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Abstract: Characterizing the taxi travel network is of fundamental importance to our understanding
of urban mobility, and could provide intellectual support for urban planning, traffic congestion,
and even the spread of diseases. However, the research on the interaction network between urban
functional area (UFA) units are limited and worthy of notice. Therefore, this study has applied the
taxi big data to construct a travel flow network for the exploration of spatial interaction relationships
between different UFA units in Shenzhen, China. Our results suggested that taxi travel behavior
was more active in UFA units dominated by functions, including residential, commercial, scenic,
and greenspace during weekends, while more active in UFA units dominated by industrial function
during weekdays. In terms of daily average volume, the characteristics of spatial interaction between
the various UFA types during weekdays and weekends were similar. During the morning peak
period, the sink areas were mainly distributed in Futian District and Nanshan District, while during
the evening peak period, the sink areas were mainly distributed in the southern part of Yantian
District, the southwestern part of Longgang District, and the eastern part of Luohu District. The
average daily taxi mobility network during weekdays showed a spatial pattern of “dense in the west
and north, sparse in the south and east”, exhibiting significant spatial unevenness. Compared with
weekdays, the daily taxi mobility network during weekends was more dispersed and the differences
in node sizes decreased, indicating that taxi travel destinations were more diverse. The pattern of
communities was more consistent with the administrative division during weekdays, indicating that
taxi trips are predominantly within the districts. Compared with weekdays, the community pattern
of network during weekends was clearly different and more in line with the characteristics of a small
world network. The findings can provide a better understanding of urban mobility characteristics in
Shenzhen, and provide a reference for urban transportation planning and management.

Keywords: taxi; big data; complex network; urban functional area; small world; point-of-interest
(POI); urban mobility

1. Introduction

Urban mobility is a classic and hot issue in the fields of geography, transportation,
and urban planning. Spatiotemporal characteristics of urban mobility can explain the
homogeneity of the influence of individual residents’ behaviors on urban space [1]. Taxis
are an important element in the urban transportation system due to their ability to provide
flexible, personalized services and cover a wide geographic area [2–6]. Numerous studies
have been achieved on the taxi travel behavior from various aspects.

In recent years, two papers published in the journals Nature and Science [7,8] have
promoted the application of complex network analysis methods. To date, the study of
complex networks has permeated various fields, including sociology, biology, physics,
economics, computer science, transportation, etc. As the complex network can provide the
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ability to study transportation modes and their interactions [9–11], many scholars have
applied complex networks for taxi travel analysis [12–18]. Urban functional area unit is
an important indicator to describe the spatial heterogenies of urban functions. Analyzing
the traffic flow interactions between various urban functional area units will benefit our
understanding of urban mobility and provide a reference for optimizing urban land use.
However, most studies analyzed the travel pattern in the scale of regular grid, and the
studies from the perspective of urban functional area units are limited. Specifically, how is
the taxi interaction network among different UFA units? Answering this question can not
only improve our understanding of urban mobility, but also provide a reference for urban
transportation planning.

Our study attempts to answer this question from two aspects. First, what is the spatial
distribution of UFA units in Shenzhen? Second, how does the taxi flow interact between
different UFA units? As one of the central cities in the Guangdong-Hong Kong-Macao Bay
Area, Shenzhen has a high population density and a complex urban function structure in
the region, and the contradiction between residents’ travel demand and urban function
structure is particularly prominent. Therefore, we applied the complex network analysis
method to study the spatial interaction characteristics of taxi flow between different urban
functional area units in Shenzhen. The findings can provide invaluable insights into policy
formation regarding taxi travel to guide transport development in Shenzhen, China, and
worldwide.

The remainder of the paper is organized as follows. Section 2 includes a literature
review on our subject. In Section 3, the study area, data, and methods are described.
Section 4 applies taxi trip data to uncover the urban mobility network characteristics in the
scale of UFA units. Section 5 includes our conclusions and prospect.

2. Literature Review

Since UFA is the basic unit of network analysis in this paper, an overview of the
progress in UFA identification is first provided. UFA is one of the important indicators to
quantify the spatial structure of a city. Precise identification of UFA units is a prerequisite
for understanding the spatial structure of cities, and thus making rational urban plans. For
this reason, many scholars have conducted research on this issue. The traditional methods
of UFA identification mainly include expert judgment and survey statistics. However, these
methods are not suitable for use in the era of big data due to several shortcomings, such as
not objective enough, time-consuming, and error-prone. Points of interest, as a common
type of big data, have turned into one of the main data sources for UFA identification studies
due to their wide coverage, large data volume, and easy access. The identification of UFA
units is essentially a process of classification. The classification methods for UFA units
mostly include statistical analysis method, kernel density estimation method, topic model
method, and cluster analysis method. For example, Long et al. identified the UFA units in
Beijing, China using POI data and bus IC card data [19]. Li et al. identified the UFA units
in Wuhan, China by applying the kernel density estimation method, and demonstrated the
high accuracy by comparison with urban planning map and high-resolution remote sensing
images [20]. Chen et al. applied the topic model in Guangzhou, China based on the POI
data and taxi trajectory data, and identified several UFA types, such as mature residential
areas, commercial and entertainment areas, and development areas [21]. Yan et al. realized
the UFA identification of Dongying city, China using a combination of KD-tree clustering
algorithm, kernel density algorithm, and image element threshold method, and the Kappa
value of result was 0.763 [22]. In summary, previous studies still have shortcomings.
For example, due to the characteristics of POI data, different POIs have different social
perceptions (for example, in the category of medical facilities POI, the influence of tertiary
hospitals and general clinics varies greatly), the studies using only a single method will
significantly affect the accuracy of identification results. To this end, we propose a method
for UFA identification that integrates the statistical analysis and kernel density estimation
methods to improve the accuracy. The main improvement can be concluded in the fact that
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different identification methods are used respectively in accordance with the difference
between POI types. For cognitive POIs, the frequency density and type ratio calculation
methods are used, while for density POIs, the kernel density estimation method is used to
reduce the influence of noise.

Next, a brief overview of the progress in taxi travel behavior is presented. As men-
tioned above, many studies were conducted on taxi travel from different aspects. Taxi
travel pattern is one of the classic topics in urban mobility research. For example, Liu
et al. explored the taxi travel pattern of Shenzhen, China, and found that people are more
prone to visit leisure places during the weekends, and choose to engage in sports and
see the doctor both on weekdays and weekends [23]. Tang et al. characterized the urban
mobility from taxi trips in Harbin, China, and found the distribution pattern of origins
and destinations on weekdays and weekends [24]. Shen et al. investigated the spatial
and temporal patterns of taxi trajectory in Nanjing, China, and found that the temporal
pattern shows a strong daily rhythm, while the spatial pattern shows that the number
of pick-up and drop-off locations gradually diminishes from the downtown areas to the
outer suburbs [25]. Few scholars have further analyzed the influencing factors of taxi travel
characteristics. For example, Ge et al. claimed that the health care area is the most critical
factor in all land-use variables that impact taxi ridership based on the comparison between
Shanghai and NYC [4]. Qian et al. found that the urban form has a significant impact on
urban taxi ridership. In particular, the accessibility to subways is positively associated with
the taxi ridership [5]. Li et al. found that the land-use mix has a positive effect on taxi travel
in Chengdu, China [26]. Feng et al. identified the critical roads and intersections based on
taxi trip data in Lanzhou, China [27]. In addition, some topics have been explored, such
as transportation emission, transportation network recognition, travel demand prediction,
the impact of built environment on taxi travel behavior, the relationship between taxis,
buses, subway, etc. [4,5,24,28–33]. Since our study focuses on the characteristics of taxi
trips among different UFA units, research progress beyond the taxi travel pattern will not
be elaborated.

The methods involved in the study of the spatiotemporal characteristics of taxi trips
can be summarized into four categories: Spatial statistical methods, machine learning
methods, time series methods, and complex network analysis methods. For example,
Yue et al. illustrated the hotspot areas of residents’ trips using the clustering analysis
method [34]. Pan et al. applied the spatiotemporal clustering of taxi pick-up and drop-off
locations as a way to discover hotspot areas in cities [35]. Jiang et al. applied the exploratory
spatial data analysis method to study the human travel pattern [36]. Gong uncovered the
travel pattern of taxi passengers in Shanghai using Bayesian models [37]. Since 1998,
complex network analysis methods have started to attract attention from scholars in many
fields, such as computer science, sociology, geography, etc. [38]. As the urban transportation
network is a typical complex system, it is undoubtedly well suited to apply complex
network analysis methods to reveal urban travel characteristics. For example, Liu et al.
applied the complex network analysis to reveal the community structure of taxi travel
network in Shanghai, China [39]. Xiao et al. found that Shanghai presents a two-level
hierarchical polycentric urban structure feature by applying a spatial embedded network
model [40]. To build the original destination (OD) matrix, the common types of traffic
analysis unit, include regular grids [41–45], hexagons [46], and irregular polygons (usually
obtained by dividing the road network or district boundary). In particular, the regular grid
is the most common due to its advantages, such as ease of use and visualization. Some
studies use irregular polygons as traffic analysis units, which are obtained by overlaying
road networks with administrative boundaries. There is no doubt that the usage of road
network based traffic analysis unit is more in line with the driving characteristics of taxi
and is more conducive to the accurate meaning of taxi mobility network characteristics.
However, to the best of the authors’ knowledge, little research has been undertaken to
consider the urban functional attributes of the traffic analysis unit. To this end, we first
applied an improved method for urban functional area identification. Then, we analyzed
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the characteristics of Shenzhen taxis travel network at the scale of urban functional area
unit, and explored the spatial interaction pattern of various urban functional area types.
Our findings are expected to provide reference information for traffic management and
urban planning.

3. Materials and Methods
3.1. Study Area

Shenzhen, as one of China’s mega cities and special economic zones, is a highly
urbanized city. Shenzhen has nine administrative districts (Futian District, Luohu District,
Nanshan District, Baoan District, Longgang District, Yantian District, Longhua District,
Pingshan District, Guangming District) and one functional district (Dapeng New District),
with 74 subdistricts in total. Shenzhen is located on the east coast of the Pearl River Estuary,
bordering with Hong Kong, Dongguan, and Huizhou, with a total area of 1997.47 km2.
By the end of 2020, the number of resident population in Shenzhen was 17.56 million [47],
and the population density was 8791 persons/km2. It can be inferenced that Shenzhen has
the highest population density among large and medium-sized cities in China, and even
far exceeds some international metropolises, such as Tokyo (6372 persons/km2 [48]) and
London (5701 persons/km2 [49]). Shenzhen is also an important transportation hub city in
South China, with a variety of transportation modes, such as airports, railway stations, bus
terminals, and sea ports for external travel and convenient public transportation facilities,
such as subway, bus, and taxi for internal travel. By the end of 2017, there were 18,379
taxis in Shenzhen. Prior to 5 May 2017, the taxi fares in Shenzhen varied from company to
company. The flag-fall prices for red, yellow, and green taxis were CNY 11 per 2 km, CNY
10 per 2 km, and CNY 6 per 1.5 km, respectively during the day, and CNY 16 per 2 km,
CNY 13 per 2 km, and CNY 7.2 per 1.5 km, respectively during the night. Since 5 May 2017,
the taxi fares in Shenzhen have been unified into one standard price. The flag-fall prices
were CNY 10 per 2 km and CNY 2.60 per km for over 2 kms. The location of the study area
is shown in Figure 1.
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In accordance with Shenzhen transport annual report 2016 [50], the average daily travel
of Shenzhen residents reached 44.43 million trips in 2016, including 21.33 million motorized
trips. Shenzhen’s motorized travel modes include conventional buses, customized buses,
rail transit, cruised taxis, online car-hailing, private cars, institutional shuttle buses, etc. In
2016, the number of motor vehicles in Shenzhen was 3,225,800. The modal split showed that
28.0% of the residents traveled by conventional buses, 0.3% by customized buses, 13.6% by
rail transit, 3.7% by cruised taxis, 4.3% by online car-hailing, 41.1% by private cars, 6.6% by
institutional shuttle buses, and 2.5% by other modes. The proportion of motorized travel by
public transportation, including conventional buses, customized buses, rail transit, cruised
taxis, online car-hailing, and institutional shuttle buses is 56.5%, which maintains the
dominant position in the city’s modal split. In 2016, the average speeds during the morning
and evening peak hours of weekdays were 30.6 and 26.0 km/h, respectively. During the
evening peak hours on weekdays, the average speeds in Luohu District, Longgang District,
and Longhua District were 23.7, 25.5, and 25.6 km/h, respectively. The average speeds
in Dapeng New District, Pingshan District, and Guangming District were 42.6, 38.0, and
31.8 km/h, respectively.

3.2. Data Source and Preprocessing

The taxi trip data of Shenzhen city were provided by major taxi operation companies,
which cover almost 65% of the total taxicabs in Shenzhen. The data involved in our
study were collected in 10, 11, 15, and 16 April 2017, and the former two days were
weekdays, while the last two days were weekends. The fields of the taxi data are vehicle
ID (anonymized), pick-up time, drop-off time, latitude and longitude of pick-up and
drop-off points, trip date, trip distance, and trip duration. The coordinate system of the
longitude and latitude fields is GCJ-02, which is the officially Chinese geodetic datum
formulated by the Chinese State Bureau of Surveying and Mapping. The coordinates of
pick-up and drop-off points were converted to WGS 1984 coordinate system. Since our
study focuses on the taxi travel characteristics within Shenzhen city, all non-compliant trip
records were excluded.

The original POI data were collected from Gaode Map (https://lbs.amap.com/, ac-
cessed on 7 December 2020) in 2020, which includes fourteen POI categories: Catering
facilities, scenic spots, public service facilities, companies, shopping facilities, transporta-
tion facilities, financial facilities, educational, scientific and cultural facilities, residence
district, living service facilities, sports and leisure facilities, medical service facilities, gov-
ernment agencies, and accommodation service facilities. First, the GCJ-02 coordinates of
POIs were converted to WGS 1984 coordinates. Second, duplicate POIs and POIs with low
public recognition, such as public toilets, newsstands, etc., were eliminated. Third, the
POIs were reclassified in accordance with the latest urban land classification and planning
and construction land standards [51]. To facilitate further analysis, the abbreviations of
urban land types were used. For example, public administration and public service land
are abbreviated as public service area, and green space and square land are abbreviated as
greenspace area. The POIs were reclassified into six categories of land use: Traffic service
area, public service area, commercial service area, residential area, industrial area, and
greenspace area. The ultimate classification results of POIs are as follows: 37,541 records
of traffic service area POIs, 68,589 records of public service area POIs, 163,529 records of
commercial service area POIs, 16,016 records of residential area POIs, 146,826 records of
industrial area POIs, and 2502 records of greenspace area POIs.

The land use data used in our study were the result of the Third National Land
Resources Survey of China, with a spatial resolution of 10 m and the survey year was
2017 [52]. The land use types include residential land, commercial service land, industrial
land, transportation land, public administration land, grassland, etc.

The road network used in this paper was the OSM road network data, which was
collected in 12 July 2020 (https://www.openstreetmap.org/, accessed on 12 July 2020).
First, the coordinate system of road network data was converted to WGS 1984 coordinate

https://lbs.amap.com/
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system. Then, short and low-grade roads were removed. Next, tools of ArcGIS software
(Esri, Redlands, CA, USA), such as buffer, dissolve, and collapse-dual-lines-to-centerline
were used to remove duplicate roads. Finally, topology errors were corrected to obtain the
ultimate road network data.

Traffic analysis unit is the geography unit, which is most commonly used in transporta-
tion analysis. The type and spatial extent of zones usually varies in different researches.
The analysis unit derived by road network is one of the classic geography units for trans-
portation analysis. In addition, the unit created by road network is also suitable for UFA
research. Therefore, the unit created by the road network was selected as the analysis
unit of this study. First, the preprocessed OSM road network was used to segment the
administration boundary of Shenzhen. Then, we used the tools of ArcGIS software (Esri,
Redlands), such as line to polygon, eliminate, and dissolve to generate the analysis units
for UFA identification.

3.3. Methods

The methodological steps of our study are shown in Figure 2.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 6 of 22 
 

 

researches. The analysis unit derived by road network is one of the classic geography units 
for transportation analysis. In addition, the unit created by road network is also suitable 
for UFA research. Therefore, the unit created by the road network was selected as the 
analysis unit of this study. First, the preprocessed OSM road network was used to segment 
the administration boundary of Shenzhen. Then, we used the tools of ArcGIS software 
(Esri, Redlands), such as line to polygon, eliminate, and dissolve to generate the analysis 
units for UFA identification. 

3.3. Methods 
The methodological steps of our study are shown in Figure 2. 

 
Figure 2. The data flow chart of the study. 

3.3.1. Method for Urban Functional Area Identification 
In accordance with the public recognition, footprint, and distribution patterns of ge-

ographic entities, we divided POIs into two major types (cognitive POIs and density POIs) 
and applied different identification methods, respectively. The cognitive POIs represent 

Figure 2. The data flow chart of the study.



ISPRS Int. J. Geo-Inf. 2022, 11, 377 7 of 22

3.3.1. Method for Urban Functional Area Identification

In accordance with the public recognition, footprint, and distribution patterns of
geographic entities, we divided POIs into two major types (cognitive POIs and density POIs)
and applied different identification methods, respectively. The cognitive POIs represent the
geographic entities, which usually have a relatively large area and high social recognition.
Specifically, these POIs can usually dominate the UFA units where they are located, such as
railway stations, grade A tertiary hospitals, parks, etc. Therefore, the frequency density and
type ratio formula were used for these POIs. The density POIs refer to geographic entities
with relatively small area and low social recognition, such as convenience stores, bistro,
barber store, etc. Due to the large number of these POIs and their scattered distribution,
kernel density estimation method was applied to determine the dominant function of the
UFA unit. The identification methods for two major types of POIs are shown in Table 1.

Table 1. The identification methods for two major types of POIs.

Major Type POI Categories Methods

Cognitive POIs Train Station, Bus Stops, Government Organization, Grade A tertiary
hospital, Universities and Colleges, Parks and Piazzas, Scenic Spots, etc.

Frequency Density (FD)
Category Ratio (CR)

Density POIs

Catering facilities, Shopping facilities, Financial facilities, Living Service
facilities, Sports facilities, Transportation facilities, Public facilities,
Scientific, educational and cultural institutions, Medical facilities,

Companies, Residential districts, etc.

Kernel Density

• Identification method for Cognitive POI-dominated UFA units

In accordance with previous studies [53,54], different weights were set for each type
of POIs based on the following principles: Higher weights for POIs with small number and
high social recognition in the city, while lower weights for POIs with large number and low
social recognition. The specific weights setting was 20 for commercial service land, 30 for
residential land, 50 for public service land, 75 for industrial land, 90 for greenspace and
scenic land, and 100 for transportation service land.

For cognitive POI-dominated UFA identification, the frequency density (FD) and
category ratio (CR) formulas were used to identify the nature of unit. The calculation
formulas are shown as follows:

Fi =
ni
Ni

(i = 1, 2, 3 . . . , 6), (1)

Ci =
Fi

∑6
i=1 Fi

× 100%(i = 1, 2, 3 . . . , 6) (2)

In Formula (1), i denotes the type of POI (commercial, transportation, public, industrial,
residential, and greenspace); ni denotes the number of the i-th type of POI in the UFA
unit; Ni denotes the total number of the i-th type of POI in the study area; Fi denotes the
frequency density of the i-th type of POI in the UFA unit to the total number of the i-th
type of POI in the study area, and FD for short. In Formula (2), Ci denotes the ratio of the
frequency density of the i-th type of POI to the frequency density of all POIs in the UFA
unit, and CR for short.

The number of each POI type in each UFA unit was calculated using the Spatial Join
tool of ArcGIS software (ESRI, Redlands), and the FD and CR of each POI type in each UFA
unit were calculated using the Field Calculator tool of ArcGIS software (ESRI, Redlands).
In accordance with previous studies [20] and our experiment results, the rule was set that
when the CR value of cognitive POIs is greater than 30%, the UFA unit is identified as a
single type UFA unit that is dominated by one functional type.

• Identification method for Density POI-dominated UFA units

The density POI-dominated UFA unit was identified using the kernel density estima-
tion (KDE) method, which is widely used in the study of geography. The kernel density
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analysis method is derived from the first law of geography, which states that things are
more closely connected the closer they are, and the closer location to the core element
acquires a greater value of density expansion. The formula of kernel density is shown
as follows:

f (x) = ∑n
i=1

1
h2 K

(
x − xi

h

)
, (3)

K
(

x − xi
h

)
=

3
4

(
1 − (x − xi)

2

h2

)
(4)

In Formulas (3) and (4), K is the kernel function; h is the search radius or bandwidth,
which determines the smoothness of the surface of the kernel density; and n is the number
of elemental points contained in the search radius at point x.

Previous studies demonstrated that the bandwidth has a large effect on the results
of kernel density estimation. Specifically, Ding et al. claimed that a bandwidth in the
range of 200–300 m is appropriate when performing kernel density analysis [55]. Therefore,
the bandwidth was set to 200 m in this study, the output image element size was the
default size, and the natural breakpoint method was used for classification. Since the
analysis results are greatly influenced by the number of POIs, the weights of different POI
types were adjusted in accordance with the characteristics of each POI type. The specific
weights were set as follows: 70 for greenspace facilities, 50 for public service facilities, 15 for
commercial service facilities, 35 for transportation facilities, 30 for industrial facilities, and
100 for residential districts. The kernel density estimation results were normalized using
the Fuzzy Membership tool to ensure that the density values fall into the [0, 1] interval.

Finally, the Field Calculator tool was used to calculate the total density of each UFA
unit. In accordance with previous studies, 50% was used as the threshold value [20].
Specifically, when the POI density value of one type of function within the analysis unit
exceeded 50% of the total density, the unit was identified as a single-type UFA unit. In
contrast, the unit was identified as a mixed-type UFA unit, which is dominated by the top
two urban functional types in density values.

3.3.2. Source-Sink Analysis Method

To understand whether different types of UFA units are inflow or outflow areas for taxi
travel, the source-sink analysis was performed. As known, the volume of taxi trips shows
a more pronounced temporal divergence in the 24-h period. Particularly in the morning
and evening peak hours, the volume of taxi flow is highest and most significantly different
from other time periods. In accordance with the morning and evening peak restriction
policies in Shenzhen [56], the morning peak hours are from 07:00 a.m. to 09:00 a.m., and
the evening peak hours are from 17:30 p.m. to 19:30 p.m. Therefore, this study extracts the
morning and evening peak hours data to study the travel source-sink characteristics at the
scale of UFA units. In reference to the study by Gao et al. [57], each UFA unit was divided
into three categories in accordance with its net inflow and net outflow values: Source area
(net outflow rate > 0), sink area (net inflow rate > 0), and equilibrium area (net inflow rate
and net outflow rate are zero). The net inflow rate or net outflow rate [58] was calculated
as follows:

Pi =
(Di − Oi)

(Di + Oi)
, (5)

In Equation (5), Pi is the net inflow (outflow) rate of the i-th functional area unit in the
study period; Di and Oi represent the total number of taxis inflowing and outflowing in
the functional area unit, respectively. The closer the Pi to 1, the more significant the inflow
of taxis in the unit, and the closer the Pi to −1, the more significant the outflow of taxis in
the analysis unit.
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3.3.3. Complex Network Analysis Method

In our study, the software for complex network analysis was Gephi 0.9.2, which
is a popular opensource software (https://gephi.org/, accessed on 21 December 2021).
Each UFA unit obtained in the previous section was used as a node to calculate the OD
matrix of taxi trips and construct a complex network. The metrics, including degree
distribution, average path length, and clustering coefficient, were used in our study to
explore the taxis flow network. In addition, the network communities were detected using
the modularity algorithm.

The degree of a node in a network is the number of other nodes, which is directly
connected to the node. The degree of a node is positively correlated with the importance of
the node. The higher the degree of a node, the more important it is in the network. In a
directed network, the degree of a node includes out-degree and in-degree. The degree of a
node is defined by the following equation:

Di = ∑n
j=1 wij, (6)

where Di is the degree of node I; n is the total number of nodes; and wij denotes the weight
of the connected edges between node i and node j.

The average path length of a network (L) is the average distance between any two
nodes, which reflects the degree of clustering and dispersion of the network. L was
calculated as follows:

L =
1

n(n − 1) ∑n
ij dij, (7)

where dij is the shortest path between node i and node j; and n is the total number of nodes
in the network.

The clustering coefficient (C) is a measure of the average probability that two neigh-
boring nodes of a node are also neighbors of each other, in effect measuring the density
of the triangular structure in the network [10]. The clustering coefficient can be used to
describe the compactness of the network. The formula of clustering coefficient is shown
as follows:

C =
1
n ∑n

i=1 Ci, (8)

Ci = Ei/E2
ki

, (9)

where Ci is the clustering coefficient of node I; C denotes the clustering coefficient of the
network, which is the average of the clustering coefficients of all nodes in the network; Ei
is the number of node pairs directly connected in the neighboring nodes of node I; and E2

ki
denotes the total number of neighbor node pairs of node i.

In a network, a subgraph consisting of nodes with similar attributes and connected
edges between nodes is called a community. The community structure of taxi flow network
was detected using the modularity algorithm proposed by M.E.J. Newman [59]. The
modularity can be calculated as follows:

Q =
1

2m ∑ij

[
Aij −

kik j

2m

]
δ
(
Ci, Cj

)
, (10)

In Formula (10), Q is the modularity; m is the number of edges in the network; Aij
denotes the element of network adjacency matrix; ki and k j represent the degree values of
node I and node j; Ci is the community that node i belongs to; and δ

(
Ci, Cj

)
is a function,

which indicates whether two communities are the same (if Ci = Cj, δ
(
Ci, Cj

)
= 1, otherwise(

Ci, Cj
)
= 0). The value of modularity ranges from 0 to 1. A higher value of modularity

indicates a more reasonable community division result.

https://gephi.org/
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4. Results
4.1. Identification Result of UFA Units

As described in Section 3, the identification results of cognitive POIs and density
POIs were combined to produce the ultimate urban functional area units. The results
showed that 2565 UFA units were identified, including 21 UFA types. Among them, the
number of single type UFA units was 880 and the number of mixed type UFA units was
1685. Each UFA type was given an abbreviation, respectively (see Table 2). For example,
the PRFA represented a mixed type UFA unit dominated by public service function and
residential function, the IRFA represented a mixed type UFA unit dominated by industrial
function and residential function. One hundred UFA units were randomly selected, and
the accuracy of the identification results was evaluated using the land use survey data as
the true value. The overall accuracy of the identification results reached 75%, indicating
that our method can effectively and accurately identify the UFA units in Shenzhen. The
statistics of identification results are shown in Table 2.

Table 2. The statistics of identification results.

UFA Type Abbreviation Amount Total Area (km2) Average Area (km2)

public service and residential functional area PRFA 544 242.65 0.45
industrial functional area IFA 248 140.05 0.56

public service and commercial functional area PCFA 237 82.27 0.35
public service and industrial functional area PIFA 232 130.37 0.56

industrial and residential functional area IRFA 229 184.37 0.81
greenspace and scenic spot functional area GSFA 202 864.5 4.28

residential functional area RFA 194 55.16 0.28
public service functional area PFA 139 64.76 0.47

commercial service and industrial functional area CIFA 130 73.94 0.57
residential and commercial service functional area RCFA 121 41.37 0.34

transportation and industrial functional area TIFA 59 49.64 0.84
transportation and public service functional area TPFA 56 27.12 0.48

commercial service functional area CFA 51 6.51 0.13
transportation service functional area TFA 46 14.73 0.32

residential and transportation service functional area RTFA 39 6.14 0.16
commercial service and transportation functional area CTFA 15 1.64 0.11

public service and greenspace functional area PGFA 8 2.38 0.3
industrial and greenspace functional area CGFA 6 2.73 0.46

greenspace and transportation functional area GTFA 4 2.67 0.67
greenspace and residential functional area GRFA 4 1.4 0.35
greenspace and commercial functional area GCFA 1 0.16 0.16

In Table 2, it can be seen that the number of mixed type UFA units in Shenzhen
was about twice the number of single type UFA units, indicating that the city is mainly
dominated by mixed type UFA units. This result also reflected the tendency of mixed and
intensive land use in the development process of Shenzhen. The number of UFA units
mixed with residential functions was the largest, which include PRFA, IRFA, RCFA, and
RTFA, with numbers 544, 229, and 121, respectively. We believe that the result is reasonable
as residence is one of the basic needs of human life. The number of IFA was 248, ranking
2nd among all UFA types. In addition, the UFA units mixed with industrial function
mainly include PIFA, IRFA, CIFA, and TIFA, whose numbers were 232, 229, 130, and 59,
respectively. The high proportion of industrial related UFA units indicated, to a certain
extent, that industrial land occupied an important position in the land use structure of
Shenzhen. UFA units only providing commercial service were rare and usually appeared
in the mixed type UFA units. The commercial service function was mainly mixed with
public service, industrial function, and residential service, and the numbers of mixed type
UFA units were 237, 130, and 121, respectively. UFA units only providing transportation
service were also relatively small, and mainly mixed with industrial, public service, and
residential functions. The number of UFA units with greenspace and scenic function was
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202, and rarely mixed with other functions. In terms of average area, the average area of
GFA was significantly higher than the other UFA types, and was followed by TIFA, IRFA,
GIFA, and CTFA. The distribution of UFA units is shown in Figure 3.
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Figure 3. The identification results of urban functional area (the geographical background is obtained
by overlaying roads and administration boundary of Shenzhen city).

In Figure 3, it can be seen that the single type UFA units were mainly located in the
central and eastern parts of Shenzhen, which is the ecological protection zone of Shenzhen
and the terrain is mainly mountainous and hilly. The mixed type UFA units were mainly
located in the northern, western, and southern parts of Shenzhen, where the topography is
mainly plain, the built-up area is large, and the economy is more developed.

4.2. Spatiotemporal Characteristics of Taxi Trips at the Scale of UFA Units

The daily travel volume and average trip length (ATL) in weekdays and weekends are
shown in Figures 4 and 5 (distinguished pick-up and drop-off), respectively.
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Figure 5. Daily average travel distance of each UFA type on weekdays and weekends.

In Figure 4, it can be seen that the average count of pick-ups and drop-offs in the
UFA units, including PRFA, PCFA, RCFA, and GFA, were higher during weekends than
during weekdays, while the average ridership in the PIFA was contrary. This result
indicated that taxi travel behavior was more active in UFA units dominated by residential,
commercial, and scenic greenspace functions during weekends, while more active in
UFA units dominated by industrial function during weekdays. The reason may be that
commuting behavior dominates during weekdays, thus trips were more active in mixed
type UFA units dominated by industrial function during weekdays. As people’s leisure
and recreational activities increased during weekends, taxi trips in mixed type UFA units,
including commercial and scenic functions increased significantly.

In Figure 5, it can be seen that whether during weekdays or weekends, the average
travel distance in the UFA units, including IFA, TFA, TPFA, GRFA, and CTFA, were
relatively long, while relatively short in the UFA units, such as PRFA and RCFA. In terms
of travel distance corresponding with pick-up points, the average travel distance of various
UFA types during weekends and weekdays was relatively close. The average travel
distance of UFA units, such as IFA and TFA was relatively long during weekends, while the
average travel distance of UFA units, such as GTFA, GRFA, and CTFA was relatively long
during weekdays. In terms of the travel distance corresponding with the drop-off point,
the average travel distance in the UFA units, including PGFA, TGFA, GRFA and GCFA,
was significantly longer during weekdays than during weekends.

The map of taxis mobility index during the morning and evening peak periods is
shown in Figure 6 (the UFA units in light gray were missing data).

In Figure 6, it can be seen that during the morning peak period, the UFA units with
higher taxi mobility were mainly concentrated in the central and western part of Shenzhen,
as well as some units in the northern part. Specifically, the sink UFA units were mainly
distributed in Futian District and Nanshan District. The peripheral areas of Futian District
and the residential function related UFA units in Luohu District adjacent to Futian District
were the main sources of the flow of taxis. The mobility index of Nanshan District showed
an overall pattern of “the central region was the source area, the surrounding region was the
sink area”. The source and sink areas in Baoan District showed a staggered distribution, and
the convergence phenomenon near Shenzhen Baoan international airport was significant.
The southwestern and northeastern part of Longgang District, which is dominated by
residential function, was the main source area during the morning peak period.
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Figure 6. The map of taxis mobility index during the peak periods (the geographical background is
obtained by overlaying roads and administration boundary of Shenzhen city).

Contrary to the morning peak period, the central part of Futian District and Nanshan
District turned into the main source areas, and the sink areas were distributed around the
above-mentioned areas. The sink areas were mainly concentrated in the southern part
of Yantian District, the southwestern part of Longgang District, and the eastern part of
Luohu District. The reason may be that these areas are mainly dominated by residential
mixed land use types. The source sink area also showed a disorderly pattern of staggered
distribution in the southern part of Baoan District.

4.3. Characteristics of Taxi Mobility Network among the UFA Units

The chord grams of traffic flow between different UFA types on weekdays and week-
ends are shown in Figure 7.
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Figure 7. The taxi flow interaction between different UFA types: (a) Chord gram on weekdays;
(b) chord gram on weekends.

In Figure 7, it can be seen that the interaction characteristics between the different
UFA unit types during weekdays were very similar with the interaction characteristics
during weekends. The top three UFA types in terms of outflow were IRFA, RCFA, and
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PCFA, with outflow values of 36,548, 7668, and 7538, respectively. The bottom three UFA
types in terms of outflow were GRFA, IGFA, and GTFA, with outflow values of 3, 15, and
26, respectively. The top three destination UFA types outflowing from the IRFA were IRFA,
RCFA, and PCFA, with outflow values of 15,414, 2903, and 2807, respectively. The top three
destination UFA types with outflows from the RCFA were PRFA, RCFA, and PIFA, with
outflow values of 2986, 716, and 638, respectively. The top three destination UFA types
with outflows from the PCFA were PRFA, PCFA, and RCFA, with outflow values of 2888,
766, and 622, respectively.

The top three UFA types in terms of inflow were PRFA, GSFA, and PIFA, with outflow
values of 36,081, 7660, and 7628, respectively. The top three UFA types with PRFA as the
destination of inflow were PRFA, RCFA, and PCFA, with inflow values of 15,414, 2986,
and 2888, respectively. The top three UFA types with GSFA as the inflow destination were
PRFA, GSFA, and PIFA, with inflow values of 2793, 864, and 692, respectively. The top
three UFA types with PIFA as the inflow destination were PRFA, PIFA, and GSFA, with
inflow values of 2793, 864, and 692, respectively.

The daily network flow diagram between each UFA unit is shown in Figure 8.
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In Figure 8, it can be seen that the daily traffic flow network during weekdays showed
a spatial pattern of “dense in the west and south, sparse in the east and north”, indicating
that the taxi flow of Shenzhen residents showed significant spatial imbalance. The nodes
of network showed a pattern of “polycentric and concentrated distribution in central
areas”. The network was in a converged state, and the spatial characteristics showed an
intermittent polar nucleus shape, i.e., grouped distribution. The quantity of interactions in
a particular area was particularly high, and the nodes varied significantly in size. The nodes
in the regions, such as downtown business service area, industrial park, and important
transportation service area were the hot spots of city during weekdays.

Compared with weekdays, the daily travel network during weekends was more
dispersed, with spatial characteristics of continuous spread. Meanwhile, the differences
in node sizes decreased, indicating that residents’ travel destinations were more diverse.
The results showed a decrease in the amount of taxi interactions between different UFA
units on weekends. The UFA units, such as public service and greenspace, scenic areas,
and residential areas turned into hotspots of the city during weekends. Compared with
weekdays, the edge color in Yantian District was significantly darker, indicating an increase
in the quantity of taxi interactions. The reason may be that Yantian District has many
tourist attractions represented by the Dameisha seaside park, thus many residents visit
Yantian District for recreation during weekends. Another phenomenon was that the values
of taxi inflow and outflow at important transportation nodes, such as Shenzhen Baoan
international airport and Shenzhen North railway station decreased significantly during
weekends. The reason may be that during weekdays these transportation sites were
important nodes connecting residents of nearby cities, such as Guangzhou, Shenzhen,
and Dongguan, and residents who commute across the city tend to change cabs at these
sites. However, the intermediary role of the airport and the railway station diminished
substantially during weekends.
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In terms of the node pattern, the nodes in Futian District and Luohu District were larger
in size and more densely distributed, indicating more frequent taxi movements within
these two districts. Specifically, there were many popular locations in the two districts, such
as Huaqiang North shopping district, Fairy Lake botanical garden, Futian port of entry,
and Shenzhen railway station, which were typical nodes in the network. The distribution
of nodes within the Baoan District, Nanshan District, and Longhua District were more
concentrated but smaller in size, indicating that the volume of taxi travel in these areas was
relatively low. The nodes in the remaining areas were more scattered and smaller in size.
In addition, numerous taxi trips interacted between two important transportation service
nodes, including Shenzhen BaoAn international airport and Shenzhen North railway station
and occurred in the regions, including Nanshan District, Futian District, and Luohu District.

The network flow diagram between each UFA unit during the peak periods of week-
days are shown in Figure 9.
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Figure 9. The directed network of taxi flow in peak periods of weekdays: (a) Network in morning
peak hours of weekdays; (b) network in evening peak hours of weekdays.

In Figure 9, during the weekday morning peak, the node sizes were larger in areas,
such as the central and southern part of Futian District and the southern part of Luohu
District, while the node sizes in the remaining areas were smaller. This result indicated that
the hotspot areas during the morning peak were mainly distributed in Futian District and
Luohu District, which have the most prominent commercial and trade service functions
in Shenzhen. Due to the strong comprehensive economic strength of Futian District and
Luohu District and their geographical location near the port, taxi interactions within and
between the two districts were more frequent. Compared with the morning peak, the node
size in the southern part of Futian District was smaller during the evening peak, indicating
a decrease in taxi travel volume in the region. Meanwhile, the node size in the southern
part of Luohu District was increased, indicating an increase in taxi travel in the region.
The color depth of the edges showed that the taxi flow between Futian District and Luohu
District increased during the evening peak, especially for long distance trips.

The network flow diagram between each UFA unit during peak periods of weekends
are shown in Figure 10.
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Compared with the morning peak period on weekdays (see Figure 9), it can be seen
in Figure 10 that the node degree values dropped significantly during the morning peak
period of weekends, and the edge distribution was sparser. In particular, the node sizes
in the southern and central part of Futian District were significantly decreased, while the
distribution was sparser, indicating a significant decrease in taxi traffic in the central and
southern part of Futian District. Compared with the same period on weekdays, the sizes of
two nodes, including Shenzhen North railway station and Shenzhen railway station, were
larger. The reason may be due to the large number of urban migratory birds in Shenzhen.
Due to the high housing price in Shenzhen, people choose to buy houses in neighboring
cities (e.g., Dongguan, Huizhou, etc.). These people live in Shenzhen during weekdays
and return to neighboring cities by intercity trains during weekends, thus causing a huge
taxi flow at traffic nodes, such as Shenzhen North railway station during the weekend
morning peak. During the weekend evening peak, there were fewer extra-large nodes in the
network, mainly distributed in the central part of Futian District, central and southern part
of Luohu District, with smaller and more evenly distributed node sizes in the remaining
areas. Compared with the weekend morning peak period, the distribution of edges in
the network was denser, indicating more taxi interactions, especially that the interaction
between Yantian District and Luohu District was significantly increased.

The statistical information of networks is shown in Table 3.

Table 3. Statistical description of taxi flow network.

Period Average Degree Average Path Length Clustering Coefficient

Weekdays daily 24.016 2.771 0.267
Weekends daily 28.396 2.711 0.294

Morning peak on weekdays 3.863 3.554 0.103
Evening peak on weekdays 3.406 3.590 0.118
Morning peak on weekends 2.716 3.746 0.094
Evening peak on weekends 4.134 3.471 0.134

In Table 3, it can be seen that the average path length of weekends was smaller than
weekdays, while the clustering coefficient was larger than weekdays. This result indicated
that the taxi mobility network on weekends was more consistent with the characteristics
of a small world network than during weekdays. The average path length on weekdays
was slightly larger than the average path length on weekends, indicating that the network
connectivity diversity was stronger on weekdays, with longer interaction distances and
wider connectivity between different UFA units. The average degree of weekends was
greater than weekdays, indicating that the average number of connected edges of the taxi
mobility network was greater during weekends than during weekdays, and the network
was more stable than weekdays.

In accordance with the metrics of network in morning and evening peaks of weekdays,
we found that the average degree and the average number of connected edges were higher
during the weekday morning peak than during the weekday evening peak, indicating that
the influence of commuting behavior was more frequent during the morning peak. The
average path length and clustering coefficients of the network during the evening peak
were larger than those during the morning peak, indicating that the average interaction
distance between UFA nodes was longer during the evening peak and the network was
denser during the evening peak.

By comparing the characteristics of network during the weekend peak periods, we
found that the average degree value of the evening peak was significantly larger than the
morning peak, indicating that residents were more active in traveling during the weekend
evening peak. The average path length during the weekend morning peak was larger than
the evening peak, while the clustering coefficient was smaller than the morning peak. For
this reason, it can be concluded that the network diameter during the weekend morning
peak was larger, and the interaction distance was longer. Moreover, the network was
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sparser compared with the evening peak, while the small world characteristics of the
network during the evening peak were more significant.

The community detection results of taxi flow network are shown in Figure 11. The
modularity values of community detection results on weekdays and weekends were 0.426
and 0.435, respectively. Due to the fact that modularity values of two networks were both
larger than 0.4, we claimed that the results of community detection are reasonable. The
number of communities on weekends was less than weekdays, which can, to a certain
extent, indicate that the travel range of residents was more concentrated during weekends.
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In Figure 11, it can be seen that the results of community detection on weekdays and
weekends showed different characteristics, and the differences in community morphology
and the number of nodes reflected the spatiotemporal heterogeneity of the network struc-
ture. The taxi mobility network during weekdays was divided into five neighborhoods, and
the distribution of neighborhoods was more consistent with the administrative division.
This result indicated that taxi trips during the weekday period were predominantly within
the districts. Compared with weekdays, the community characteristics during weekends
showed significant differences. Futian District and Luohu District were divided into two
communities from one community during weekdays, and Baoan District and Longgang
District have expanded community boundaries, indicating more frequent taxi movements
within the administrative districts during weekends. In addition, Luohu District and the
southern part of Longgang District formed one community with higher intra-regional
mobility than during weekdays.

5. Conclusions and Prospect

This paper analyzed the spatiotemporal characteristics of taxi trips in Shenzhen, China
by applying the complex network analysis method in the scale of urban functional area
unit. The main findings can be summarized as follows:

(1) Taxi travel behavior is more active in urban functional area units dominated by
residential, commercial, scenic, and greenspace functions during weekends, and more
active in urban functional area units dominated by industrial function during weekdays.
In the mixed type urban functional area units dominated by residential function, the travel
volume is slightly higher on weekends than the travel volume on weekdays. In the mixed
type urban functional area units dominated by scenic and greenspace function, the travel
volume on weekends is significantly larger than the travel volume on weekdays. The urban
functional area units of public service are one of the main travel destinations, and taxi
travel in these units are more active during weekends than weekdays.

(2) During the morning peak period, the urban functional area units with higher
taxi mobility are mainly concentrated in the central and western part of Shenzhen, as
well as some units in the north. The urban functional area units as sink of flow are
mainly distributed in Futian District and Nanshan District. During the evening peak
period, the sink areas are mainly distributed in the southern part of Yantian District, the
southwestern part of Longgang District, and the eastern part of Luohu District. The
interaction relationship between different urban functional area types during weekdays is
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similar to the relationship during weekends. The top three urban functional area types in
terms of outflow are IRFA, RCFA, and PCFA, while the top three functional area types in
terms of inflow are PRFA, GSFA, and PIFA.

(3) The traffic flow network during weekdays shows a spatial pattern of “dense in
the west and south, sparse in the north and west”, indicating that there is a significant
spatial unevenness in the taxi flow of Shenzhen’s residents. Compared with weekdays,
the network during weekends is more dispersed, while the differences in node sizes
decreased, indicating that travel destinations are more diverse. The taxi mobility network
on weekends is more consistent with the characteristics of a small world network than
during weekdays. The average degree and the average number of connected edges during
the weekday morning peak are higher than during the weekday evening peak, indicating
that the influence of commuting behavior is more significant during the morning peak,
leading the network interactions to be more frequent. The pattern of community division is
more consistent with the administrative division during weekdays, indicating that taxi trips
during weekdays are predominantly within the districts. The community characteristic
during weekends is clearly different from the community characteristics during weekdays.

(4) Based on our findings, we attempt to provide few policy recommendations. First,
in accordance with the distribution of urban functional area units and the characteristics
of taxicab trips, we suggest that the transportation service capacity of the outer circle
residential areas, such as Guangming District, Pingshan District, and Dapeng New District
requires strengthening. The suggestion can provide a reference for taxi companies to
develop their operating vehicle deployment plans for different areas and for taxi drivers to
develop their cruising plans. Second, based on the characteristics of the mobility network
between different UFA units during the morning and evening peak hours, we suggest that
housing should be encouraged to be built around employment concentrations, such as
higher education institutions, large research institutes, and industrial parks in a mixed
land use manner. This can promote the integration of employment space and residential
space, thus reducing traffic emissions due to commuting behavior. The suggestion can
provide a reference for local authorities to develop urban planning. Third, based on the
characteristics of the mobility network between different UFA units, we suggest that the
proportion of green and landscaped land within the urban core (Nanshan District, Futian
District, and Luohu District) should be increased. This suggestion may help reduce the
volume of trips made by people living in the core area to parks and other attractions
in the peripheral areas during weekends, and reduce the traffic emissions generated by
long-distance trips. The suggestion may provide a reference for the local authorities to
develop urban planning. Finally, as well known, the implementation of transit-oriented
development (TOD) strategy has become a consensus for urban development in densely
populated areas around the world. Therefore, we recommend that the coverage of rail
transit stations should be increased to the UFA units with lower mobility index, especially
the southeastern part of the city. This proposal can serve as a reference for local authorities
and stakeholders involved in the design of new metro lines.

Our findings can prompt the understanding of urban mobility between different UFA
units. Compared with other studies in the same area, this paper has some novelty in the
setting of UFA as traffic analysis units and the use of complex network methods. For
example, Daniel et al. analyzed urban taxi travel behavior in Shenzhen and found that
distance, travel time, and road preference have a comparable higher influence on drivers’
route choice [60]. Nie examined the impact of ride sourcing on the taxi industry and
explored where, when, and how taxis can compete more effectively using a large taxi GPS
trajectory data set collected in Shenzhen from January 2013 to November 2015 [31]. Tu et al.
explored spatial variations of multi-modal public ridership, such as buses, metro systems,
and taxis, and the underlying controlling factors in Shenzhen. In addition, they claimed
that employment, mixed land use, and road density have significant effects on the ridership
of each mode [61]. Zheng et al. used the taxi trajectory data to investigate the spatial
layout and the allocation of management resource of the urban public green space from
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the spatial interaction perspective [62]. Shen et al. analyzed the spatiotemporal pattern of
taxi travel based on an improved network kernel density estimation method [63]. Gao et al.
investigated the impact of the modifiable areal unit problem (MAUP) for understanding
the relationships between commuting demand and built environment [64]. Feng et al.
explored the spatiotemporal variations of taxi travel routes using taxi data from five large
cities (including Shenzhen) and found that human travel can be highly non-homogeneous
with power-law scaling distributions of distances and times [65]. In previous studies, the
traffic analysis unit is mainly a regular grid, and the irregular polygons obtained using road
network segmentation are less studied. Moreover, studies that consider the urban functional
attributes of traffic analysis units are especially rare. In addition, the study of spatial
interactions between different UFA units by applying complex network analysis methods
is relatively limited. Undoubtfully, our study still has some limitations. First, due to the
differences between the classification system of Gaode POI and the classification system
of urban land use and planning standards of development land, the POI reclassification
operation in our study is bound to be somewhat subjective, which may affect the accuracy
of the urban functional area identification results. Therefore, remote sensing data, street
view data, and fieldwork data should be introduced in future studies to enhance the
accuracy of results. Second, the taxi OD data used in this paper only include traditional
cruised taxis and does not include the online car-hailing, thus leading to less comprehensive
results. In addition, the taxicab trip data in 2017 do not reflect the latest characteristics of
urban taxi mobility. Dingil et al. confirmed the reflection of spatial economic inequalities
during the COVID-19 pandemic, and demonstrated that travel distance and income level
are the two most influential factors in pandemic decision-making [66]. Since the impact
of the COVID-19 pandemic on the urban mobility is significant, it is worth noting. In
future studies, more diverse and latest trajectories data should be included to reflect
urban mobility characteristics in a comprehensive and timely manner. Finally, this paper
only analyzes the taxi pick-up and drop-off points, while taxi trajectory data also contain
important information regarding travel behavior, which can be applied to human mobility
research. Therefore, the inclusion of taxi trajectory data should be considered in the future.
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