization Recognition Identification

falseNegative

2
(No. of images labeled
as without ship(s) even

with ship(s))

226
(No. of ships which are

missed)

228
(No. of ships which

couldn’t be detected &
localized, so couldn’t

be recognized)

29
(No. of ships couldn’t

be recognized as Navy)

falseNegative2
NA

(invalid metric for this
stage)

2
(No. of ships couldn’t

be detected, so couldn’t
be localized)

NA
(invalid metric for this

stage)

7
(No. of ships which

couldn’t be localized,
so couldn’t be

identified)

falsePositive

16
(No. of images labeled

as with ship(s) even
without ship (s))

46
(bBoxes labeled as ship

even not)

405
(No. of ships wrongly

recognized)

21
(No. of Navy ships
wrongly identified)

falsePositive2
NA

(invalid metric for this
stage)

NA
(invalid metric for this

stage)

46
(No. of bBox labeled as

ship even not, so
incorrectly recognized)

50
(No. of ships

recognized as Navy
even not, so incorrectly

identified)

truePositive
1073

(No. of images with
ship(s)s)

1948
(No. of true localized

ships)

1543
GTruth (No. of ships

truly recognized)

85
(No. of ships truly

identified)

trueNegative
184

(No. of images without
ship(s))

16
(No. of images labeled

as with ship(s) but
none of ship localized)

NA
(invalid metric for this

stage)

NA
(invalid metric for this

stage)

Accuracy 98.59% 87.76% 69.44% 44.27%
Recall 99.81% 89.52% 70.91% 59.86%

Precision 98.53% 97.69% 77.38% 54.49%
F1-Score 99.17% 93.43% 74.00% 57.05%

4.3. Comparison with the State of Art Network

Beyond the individual or end-to-end performance metrics of the proposed database
and method, the comparison with the well-known networks is crucial. At this point, the
uniqueness of both VHRShips and HieD doesn’t easily enable the adaptation of previous
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databases to HieD or methods to VHRShips. The main bottlenecks are the end-to-end
evaluation process, four levels for databases, and four stages for methods. On the other
hand, to show the position of HieD among the well-known networks, YOLOv4 is adapted
to the DLRI process and end-to-end evaluation process. The results of the comparison
between HieD and YOLOv4 are given here. YOLOv4 is a one-stage detector network. It
processes the image and provides objectiveness with bBox and the class of the target(s).
Unlike YOLOv4, HieD presents two levels of classification. For this reason, YOLOv4 is
trained with twenty-three classes (fifteen parent classes plus eight child navy classes) to
make a complete comparison. The classification results are divided according to the groups
used in the recognition and identification stages of HieD. While the objectiveness output of
YOLOv4 corresponds to the detection stage, the localization stage is a common part of the
two approaches. Fifteen civilian ship classes plus eight navy ship classes on behalf of the
general navy class form the recognition stage. The results of eight navy ship classifications
are accepted for the identification stage. Considering these pre-assumptions, YOLOv4 was
trained with the same parameters, and the results are presented in Table 12.

Table 12. The performance metrics of HieD and YOLOv4.

Stage/Metric
Proposed HieD YOLO v4

Accuracy Recall Precision F1-Score Accuracy Recall Precision F1-Score

Detection 98.59% 99.81% 98.53% 99.17% 98.59% 99.44% 98.89% 99.17%
Localization 87.76% 89.52% 97.69% 93.43% 76.35% 86.41% 86.77% 86.59%
Recognition 69.44% 70.91% 77.38% 74.00% 60.72% 68.72% 69.01% 68.87%

Identification 44.27% 59.86% 54.49% 57.05% 43.05% 45.77% 73.03% 56.28%

A visual representation of the comparison between the proposed HieD and YOLO v4
for inshore regions is provided in Figure 4, and provided in Figure 5 for offshore regions.

The detection performances of HieD and YOLOv4 in VHRShips are almost the same.
For localization, HieD performs better than YOLOv4, even though it also uses the bBox
localization feature of YOLOv4. The main reason behind this phenomenon is the number
of classes used in the YOLOv4, which is twenty-three, while the YOLOv4 used in HieD
deals only with two classes. In addition, YOLOv4 tries to tune classification for twenty-
three classes while trying to reduce the bBox loss at the same time. This outcome is one
of the reasons that HieD is proposed. The recognition performance of YOLOv4 is also
less than HieD’s. The limited number of samples for navy classes negatively affects the
recognition level classification. Lastly, the identification performance of HieD is better
except for the precision metric. The reason for that is the high number of false positive-2 in
HieD, originating from the recognition stage.
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4.4. Model Limitations and Future Work

Although the positive contributions of the introduced VHRShips dataset and proposed
HieD approach are explained in the previous sections, our approach has some shortcomings
that need to be considered. More research can be conducted on the below captions to
improve the performance further.

• An additional sub-stage can be designed to detect and eliminate false positive samples
for the localization, recognition, and identification stages, if further performance is
needed. This design can also reduce the effects of the error cycle created by false
positive outcomes.

• The distribution of unbalanced classes can be improved by implementing different
over/under-sampling approaches, and the number of samples can be increased for
the classes with limited data.

• Introducing more images with different classes will strengthen the dataset for the fu-
ture.

• Different CNN networks can be integrated to increase the performance of the stages.
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5. Conclusions

This research introduces a scalable ship detection dataset—VHRShips—and proposes
a deep learning-based HieD approach to perform an end-to-end DLRI process with optical
satellite images. HieD is a dynamic and iterative approach formed with the classical CNN
and YOLO networks, in which each stage can be independently reformed and tuned to
maximize performance. This flexibility is not the only feature that HieD proposes; the
PFMO method also helps to boost the performance of the recognition and identification
stages. Additionally, the evaluation method used in the study is slightly different from the
conventional methods in that we considered the effects of the error cycle and represented
them in the outputs. Even though the stages of DLRI are connected with the strict error
cycle phenomenon, the performance stays above a satisfactory level. Additionally, a
comparison with the one-stage YOLOv4 method provides positive feedback. Another
important outcome of this research is the VHRShips dataset, which was prepared from
optical satellite images. We generated a complex dataset containing a large variety of ship
classes with different ship sizes at various inshore and offshore background distributions
to objectively represent real-life conditions. Moreover, images from this dataset reflect
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different acquisition conditions, such as viewing geometry and seasonal variations, so that
it can be used as a base dataset for further studies related to maritime mapping and ship
detection. The outputs of HieD are very promising for further studies and could be used as
a benchmark.

In conclusion, the VHRShips dataset and proposed approach could be used for the
transfer learning and generalization evaluation of similar tasks. The VHRShips dataset, HieD
method, and end-to-end evaluation metrics adequately represent real-world applications.

Author Contributions: Conceptualization, Ugur Alganci and Elif Sertel; methodology, Serdar
Kızılkaya, Ugur Alganci and Elif Sertel; validation, Serdar Kızılkaya and Ugur Alganci; formal
analysis, Serdar Kızılkaya; writing—original draft preparation, Serdar Kızılkaya, Ugur Alganci and
Elif Sertel; supervision, Elif Sertel. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The codes and VHRShips test data to evaluate the HieD approach is
available at: https://github.com/radres333/VHRShips (accessed on 7 June 2022).

Acknowledgments: We would like to thank anonymous reviewers for their supportive comments to
improve our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Geographic locations of images collected to create VHRShips Dataset.

No. Location No. Location

1 Port of Shanghai 22 Port of Hong Kong
2 Port of Tianjin 29 Port of Shenzhen *
3 Port of Guangzhou 30 Suez Canal
4 Port of Ningbo 31 The Panama Canal
5 Port of Rotterdam 32 Naval Station Norfolk
6 Port of Qingdao 33 Naval Station Mayport
7 Port of Dalian 34 Devonport, Plymouth
8 Port of Busan 35 Portsmouth
9 Port of Nassau 36 Port of Canaveral
10 Port of Barcelona 37 Port of Everglades
11 Port of Civitavecchia 38 Port of Cozumel
12 Port of The Balearic Islands 39 Port of New York and New Jersey
13 Port of Southampton 40 Okinawa Naval Base White Beach
14 Snezhnogorsk 41 Yokosuka Naval Base
15 Tartus, Syria 42 Sasebo Naval Base
16 Venice 43 Toulon
17 Taranto Navy Base 44 Sevastopol
18 Navy Augusta 45 San Francisco
19 Port of Los Angeles 46 Dardanelles *
20 Port of Haydarpasa 47 Bosphorus
21 Port of Izmir 48 Port of Mersin
23 England 49 Port of Antalya
24 Jordan Agaba 50 Hanau Germany
25 Kocaeli gulf 51 Port of Mersin
26 Norway 52 Pearl Harbour
27 Qatar 53 Qatar Port of Raundabout
28 San Diego 54 Port of Singapore

* These candidate locations aren’t used in VHRShips.

https://github.com/radres333/VHRShips
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Appendix B

The example images from VHRShips with different conditions are given in the follow-
ing figures.
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