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Abstract: Poverty data are usually collected through on-the-ground household-based socioeconomic
surveys. Unfortunately, data collection with such conventional methods is expensive, laborious, and
time-consuming. Additional information that can describe poverty with better granularity in scope
and at lower cost, taking less time to update, is needed to address the limitations of the currently
existing official poverty data. Numerous studies have suggested that the poverty proxy indicators are
related to economic spatial concentration, infrastructure distribution, land cover, air pollution, and
accessibility. However, the existing studies that integrate these potentials by utilizing multi-source
remote sensing and geospatial big data are still limited, especially for identifying granular poverty in
East Java, Indonesia. Through analysis, we found that the variables that represent the poverty of East
Java in 2020 are night-time light intensity (NTL), built-up index (BUI), sulfur dioxide (SO2), point-of-
interest (POI) density, and POI distance. In this study, we built a relative spatial poverty index (RSPI)
to indicate the spatial poverty distribution at 1.5 km × 1.5 km grids by overlaying those variables,
using a multi-scenario weighted sum model. It was found that the use of multi-source remote sensing
and big data overlays has good potential to identify poverty using the geographic approach. The
obtained RSPI is strongly correlated (Pearson correlation coefficient = 0.71 (p-value = 5.97× 10−7)
and Spearman rank correlation coefficient = 0.77 (p-value = 1.58× 10−8) to the official poverty data,
with the best root mean square error (RMSE) of 3.18%. The evaluation of RSPI shows that areas
with high RSPI scores are geographically deprived and tend to be sparsely populated with more
inadequate accessibility, and vice versa. The advantage of RSPI is that it is better at identifying
poverty from a geographical perspective; hence, it can be used to overcome spatial poverty traps.

Keywords: spatial poverty index; remote sensing; geospatial big data; zonal statistics; East Java Indonesia

1. Introduction

Poverty is a historical problem that almost all countries have not been able to clearly
solve [1]. According to the UN, approximately 8.2% of people in the world were living in
poverty in 2019 [2]. People are considered poor if they live on less than USD 1.90 a day [3].
To overcome this problem, the UN proposed to “end poverty in all its forms everywhere”
as the first goal of their Sustainable Development Goals (SDGs); this goal is expected to be
achieved by 2030 [4]. Consequently, the reduction of poverty has become a challenging task
for all countries, especially for developing or less developed countries [5]. Indonesia is one
of the developing countries that is facing poverty. According to Statistics Indonesia, locally
known as Badan Pusat Statistik (BPS), there are approximately 10.14% or 27.54 million
Indonesian people living in poverty as of March 2021 [6]. To reduce poverty, through the
Indonesia SDGs Roadmap Toward 2030 [7], the government has set targets for the poverty
rate of Indonesia to drop to 6.5–7% by 2024 and 4.4–5% by 2030.
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To reach Indonesia’s poverty reduction target, comprehensive poverty monitoring by
policymakers plays a significant role. Poverty monitoring in Indonesia is carried out based
on official poverty data obtained through the National Socio-Economic Survey (SUSENAS).
SUSENAS data collection is conventionally conducted through an on-the-ground house-
hold survey that is conducted every six months. Unfortunately, data collection with this
conventional method is limited in scope, expensive, laborious, and time-consuming [8].
This deficiency causes limitations in Indonesia’s poverty data representation in terms of
coverage and time. Data limitation is widely considered one of the main factors for inef-
fectiveness in providing social assistance [9] according to Indonesia’s poverty reduction
strategies, based on the 2020–2024 National Mid-Term Development Plan [10]. Therefore,
poverty estimation with better granularity in scope and requiring less cost and time to up-
date is needed in order to ameliorate the limitations of the existing household survey-based
poverty data collection.

In comparison to conventional socioeconomic survey data, remote-sensing satellite
imagery and geospatial big data are valuable resources [11–13], due to their uniqueness and
objectivity, by which to observe socio-economic and physical phenomena from a multiple-
scale perspective effectively and accurately [14,15]. The advantages of the use of this
data are lower costs, frequent updates, and the granularity of the area coverage represen-
tation [15,16]. Recent studies have shown that night-time light satellite imagery (NTL)
has great potential to capture socio-economic phenomena [17,18], such as gross domestic
product (GDP) [19–22], housing vacancy rate [23], electric power consumption [24], popu-
lation [25], and others [26]. Indirectly, NTL data show the development of human society,
which is correlated with economic activity intensity. This data can identify poverty accu-
rately, effectively, and granularly [27]. Several studies have used NTL to identify poverty.
Yu et al. [28] reported that NTL data had great potential in identifying poverty. Despite
its great potential as one of the best poverty proxy indicators, NTL alone is insufficient as
a single data source because poverty is a complex concept and has regional characteristics
that are more related to its topography; hence, integration with other geospatial features is
required to improve the quality of estimation [29].

As well as night-time satellite imagery, daytime satellite imagery also has the ability
to describe socioeconomic conditions. Daytime satellite imagery captures geographical
characteristics that indicate the socio-economic conditions of an area. This is proven by
the fact that land use or land cover, built-up growth, and accessibility could be used as
proxies for certain socioeconomic indicators, such as poverty [30]. Tian et al. [31] concluded
that the causes of regional poverty can be structurally different, based on geographical
characteristics. Dawson et al. [32] revealed that the NDVI (normalized difference vegetation
index) was significantly correlated with poverty, both positive high and/or negative high,
in both shrinking and growing countries. The built-up index (BUI) has the ability to map
urban areas [33] that are related to regional poverty [34]. Land surface temperature (LST)
also has the ability to indicate regional poverty; it tends to be high in low-income and
high-poverty areas [35]. Ahmed [36] stated that the urban thermal field variance index
(UTFVI), which is created using NDVI, the normalized difference built-up index (NDBI),
and LST, is mostly related to the expansion of urban areas. In addition, the normalized
difference water index (NDWI) also has the potential to be used as an approach to detect
urban areas. Zheng [37] built a vegetation–water-adjusted NTL urban index (VWANUI)
that integrated NTL, NDVI, and NDWI, which provides a more accurate and detailed
extraction of urban land.

Remote-sensing satellite imagery can also capture air pollution information, which
can indicate poverty. According to Baloch et al. [38] and Sakti et al. [39], the increase
in poverty has a detrimental effect on environmental pollution. Carbon monoxide (CO)
concentration is related to urbanization and economic growth [40,41]. Nitrogen dioxide
(NO2) is positively correlated to GDP [42]. Sulfur dioxide (SO2) is significantly related to
population density and energy consumption [43]. Therefore, CO, NO2, and SO2 can be
used to map the environmental pollution related to poverty. Moreover, the use of geospatial
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big data, such as point-of-interest (POI) data, is another potential option to identify poverty
geographically. Shi et al. [14] stated that POI density and POI cost distance can reflect
the convenience of human survival and production supporting the degree of regional
socio-economic development, which is closely related to poverty.

Several studies have identified poverty from various geographic aspects through
remote sensing and big data. Duque et al. [44] used high-resolution satellite imagery to
produce an intra-urban poverty index using land-cover data. They found that the built-up
index can explain up to 59% of the variability in the survey-based slum index. Principal
component analysis (PCA) has also been used to summarize the spectral information
obtained [45]. Niu et al. [46] developed the multi-source data poverty index (MDPI) based
on the characteristics of the built environment obtained from remote sensing satellite
imagery, consisting of land cover composition (NDVI, NDBI, and NDWI), NTL, and social
conditions obtained from housing rent data. From this study, it was found that there is
a high consistency between the MDPI and the official poverty measurement. Shi et al. [14]
also developed a poverty index based on remote-sensing satellite imagery and geospatial
big data, the comprehensive poverty index (CPI). The CPI was developed by combining
NTL data, the digital elevation model (DEM), NDVI, and POI data to map poverty at 500-m
spatial resolution. The results suggest that CPI provides a powerful way of identifying
poverty distribution.

Multiple sources of remote sensing and geospatial big data have promising potential
for capturing the geography of poverty (GOP), which studies poverty from a geographical
point of view [47]. To the best of our knowledge, investigation regarding a study identifying
the relative spatial poverty of Indonesia that integrates the potential of remote sensing
and geospatial big data is still limited, especially in terms of using economic spatial
concentration (NTL), infrastructure distribution (BUI), land cover (NDVI and NDWI),
air pollution (CO, NO2, and SO2), and accessibility (POI) as combined poverty proxy
indicators. However, the availability of this information can support the limitations of the
official poverty data. To answer this problem based on the existing potential, we proposed
a new approach to map poverty, with better granularity in scope and at a lower cost. In
particular, this study aims to: (1) calculate the relative spatial poverty index (RSPI) based on
multisource remote sensing and geospatial big data that represent poverty in the case study
area, using a median aggregation method at 1.5 km grid level; (2) provide a 1.5-km spatial
resolution RSPI poverty map; and (3) validate the obtained RSPI through numerical and
descriptive approaches. We selected East Java, Indonesia as a case study area and focused
our research on poverty in 2020 in East Java. In 2020, East Java was the province with
the largest number of poor people in Indonesia [48]. The obtained results are expected to
provide a lower-cost granular spatial poverty map that needs less time to update, to support
the existing official poverty data. Thus, policy decisions are expected to be more effective
and efficient as a consequence, so that the poverty reduction target can be achieved.

2. Materials and Methods
2.1. Study Area

East Java is one of 34 provinces in Indonesia with Kota Surabaya as the capital province.
East Java consists of 38 regencies/municipalities. The percentage of East Java in poverty
in 2020 has reached 11.09, or approximately 4,419,100 people who are considered to be
living in poverty [48]. Figure 1 shows the map of East Java as the case study, along with
the distribution of official poverty data at the regency/municipality level in 2020. Official
poverty data were calculated, based on a monetary expenditure approach, through the
Indonesia National Socio-Economic Survey, SUSENAS [48].
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The poverty of East Java is concentrated in the regencies on Madura Island, the
northeast part of the East Java province. Madura Island is lacking in fertile areas and is in
the form of a plateau without volcanoes and dry agricultural land [49]. In 2020, the poverty
of Sampang Regency was the highest in East Java, reaching 22.78%, followed by Bangkalan
(20.56%), and Sumenep (20.18%) [48]. Kota Batu (3.89%) and Kota Malang (4.44%) are the
municipalities with the lowest poverty rates in East Java. Both municipalities are well-
developed areas with fertile plateaus and tourism areas [50,51]. Kota Surabaya, the largest
metropolitan city in East Java and the second-largest in Indonesia, has the fourth-lowest
poverty rate, with a value of 5.02% [48,52]. Physiographically, the southern region of East
Java is a plateau area with volcanoes in the middle, while in the northwest, there are
limestone mountains that are relatively barren.

2.2. Data Used in This Study

To identify spatial poverty in East Java, there are two types of geospatial data used
in this study. The first type uses remote sensing raster images obtained from multisource
satellite images; we used night-time light intensity (NTL) images from NOAA-VIIRS, the
normalized difference vegetation index (NDVI), built-up index (BUI), and normalized
difference water index (NDWI) from Sentinel-2, land surface temperature (LST) from
MODIS, and carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) from
Sentinel-5P. We selected currently publicly available remote-sensing data sources with the
highest resolution. Remote-sensing satellite imagery data were collected and preprocessed
through the Google Earth Engine, a cloud-based platform designed to store and process
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earth data. The Google Earth Engine supported the processing of the satellite image data
into classification tasks [53–55]. The area and time scope of the data collection is East Java
Province, Indonesia from 1 January 2020 to 31 December 2020.

The second type used is geospatial big data. We used point-of-interest (POI) data
obtained from the Open StreetMap. A huge number of point locations of important
places are included in the POI data, with 1 July 2020 as the time reference. We filtered
several POI categories that are related to poverty according to previous studies [56,57].
Generally, four POI categories were included in this study: education, health, finance, and
tourism. There were more than 13,000 points collected, including those representing a hotel,
restaurant, hospital, tourist attraction, post office, cafe, school, theatre, mall, university, etc.
This data describes the accessibility of an area. The data used in this study are presented
systematically in Table 1. From Table 1, we can see that the highest satellite spatial resolution
is Sentinel-2 (10 m) and the lowest is Sentinel-5P (1.1 km). To accommodate the lowest
resolution, we chose a 1.5 km spatial resolution poverty map as the output of this study. The
detailed data pre-processing and calculation of the variables are described in Section 2.3.

Table 1. Summary of data sources and variables.

Source Spatial
Resolution Variable Band Used Year Data Analysis Units

Socio-
Economic

References

NOAA-VIIRS
[58] 750 m Night-time Light

Intensity (NTL) avg_rad One-year NTL value nanowatts/
cm2/sr [17,24–28,59,60]

Sentinel-2 [61] 10 m

Normalized
Difference

Vegetation Index
(NDVI) [62]

B4 (Red) and B8
(NIR)

The median value of
2315 cloud masked

images.

index [32,36,37]

Built-Up Index
(BUI) [63]

B4 (Red), B8
(NIR), and B11

(SWIR 1)
index [33,63]

Normalized
Difference Water

Index (NDWI) [64]

B3 (Green) and
B8 (NIR) index [36,37]

MODIS [65] 1000 m Land Surface
Temperature (LST) LST_Day_1 km

The median value of
365 cloud-masked

images.
Kelvin [35,36]

Sentinel-5P
[66–68] 1113.2 m

Carbon Monoxide
(CO)

CO column
number density

The median value of
the obtained images

in 2020.

mol/m2 [40]

Nitrogen Dioxide
(NO2)

NO2 column
number density mol/m2 [42]

Sulfur Dioxide
(SO2)

SO2 column
number density mol/m2 [43]

Open Street
Map [69]

- POI Density -
The number of points
in a 1.5 km × 1.5 km

grid.
points [14]

- POI Distance -

The distance from the
center of the

1.5 km × 1.5 km grid
to the nearest point.

meter [56,57]
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For validation purposes, we used the official poverty data at the regency/municipality
level, as published by BPS. The data was obtained through the 2020 Indonesia National
Socio-Economic Survey, SUSENAS. In this data, poverty is seen as an economic inability
to meet basic food and non-food needs, as measured from the expenditure approach.
A population is categorized as poor if their average monthly per capita expenditure on
basic food and non-food needs is below the poverty line [48].

2.3. Methodology

In this study, we built a relative spatial poverty index (RSPI) for additional infor-
mation that describes poverty with better granularity in scope and lower cost, with less
time to update. RSPI is supposed to enhance the limitations of the existing household
survey-based poverty data collection methods. The research framework of this study is
schematically illustrated in Figure 2. This study started by collecting and pre-processing
data, transforming data, integrating data, performing correlation analysis, and selecting
variables, calculating RSPI, then validating and interpreting the result. In performing our
analysis and visualization, we utilized Python 3.6.9 and QGIS 3.10.4. The expected output
was the 1.5 km × 1.5 km RSPI spatial poverty map and its validation. Further detailed
explanations are outlined below.
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2.3.1. Data Collection and Pre-Processing

The data collected from the sources that have been described were then pre-processed.
Pre-processing data is one of the most important tasks for this index, including preparing
the data and converting it to the proper format [70,71]. In this study, data pre-processing
mostly aims to clean and improve the quality of the data to be analyzed. Data pre-
processing that is performed for remote sensing satellite imagery is different from geospatial
big data; the details are explained as follows.

Remote Sensing Satellite Imagery Data Pre-Processing

The remote-sensing satellite imagery data used in this study is a collection of the
images from 1 January 2020 to 31 December 2020. The obtained images are then pre-
processed through four stages: cloud selection, cloud masking, median reducing, and band
compositing. Cloud selection and cloud masking of Sentinel-2 and MODIS satellite imagery
is performed, based on the quality assessment described in Table 2.

Table 2. Sentinel-2 and MODIS cloud selection and cloud masking.

Satellite Data Source Band Value

Sentinel-2 QA60 Bit 10 (opaque clouds) equal 0
Bit 11 (cirrus clouds) equal 0

MODIS Terra LST Daily QC_Day Bits 0–1 (Mandatory QA flags) equal 0

The collected NTL data are the composite image that has been corrected for cloud
cover using the VIIRS Cloud Mask (VCM) product. Median reducing is then performed to
obtain one value for each observation that represents the satellite images from one year. To
get NDVI, BUI, and NDWI values from Sentinel-2 images, band compositing is conducted
using the following formulas [62–64,72]:

NDVI =
NIRband 8 − Redband 4
NIRband 8 + Redband 4

(1)

NDBI =
SWIRband 1 − NIRband 8
SWIRband 1 + NIRband 8

(2)

BUI = NDBI − NDVI (3)

NDWI =
Greenband 3 − NIRband 8
Greenband 3 + NIRband 8

(4)

The obtained remote sensing satellite imagery data are shown in Figure 3.

Geospatial Big Data Pre-Processing

The point-of-interest (POI) data used in this study are in the form of vector data
that contain points. The main pre-processing method performed on POI data is cal-
culating POI density and POI distance. To calculate the relative spatial poverty index
(RSPI) with 1.5 km × 1.5 km spatial resolution, the calculation of POI density and POI
distance are done to fill the value on each grid. POI density is defined as the number of
points in a 1.5 km × 1.5 km grid. POI distance is defined as the minimum distance from
1.5 km × 1.5 km grid center to the nearest POI calculated using the Euclidean distance
approach. We calculate POI distance in meter units. The obtained remote sensing satellite
imagery data are shown in Figure 4.
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2.3.2. Data Transformation

There are two main objectives of data transformation application in this study, firstly,
getting values with a similar range with the aim of no variable dominating other variables,
and secondly, accommodating heteroscedasticity in the data so that better analysis could
be obtained. We applied the Yeo-Johnson power transformation to achieve the determined
objectives. Yeo-Johnson transformation is a form of Box-Cox transformation that can deal
with both positive and negative data; this transformation can be applied to handle the
variability of variables that are unequal across the range by making it more Gaussian-
like [73]. This data transformation is defined as follows:

hλ(x) =


(1+x)λ−1

λ i f λ 6= 0 and x ≥ 0
log(1 + x) i f λ = 0 and x ≥ 0

− (1−x)2−λ

2−λ i f λ 6= 2 and x < 0
−log(1− x) i f λ = 2 and x < 0

(5)

where x is the input data and λ is the parameter.

2.3.3. Data Integration

To calculate the relative spatial poverty index (RSPI) with 1.5 km × 1.5 km spatial
resolution, we applied aggregation to take the median value of the raster satellite imagery
data, based on the 1.5 km × 1.5 km grid shapefile, and integrate it with geospatial big
data. Besides this, for correlation analysis purposes, we applied zonal statistics to convert
raster-based values into administrative-based values by ascertaining the median to make
them comparable to the official administrative-based poverty data. The expected final
output from this step is a 1.5 km × 1.5 km East Java vector grid and administrative-based
vector, with the defined attributes shown in Table 1.

2.3.4. Correlation Analysis and Variable Selection

In this study, correlation analysis was conducted to determine the relationship between
each geospatial variable defined in Table 1 and East Java’s official poverty data. We intended
to find the relationship at the 1.5 km × 1.5 km grid-level but, due to the limitation of
official poverty data, we could only measure it at the regency/municipality administrative
level. Both Pearson and Spearman correlation analyses were conducted to determine the
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relationship. The equation below shows the formula to establish the Pearson correlation
coefficient (r):

rxy =
n ∑n

1 xiyi − (∑n
1 xi)(∑n

1 yi)√(
n ∑n

1 xi
2 − (∑n

1 xi)
2
) √(

n ∑n
1 yi

2 − (∑n
1 yi)

2
) (6)

where rxy represents the correlation between xi as the first feature, yi is the second feature,
and n is the number of observations. The Spearman correlation is calculated in the same
way by changing the observation value to its ranking value. The correlation coefficient (r)
ranges from 0 to 1. The direction of the relationship is indicated by a positive or negative
sign. Table 3 shows the guidelines for interpreting the results of the correlation coefficient (r)
according to Sugiyono [74]. The correlation significance test is then carried out to determine
whether the correlation coefficient obtained was statistically significant at the α (significance
level) of 0.05. The defined null hypothesis is that there is no correlation between the two
variables, while the alternative hypothesis is defined as assuming that there is a correlation
between the two variables.

Table 3. Correlation coefficient interpretation adapted from [74].

Correlation Coefficient Interpretation

0.00 ≤ |r| ≤ 0.199 Very Weak

0.2 ≤ |r| ≤ 0.399 Weak

0.4 ≤ |r| ≤ 0.599 Moderate

0.6 ≤ |r| ≤ 0.799 Strong

0.8 ≤ |r| ≤ 1.000 Very Strong

Although several studies have shown that geospatial variables are related to poverty,
Wang et al. [75] stated that regional poverty may be varied in terms of spatial differences.
From this correlation analysis, we selected variables that are statistically significant and
correlated to the East Java official poverty data, according to the hypothesis testing. The
selected variables should also be moderately, strongly, or very strongly (|r| ≥ 0.4) correlated
with the East Java official poverty data, according to its correlation coefficient measure.
Therefore, the RSPI is built based on variables that linearly represent poverty in East Java.

2.3.5. Relative Spatial Poverty Index (RSPI) Calculation

The relative spatial poverty index (RSPI) is calculated by overlaying selected geospa-
tial variables that represent poverty in East Java. In order to overlay the variables, we
implemented a weighted sum model. Several previous studies have implemented this
method for constructing a geospatial index [76–78]. The following formula shows the
application of the weighted sum model for RSPI construction.

RSPI =
p

∑
i=1

wixi (7)

where p is the number of overlaid variables used, w is the assigned weight, and x is the
observed value.

We used two approaches when performing the weight calculation. First, we estab-
lished the correlation-based weight; correlation coefficient information was used as the
weights. Variables with higher correlations are assumed to represent poverty better. Second,
we used the PCA-based weight. These weights are calculated via the first principal compo-
nent, established using the principal component analysis (PCA) method. Several studies
have used PCA as an approach to calculating the socioeconomic index. Uddin et al. [79]
used PCA for mapping the socio-economic vulnerability of the coastal region. It was found
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that PCA is a very useful method for identifying vulnerable areas in the coastal region of
Bangladesh. Cartone and Postiglione [80] used PCA to build a spatial deprivation index.

2.3.6. Validation Assessment

Validation assessment is an important way to establish how far RSPI could describe
poverty in East Java. We used two validation assessment approaches. The first method,
numerical evaluation, is an evaluation to measure the similarity between the obtained
result and the available ground-truth data numerically. In this evaluation, we calculated the
Pearson and Spearman correlation, root mean square error (RMSE), and R2. The following
formulas show the calculation of RMSE and R2:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (8)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (9)

where yi is the true value, ŷi is the predicted value, yi is the mean of true value, and
n is the number of observations. It is not possible to evaluate each pixel due to the
limitations of ground-truth data availability. Therefore, we aggregated the pixel values for
each regency/municipality by calculating the mean to create administrative-based data
for comparison.

Second, in terms of descriptive evaluation, we visually compared the obtained re-
sult with the ground-truth data. Several previous studies have shown that ground-truth
identification through high-resolution imagery can offer an evaluation option that cannot
be performed numerically on each pixel. For example, Varshney et al. [81] estimated the
percentage of roof material through Google Earth images, and Shi et al. [14] randomly
chose six points to be identified via high-resolution satellite imagery to recognize poverty
through the slope of the land. In this study, we randomly picked six 1.5 km × 1.5 km
pixels and identified their geographic characteristic areas with the high-resolution Google
Earth satellite.

3. Results
3.1. Correlation Model Development

In this study, correlation analysis was carried out to determine the closeness and
direction of the relationship between each geospatial variable and official poverty data. Cor-
relation analysis is carried out after the data has been pre-processed and transformed. Due
to the limitations of official poverty data that are only available at the regency/municipality
level, we aggregated the pixel-sized geospatial variable data by taking the median value
for each regency/municipality. Therefore, 38 observations were obtained for each geospa-
tial variable.

Figures 5 and 6 show the visualization of the geospatial variable maps, along with the
official poverty maps, to compare them at the regency/municipality level. It can be seen
that each geospatial variable describes a different spatial pattern for each region. The NTL
variable, which is a proxy for economic activity, shows that high scores tend to be scattered
in municipalities or urban areas with low poverty rates. The variables obtained from the
Sentinel-2 satellite imagery (NDVI, BUI, and NDWI), which represent land cover, indicate
that there is a homogeneous pattern in the southern regions of East Java, which comprises
areas with middle–low poverty rates.
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LST variable values tend to be high in municipalities or urban areas with a low poverty
rate. Each variable of air pollution (CO, NO2, and SO2) obtained from Sentinel-5P satellite
imagery shows different patterns. CO variable values are high in the northwest of East
Java, which is an area with middle–high poverty rates, NO2 variable values are high in
industrial areas with different poverty rates, while SO2 variable values tend to be high
in the central area, which is a densely populated mountainous area with relatively a low
poverty rate. Accessibility variables (POI density and POI distance) capture the pattern of
municipalities or urban areas with high accessibility and low poverty rates.

To achieve a better understanding of the relationship between geospatial variables
and the official poverty at the regency/municipality level, we applied correlation analysis.
Through this analysis, we acquired p-values to show the statistically significant correlated
variables and correlation coefficients that represent the closeness and direction of the
relationship. The correlation coefficient was calculated using two approaches, namely, the
Pearson and Spearman rank correlations. Table 4 shows the obtained correlation analysis
results. Interpretation of the closeness and direction of the relationship was performed,
following the method used by the authors of [74]. As we can see in Table 4, the variables
with a positive direction relationship are NDVI, NDWI, and POI distance. This shows
that the increment value of these variables will be in line with the increment of the official
poverty rate value. Conversely, the variables with a negative direction relationship are NTL
BUI, LST, CO, NO2, SO2, and POI density. This shows that the increment value of these
variables will be in line with the decrement of the official poverty rate value.

From Table 4, it can be seen that there are five variables that are statistically significant
when correlated to the official poverty rate: NTL, BUI, SO2, POI density, and POI distance.
The SO2, POI density, and POI distance variables are strongly correlated with the official
poverty rate, while NTL and BUI are moderately correlated, and the rest are weakly or
very weakly correlated. To ensure that the relative spatial poverty index (RSPI) can be
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used to represent poverty in East Java, we chose variables that are significantly correlated
(p-value < 0.05, number of observations = 38) and at least moderately correlated (|r| ≥ 0.4)
to the official poverty rate. Therefore, five variables were selected to calculate the East Java
RSPI: NTL, BUI, SO2, POI density, and POI distance.

Table 4. The correlation analysis between geospatial variables and the official poverty rate at the
regency/municipality level.

Variable

Pearson Correlation Spearman Rank Correlation

Closeness Direction
Statistically
SignificantCorrelation

Coefficient p-Value Correlation
Coefficient p-Value

NTL −0.5 0.001 −0.49 0.001 Moderate Negative Yes

NDVI 0.25 0.130 0.21 0.205 Weak Positive No

BUI −0.45 0.004 −0.44 0.005 Moderate Negative Yes

NDWI 0.14 0.401 0.14 0.401 Weak Positive No

LST −0.29 0.077 −0.31 0.058 Weak Negative No

CO −0.065 0.698 −0.054 0.747 Very Weak Negative No

NO2 −0.25 0.130 −0.26 0.114 Weak Negative No

SO2 −0.6 6.84× 10−5 −0.63 2.25× 10−5 Strong Negative Yes

POI Density −0.64 1.51× 10−5 −0.72 3.48× 10−7 Strong Negative Yes

POI Distance 0.73 1.98× 10−7 0.79 3.69× 10−9 Strong Positive Yes

3.2. Relative Spatial Poverty Index Calculation

In order to meet the requirement of providing the poverty identification with better
granularity in scope and taking the least cost and time to update, and to enhance the limi-
tations of the existing household-based poverty data collection, a relative spatial poverty
index (RSPI) is proposed by this study. By applying a weighted sum overlay, we calculated
the RSPI based on variables that were significantly correlated or were at least moderately
correlated with East Java official poverty data: NTL, BUI, SO2, POI density, and POI dis-
tance. Two weight calculation approaches were used in this study: correlation-based weight
(W1) and PCA based-weight (W2). The correlation-based weight (W1) was obtained based
on the Pearson correlation coefficient. The PCA-based weight (W2) was obtained through
the first principal component of PCA. Table 5 shows the derived weight calculations.

Table 5. Weight values for the three approaches.

Variable W1 W2

NTL −0.5 0.5

BUI −0.45 0.26

SO2 −0.6 0.29

POI Density −0.64 0.5

POI Distance 0.75 0.58

Of the two types of weighting approaches, RSPI1 is calculated using W1 weights
and RSPI2 is calculated using W2 weights. In this study, both RSPI1 and RSPI2 are
calculated on a 1.5 km × 1.5 km spatial resolution grid to achieve a poverty map, as
illustrated in Figures 7 and 8. To simplify the interpretation, we present the min–max-
scaled relative spatial poverty map, so that the displayed values are in the range of 0–1.
From Figures 7 and 8, it can be seen that the poverty maps generated by RSPI1 and RSPI2
have given similar results; low values tend to be concentrated in the central part of East
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Java. The southern and northwest parts of East Java, along with Madura Island, tend
to have relatively high values. To assess this similarity, the correlation coefficient was
calculated; the obtained Pearson correlation coefficient is 0.99 and the obtained Spearman
rank correlation is 0.98. This shows that RSPI1 and RSPI2 are strongly correlated.
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4. Discussion
4.1. RSPI Numerical Evaluation

The obtained RSPI was then validated with two approaches, namely, numerical evalu-
ation and descriptive evaluation. In the numerical evaluation, we focused on calculating
how close the RSPI values were, numerically, to the official poverty data. The descriptive
evaluation will be discussed in the next section. Due to the limitations of the official poverty
data, which is only available up to the regency/municipality level, it is not possible to
evaluate each pixel. Therefore, we aggregated the obtained RSPI pixel values for each
regency/municipality by taking the mean value; 38 RSPI values were obtained. Numerical
evaluation has been performed using two approaches: correlation analysis and RMSE
calculation. Table 6 shows the obtained correlation analysis.

Table 6. The correlation between RSPI and the official regency/municipality level poverty rate.

Index

Pearson Correlation Spearman Rank Correlation

Closeness Direction
Statistically
SignificantCorrelation

Coefficient p-Value Correlation
Coefficient p-Value

RSPI1 0.71 5.97× 10−7 0.77 1.58× 10−8 Strong Positive Yes

RSPI2 0.69 1.64× 10−6 0.72 3.48× 10−7 Strong Positive Yes

From Table 6, we can see that each RSPI is statistically significant (p-value < 0.05)
correlated to the official poverty data. The Pearson and Spearman rank correlation
coefficient shows that RSPI1 and RSPI2 are strongly positively correlated to the offi-
cial poverty data. The highest correlation coefficient was obtained by RSPI1 (Pearson
correlation coefficient = 0.71 (p-value = 5.97× 10−7) and the Spearman rank correlation
coefficient = 0.77 (p-value = 1.58× 10−8) which is calculated using correlation-based weight.
The positive direction indicates that the increment value of RSPI variables tends to be in
line with the increment percentage of official poverty data. We also built a simple linear
regression model, with RSPI as the independent variable and poverty rate data as the
dependent variable. Table 7 shows the obtained model, along with its RMSE and R2 value
for each RSPI.

Table 7. Simple linear regression result.

RSPI1 RSPI2

Model Pov = 12.603 + 1.7063RSPI1 Pov = 12.605 + 2.2191RSPI2

RMSE 3.18% 3.25%

R2 0.50 0.48

As we can see, the model built by RSPI1 has the lowest RMSE value and the highest
R2 value. Therefore, we can conclude that RSPI1 is the best index to numerically predict
the official poverty data. Figure 9 shows the prediction of the official poverty rate, based
on RSPI1 and RSPI2, and the official poverty rate. It can be seen that the distribution of
predictions that are closest to the official poverty is the prediction based on RSPI1. Hence,
we choose RSPI1 as the most representative index of the official poverty data. Figure 9
shows the regression plot of the official poverty rate based on RSPI1 and RSPI2.
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4.2. RSPI Ground Truth Analysis

Many previous studies have shown that ground truth identification through high-
resolution imagery can offer an evaluation option that cannot be performed numerically on
each pixel. In this study, we randomly picked six 1.5 km × 1.5 km pixels and identified
their geographic characteristic areas through Google Earth images. The selected RSPI plot
is RSPI1, which is the most representative index of the official poverty data. Figure 10
shows the resulting RSPI ground-truth check. It can be seen that areas with high RSPI
scores tend to be sparsely populated areas with inadequate accessibility. This area tends
to be a spatially deprived area with limited accessibility. On the other hand, areas with
low RSPI scores tend to be densely populated areas that have better adequate accessibility.
Urban areas tend to have low RSPI values.
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4.3. Comparison between the Obtained RSPI and the Official Poverty Data

Although the calculated relative spatial poverty index (RSPI) maps poverty from
the geographical point of view, we were interested in descriptively comparing the ob-
tained result with the official poverty data, which was calculated using the expenditure
approach. Figure 11 shows the comparison between the aggregated regency/municipality-
level RSPI (Figure 11a,b) with the official poverty data (Figure 11c). Aggregation is per-
formed due to the limitations of the official poverty data, which is only available up to the
regency/municipality level. It can be seen that RSPI1 and RSPI2 present similar results.
The areas with the lowest spatial poverty are Kota Surabaya, Kota Malang, and the other
urban areas. These areas tend to be non-monetary-deprived areas according to the official
poverty data. The southern part of East Java tends to be non-monetary-deprived areas, but
it does tend to have high RSPI scores. Therefore, it can be said that although these areas
are less poor (according to the official poverty data), these areas still have the ability to
be affected by spatial poverty traps or geographically deprived areas. Moreover, it can be
seen that Madura Island’s regencies, which are areas with high poverty rates according
to the official poverty data, tend to have high RSPI scores. This indicates that, apart from
monetary deprivation, these areas are also spatially deprived.
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4.4. Limitations and Future Possible Directions

Poverty data are usually collected through on-the-ground household-based socioe-
conomic surveys. Unfortunately, data collection with this method is limited in scope,
expensive, laborious, and time-consuming [8]. Indonesia’s official poverty data are ob-
tained through the Indonesian National Socio-Economic Survey (SUSENAS), which is
conducted every six months at the household level. However, data collection by surveys
cannot be separated from the sampling error and non-sampling error [82]. Sampling error
is obtained from the use of samples in estimating the population. No matter how many
samples are used, there will always be a difference or error between the estimated and
the actual value [83]. The non-sampling error is obtained from the inaccuracy of the data
collection. Sari et al. [84] revealed that the SUSENAS data collection is still inseparable from
human errors, such as inaccuracies during data entry. In addition, the SUSENAS data are
only available up to the regency/municipality level, even though decision-making requires
more granular data [85]. On the other hand, remote sensing and big data offer datasets that
are unlimited, free, easier to obtain and are representative of the population. However, the
use of satellite imagery and big data, such as the relative spatial poverty index (RSPI), only
captures poverty information from the geographical point of view, and there has never been
an evaluation of how this data can describe the actual poverty, which is multidimensional.
From a comparison of the advantages and disadvantages, it is possible to cover the existing
weaknesses with the existing advantages via data integration. In this case, we can obtain
monetary poverty information at the regency/municipality level through official poverty
data and observe spatial poverty to an accuracy of 1.5 km × 1.5 km using RSPI.

The integration of the official poverty data and RSPI is also useful for describing
poverty from another point of view. So far, the calculation of poverty in Indonesia still uses
the expenditure approach. A population is categorized as poor if their average monthly
per capita expenditure on basic food and non-food needs is below the poverty line [48].
In fact, poverty is a multidimensional problem that cannot only be seen from the point
of view of income or expenditure [86,87]. Therefore, studies on measuring poverty from
various approaches are still continuously conducted, for example, from the geographic
approach. Areas with unique geographic characteristics play an important role in poverty
mapping; poor people are found to be more likely to live in certain places [80,88]. The
spatial poverty traps are situations where geographical capital, for example, the area’s
physical nature and socio-political conditions are low and poverty is high, as a result of
geographic disadvantage [89]. Spatial poverty traps are areas where people are at higher
risk of being trapped in poverty rather than elsewhere, due to spatial disadvantages [90].
In the case of identifying poverty traps, RSPI can be a better approach because it is built
from various geographic variables.

To sum up, RSPI has the ability to capture spatial poverty at a 1.5-km grid level and
also has the possibility to be updated every month. The RSPI datasets were obtained
from free and publicly available data sources, which are faster to access and require fewer
human resources. Nevertheless, RSPI can only describe poverty from a geographical point
of view. Moreover, further and more accurate validation up to a 1.5-km grid level is still
needed to evaluate how far the ability of RSPI can go in describing poverty, which is
a multidimensional problem. Therefore, we suggest the application of data integration
between RSPI and official poverty data for better poverty identification and monitoring.

In addition, it is possible for RSPI calculations to be applied to other regions of
Indonesia or even to other countries by paying attention to the spatial characteristics that
characterize poverty in a particular area. This is in line with the research of Wang et al. [75],
which states that regional poverty can vary according to spatial differences. To ensure
that certain geospatial variables can be used to describe poverty in certain areas, further
analysis is needed regarding the relationship between the geospatial variables used and
poverty in the specific geospatial area.



ISPRS Int. J. Geo-Inf. 2022, 11, 275 20 of 28

5. Conclusions

To enhance the limitations of the existing household survey-based poverty data collec-
tion, this study provides a relative spatial poverty index (RSPI) with better granularity in
scope, which is less costly and takes less time to update. The RSPI calculations utilize the
use of multisource remote sensing satellite imagery and geospatial big data. The RSPI in
the case study area, East Java, Indonesia, is calculated based on geospatial variables that
specifically represent poverty in East Java in 2020: night-time light intensity (NTL), the
built-up index (BUI), sulfur dioxide (SO2), point-of-interest (POI) density data, and POI
distance data, which are statistically significant correlated or at least moderately correlated
with the official poverty data. These variables are then overlaid by a weighted sum model
using two weight calculation approaches: correlation-based weight and PCA-based weight.
It was found that the use of multisource remote sensing and geospatial big data has good
potential for representing poverty in East Java, Indonesia in 2020. This is evidenced by
the strong correlation between the RSPI at the regency/municipality level and the official
poverty data. The best RSPI for representing poverty in East Java 2020, calculated using
a correlation-based weight-sum model, is strongly correlated with official poverty data,
with a Pearson correlation coefficient of 0.71 (p-value = 5.97× 10−7) and a Spearman rank
correlation coefficient of 0.77 (p-value = 1.59× 10−8). This RSPI is also quite promising
for use as a predictor variable in the estimation of poverty data. We built a simple linear
regression model, estimating the East Java, Indonesia 2020 official poverty rate with RSPI
as the only predictor variable. The model obtained an RMSE of 3.18%, with an R2 up to
0.50. RSPI is then presented in the form of a non-technical, user-friendly poverty map with
a spatial resolution of 1.5 km × 1.5 km. The results of the descriptive evaluation of this
map indicate that areas with high RSPI scores tend to be geographically deprived areas
that are sparsely populated, with more inadequate accessibility; in contrast, areas with low
RSPI scores tend to be densely populated areas that have better accessibility. Therefore,
the ability of RSPI to map spatially deprived areas can be used to support the official
poverty data.
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Appendix A

Remote-Sensing Variables Ground-Truth Check

To gain a deeper understanding of the use of multisource remote-sensing satellite
imagery, we identified several unique points through high-resolution Google satellites.
Night-time light (NTL) is the most commonly used remote sensing imagery for estimating
poverty [59]. NTL can record luminosity from human activity at night and has been demon-
strated to have a great ability to estimate various socioeconomic parameters, including
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poverty. A higher NTL value indicates higher economic activity in an area [60]. Through
descriptive analysis, we observed several NTL values, to identify the corresponding geo-
graphic features and compare them to the official East Java poverty data. Figure A1 shows
some of the NTL values and their ground-truth check. Using Figure A1, we will discuss
some of the anomalies that exist in the use of NTL data in identifying poverty in East
Java. First, we can see that high NTL scores are clustered in Kota Surabaya. Surabaya
is the largest metropolitan city in Indonesia after Jakarta. However, official poverty data
shows that Kota Batu, Kota Malang, and Kota Madiun are the three lowest-poverty re-
gencies/municipalities in East Java. Second, we can also see that most of the largest NTL
values are not in regencies/municipalities with low poverty. Areas with energy plants
and factories that operate late into the night tend to have high NTL values. Third, high
values of NTL were also found in plantations with all-night lighting which did not indicate
poverty. These anomalies indicate that in some areas, for example, in East Java, the use of
NTL values as a poverty approach needs to be supported by the use of other data for better
identification. From Figure A1, we can also see that areas with low NTL values are usually
the forests around mountains.
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Figure A1. East Java NTL values (nanowatts/cm2/sr) and their resulted ground-truth checking.

Dawson et al. [32] revealed that the NDVI (normalized difference vegetation index)
was significantly correlated with poverty (positive high and/or negative high) in both
shrinking and growing countries. From Figure A2, we can see that the very low NDVI
value is likely from a water-covered area, such as a pond; this value is usually lower than
that of buildings. High NDVI values indicate a dense forest area. This is in line with a study
by Maurya R. et al. [91], which stated that negative NDVI values represent non-vegetated
areas such as water, while positive NDVI values indicate the vegetated ones. It can be seen
that Kota Surabaya and Kota Malang, which are densely built-up areas, tend to have lower
NDVI values, and poverty in these areas is also low.
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Figure A2. East Java NDVI (index) values and their resulted ground truth checking.

According to Lee et al. [63], the built-up index (BUI) is compatible with classifying
urban and non-urban areas. The higher BUI value indicates the higher possibility of
a pixel signifying a built-up area. However, in the case of heterogeneous East Java, a very
high BUI value was obtained not only in urban built-up areas but also in lime mines and
inland water, as we can see in Figure A3. Lime mining is mostly found in the Tuban and
Bojonegoro regencies. Therefore, this area also had high BUI values, besides the urban
areas. In fact, according to official poverty data, Tuban and Bojonegoro are regencies with
high poverty. We can also see that those areas with low BUI values are usually forests and
mountain craters. This is why regencies/municipalities with many mountains, such as
Kediri, Malang, Lumajang, Jember, and Pasuruan, tend to have low BUI values.
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Figure A4 shows the distribution of the normalized difference water index (NDWI).
Theoretically, NDWI values above 0 indicate a water body imagery result; otherwise, values
below 0 indicate a non-water imagery result [64]. As we can see, areas covered by water are
most likely to have an NDWI value of more than zero, except for the Karangkates reservoir,
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which has an NDWI value below zero. Regencies/municipalities with many mountains,
such as Kediri, Malang, Lumajang, Jember, and Pasuruan, tend to have high NDWI values.
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Land surface temperature (LST) is often used to identify urban areas. In their research,
which examines the correlation between LST and urban heat islands, Mia et al. [92] stated
that the higher the LST value, the more extensive the urban heat island. However, as we
can see in Figure A5, in the case of East Java, areas with high LST are not only urban
areas but also arid areas and limestone mining areas. The northern part of East Java is
an area with a great deal of arid and empty land and limestone mines, which tend to have
a higher LST value than the southern area, which consists of mountains. We can see that
regencies/municipalities with high poverty rates tend to have low LST values, except for
Kota Surabaya and the regencies/municipalities around it.
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Air pollution can be one indicator of economic activity that is related to poverty.
Wu et al. [93] use CO2 (carbon dioxide) and SO2 (sulfur dioxide) to examine the poverty-
environmental trap. In this study, we examine CO (carbon monoxide), NO2 (nitrogen
dioxide), and SO2 to capture air pollution in East Java. Figures A6–A8 show the East Java
pollution indicator values and their ground-truth checks. Each pollution indicator’s high
value captures different information. From Figure A6, we can see that areas with high CO
values are industrially dense areas. This value exceeds the CO value of Kota Surabaya,
which is the second-largest metropolitan city in Indonesia. From Figure A7, we can see
that those areas with high NO2 values are steam power plants and densely populated and
industrial areas. From Figure A8, we can see that the highest SO2 values we captured are
in mountain slope areas; however, the values can be small in other areas. On the other
hand, each pollution indicator’s low value captures similar information. Areas with low
CO, NO2, or SO2 are usually mountain peaks.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 25 of 30 
 

 

 
Figure A6. East Java CO values (mol/m2) and their resulting ground-truth checking. 

 
Figure A7. East Java NO2 values (mol/m2) and their resulting ground-truth checking. 

Figure A6. East Java CO values (mol/m2) and their resulting ground-truth checking.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 25 of 30 
 

 

 
Figure A6. East Java CO values (mol/m2) and their resulting ground-truth checking. 

 
Figure A7. East Java NO2 values (mol/m2) and their resulting ground-truth checking. Figure A7. East Java NO2 values (mol/m2) and their resulting ground-truth checking.



ISPRS Int. J. Geo-Inf. 2022, 11, 275 25 of 28ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 26 of 30 
 

 

 
Figure A8. East Java SO2 values (mol/m2) and their resulting ground-truth checking. 

References 
1.  Steele, J.E.; Sundsøy, P.R.; Pezzulo, C.; Alegana, V.A.; Bird, T.J.; Blumenstock, J.; Bjelland, J.; Engø-Monsen, K.; de Montjoye, 

Y.-A.; Iqbal, A.M.; et al. Mapping Poverty Using Mobile Phone and Satellite Data. R. Soc. 2017, 14, 20160690. 
https://doi.org/10.1098/rsif.2016.0690. 

2. United Nations End Poverty in All Its Forms Everywhere. Available online: https://unstats.un.org/sdgs/report/2020/goal-01/ 
(accessed on 23 December 2021). 

3. United Nations Ending Poverty. Available online: https://www.un.org/en/global-issues/ending-poverty (accessed on 1 March 
2022). 

4. United Nations about the Sustainable Development Goals. Available online: 
https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 23 December 2021). 

5. Zhao, X.; Yu, B.; Liu, Y.; Chen, Z.; Li, Q.; Wang, C.; Wu, J. Estimation of Poverty Using Random Forest Regression with Multi-
Source Data: A Case Study in Bangladesh. Remote Sens. 2019, 11, 375. https://doi.org/10.3390/rs11040375. 

6. Statistics Indonesia (BPS). Regency/Municipality Poverty Data and Information in 2021; Statistics Indonesia: Jakarta, Indonesia, 
2021. 

7. Indonesia National Development Planning Agency (Bappenas). Indonesia SDGs Roadmap Towards 2030; Indonesia National 
Development Planning Agency: Jakarta, Indonesia, 2017. 

8. Jerven, M. Benefits and Costs of the Data for Development Targets for the Post-2015 Development Agenda. Data Dev. Assess. 
Pap. 2014, 16, 14. 

9. Laurentcia, S.; Yusran, R. Evaluation of the Non-Cash Food Assistance Program in Poverty Reduction in Padang District. J. Civ. 
Educ. 2021, 4, 7–17. https://doi.org/10.24036/jce.v4i1.433. 

10. Indonesia National Development Planning Agency (Bappenas). National Mid-Term Development Plan (RPJMN) 2020–2024; 
Indonesia National Development Planning Agency: Jakarta, Indonesia, 2020. 

11. Triscowati, D.W.; Sartono, B.; Kurnia, A.; Domiri, D.D.; Wijayanto, A.W. Multitemporal Remote Sensing Data for Classification 
of Food Crops Plant Phase Using Supervised Random Forest. In Proceedings of the 6th Geoinformation Science Symposium, 
Yogyakarta, Indonesia, 26–27 August 2019; Volume 11311, p. 1131102. 

12. Triscowati, D.W.; Sartono, B.; Kurnia, A.; Dirgahayu, D.; Wijayanto, A.W. Classification of Rice-Plant Growth Phase Using 
Supervised Random Forest Method Based on Landsat-8 Multitemporal Data. Int. J. Remote Sens. Earth Sci. 2020, 16, 187–196. 
https://doi.org/10.30536/j.ijreses.2019.v16.a3217. 

13. Wijayanto, A.W.; Triscowati, D.W.; Marsuhandi, A.H. Maize Field Area Detection in East Java, Indonesia: An Integrated 
Multispectral Remote Sensing and Machine Learning Approach. In Proceedings of the 2020 12th International Conference on 
Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 6–8 October 2020; pp. 168–173. 

14. Shi, K.; Chang, Z.; Chen, Z.; Wu, J.; Yu, B. Identifying and Evaluating Poverty Using Multisource Remote Sensing and Point of 
Interest (POI) Data: A Case Study of Chongqing, China. J. Clean. Prod. 2020, 255, 120245. https://doi.org/10.1016/j.jcle-
pro.2020.120245. 

15. Fauzi, A.I.; Sakti, A.D.; Yayusman, L.F.; Harto, A.B.; Prasetyo, L.B.; Irawan, B.; Wikantika, K. Evaluating mangrove forest de-
forestation causes in Southeast Asia by analyzing recent environment and socio-economic data products. In Proceedings of the 
39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018, Kuala Lumpur, Malaysia, 15–19 
October 2018; Asian Association on Remote Sensing: Kuala Lumpur, Malaysia, 2018; Volume 2, pp. 880–889. 

Figure A8. East Java SO2 values (mol/m2) and their resulting ground-truth checking.

References
1. Steele, J.E.; Sundsøy, P.R.; Pezzulo, C.; Alegana, V.A.; Bird, T.J.; Blumenstock, J.; Bjelland, J.; Engø-Monsen, K.; de Montjoye, Y.-A.;

Iqbal, A.M.; et al. Mapping Poverty Using Mobile Phone and Satellite Data. R. Soc. 2017, 14, 20160690. [CrossRef] [PubMed]
2. United Nations End Poverty in All Its Forms Everywhere. Available online: https://unstats.un.org/sdgs/report/2020/goal-01/

(accessed on 23 December 2021).
3. United Nations Ending Poverty. Available online: https://www.un.org/en/global-issues/ending-poverty (accessed on

1 March 2022).
4. United Nations about the Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/

sustainable-development-goals/ (accessed on 23 December 2021).
5. Zhao, X.; Yu, B.; Liu, Y.; Chen, Z.; Li, Q.; Wang, C.; Wu, J. Estimation of Poverty Using Random Forest Regression with

Multi-Source Data: A Case Study in Bangladesh. Remote Sens. 2019, 11, 375. [CrossRef]
6. Statistics Indonesia (BPS). Regency/Municipality Poverty Data and Information in 2021; Statistics Indonesia: Jakarta, Indonesia, 2021.
7. Indonesia National Development Planning Agency (Bappenas). Indonesia SDGs Roadmap Towards 2030; Indonesia National

Development Planning Agency: Jakarta, Indonesia, 2017.
8. Jerven, M. Benefits and Costs of the Data for Development Targets for the Post-2015 Development Agenda. Data Dev. Assess. Pap.

2014, 16, 14.
9. Laurentcia, S.; Yusran, R. Evaluation of the Non-Cash Food Assistance Program in Poverty Reduction in Padang District. J. Civ.

Educ. 2021, 4, 7–17. [CrossRef]
10. Indonesia National Development Planning Agency (Bappenas). National Mid-Term Development Plan (RPJMN) 2020–2024;

Indonesia National Development Planning Agency: Jakarta, Indonesia, 2020.
11. Triscowati, D.W.; Sartono, B.; Kurnia, A.; Domiri, D.D.; Wijayanto, A.W. Multitemporal Remote Sensing Data for Classification

of Food Crops Plant Phase Using Supervised Random Forest. In Proceedings of the 6th Geoinformation Science Symposium,
Yogyakarta, Indonesia, 26–27 August 2019; Volume 11311, p. 1131102.

12. Triscowati, D.W.; Sartono, B.; Kurnia, A.; Dirgahayu, D.; Wijayanto, A.W. Classification of Rice-Plant Growth Phase Using
Supervised Random Forest Method Based on Landsat-8 Multitemporal Data. Int. J. Remote Sens. Earth Sci. 2020, 16, 187–196.
[CrossRef]

13. Wijayanto, A.W.; Triscowati, D.W.; Marsuhandi, A.H. Maize Field Area Detection in East Java, Indonesia: An Integrated
Multispectral Remote Sensing and Machine Learning Approach. In Proceedings of the 2020 12th International Conference on
Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 6–8 October 2020; pp. 168–173.

14. Shi, K.; Chang, Z.; Chen, Z.; Wu, J.; Yu, B. Identifying and Evaluating Poverty Using Multisource Remote Sensing and Point of
Interest (POI) Data: A Case Study of Chongqing, China. J. Clean. Prod. 2020, 255, 120245. [CrossRef]

15. Fauzi, A.I.; Sakti, A.D.; Yayusman, L.F.; Harto, A.B.; Prasetyo, L.B.; Irawan, B.; Wikantika, K. Evaluating mangrove forest
deforestation causes in Southeast Asia by analyzing recent environment and socio-economic data products. In Proceedings of the
39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018, Kuala Lumpur, Malaysia, 15–19
October 2018; Asian Association on Remote Sensing: Kuala Lumpur, Malaysia, 2018; Volume 2, pp. 880–889.

16. Pokhriyal, N.; Zambrano, O.; Linares, J.; Hernández, H. Estimating and Forecasting Income Poverty and Inequality in Haiti Using
Satellite Imagery and Mobile Phone Data; Inter-American Development Bank: Washington, DC, USA, 2020.

http://doi.org/10.1098/rsif.2016.0690
http://www.ncbi.nlm.nih.gov/pubmed/28148765
https://unstats.un.org/sdgs/report/2020/goal-01/
https://www.un.org/en/global-issues/ending-poverty
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
http://doi.org/10.3390/rs11040375
http://doi.org/10.24036/jce.v4i1.433
http://doi.org/10.30536/j.ijreses.2019.v16.a3217
http://doi.org/10.1016/j.jclepro.2020.120245


ISPRS Int. J. Geo-Inf. 2022, 11, 275 26 of 28

17. Ghosh, T.; Anderson, S.J.; Elvidge, C.D.; Sutton, P.C. Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being.
Sustainability 2013, 5, 4988–5019. [CrossRef]

18. Rajagukguk, Y.S.; Sakti, A.D.; Yayusman, L.F.; Harto, A.B.; Prasetyo, L.B.; Irawan, B.; Wikantika, K. Evaluation of Southeast
Asia mangrove forest deforestation using longterm remote sensing index datasets. In Proceedings of the 39th Asian Conference
on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018, Kuala Lumpur, Malaysia, 15–19 October 2018; Asian
Association on Remote Sensing: Kuala Lumpur, Malaysia, 2018; Volume 2, pp. 931–937.

19. Zhao, N.; Liu, Y.; Cao, G.; Samson, E.L.; Zhang, J. Forecasting China’s GDP at the Pixel Level Using Nighttime Lights Time Series
and Population Images. GISci. Remote Sens. 2017, 54, 407–425. [CrossRef]

20. Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data
to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with
DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [CrossRef]

21. Putri, S.R.; Suganda, T.G.; Pramana, S. Bayesian Network Implementation for Modelling Indonesia’s Green Economy Condition
Based on Big Data. In Proceedings of the Seminar Nasional Official Statistics, Jakarta, Indonesia, 25 September 2021; Volume 2021,
pp. 1054–1064.

22. Sakti, A.D.; Rinasti, A.N.; Agustina, E.; Diastomo, H.; Muhammad, F.; Anna, Z.; Wikantika, K. Multi-Scenario Model of Plastic
Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data. ISPRS Int. J.
Geo-Inf. 2021, 10, 481. [CrossRef]

23. Chen, Z.; Yu, B.; Hu, Y.; Huang, C.; Shi, K.; Wu, J. Estimating House Vacancy Rate in Metropolitan Areas Using NPP-VIIRS
Nighttime Light Composite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2188–2197. [CrossRef]

24. Shi, K.; Yang, Q.; Fang, G.; Yu, B.; Chen, Z.; Yang, C.; Wu, J. Evaluating Spatiotemporal Patterns of Urban Electricity Consumption
within Different Spatial Boundaries: A Case Study of Chongqing, China. Energy 2019, 167, 641–653. [CrossRef]

25. Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An Estimate of the Global Human Population Using
Night-Time Satellite Imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [CrossRef]

26. Shi, K.; Yu, B.; Hu, Y.; Huang, C.; Chen, Y.; Huang, Y.; Chen, Z.; Wu, J. Modeling and Mapping Total Freight Traffic in China
Using NPP-VIIRS Nighttime Light Composite Data. GISci. Remote Sens. 2015, 52, 274–289. [CrossRef]

27. Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A Global Poverty Map Derived from Satellite
Data. Comput. Geosci. 2009, 35, 1652–1660. [CrossRef]

28. Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban Built-up Area Extraction from Log-
Transformed NPP-VIIRS Nighttime Light Composite Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [CrossRef]

29. Yin, J.; Qiu, Y.; Zhang, B. Identification of Poverty Areas by Remote Sensing and Machine Learning: A Case Study in Guizhou,
Southwest China. ISPRS Int. J. Geo-Inf. 2020, 10, 11. [CrossRef]

30. Sapena, M.; Ruiz, L.A.; Taubenböck, H. Analyzing Links between Spatio-Temporal Metrics of Built-up Areas and Socio-Economic
Indicators on a Semi-Global Scale. ISPRS Int. J. Geo-Inf. 2020, 9, 436. [CrossRef]

31. Tian, Y.; Wang, Z.; Zhao, J.; Jiang, X.; Guo, R. A Geographical Analysis of the Poverty Causes in China’s Contiguous Destitute
Areas. Sustainability 2018, 10, 1895. [CrossRef]

32. Dawson, T.; Sandoval, J.S.; Sagan, V.; Crawford, T. A Spatial Analysis of the Relationship between Vegetation and Poverty. ISPRS
Int. J. Geo-Inf. 2018, 7, 83. [CrossRef]

33. Kaimaris, D.; Patias, P. Identification and Area Measurement of the Built-up Area with the Built-up Index (BUI). Int. J. Adv. Remote
Sens. GIS 2016, 5, 1844–1858. [CrossRef]

34. Alkire, S.; Chatterje, M.; Conconi, A.; Seth, S.; Vaz, A. Poverty in Rural and Urban Areas: Direct Comparisons Using the Global
MPI 2014. Briefing 2014. [CrossRef]

35. Huang, G.; Zhou, W.; Cadenasso, M.L. Is Everyone Hot in the City? Spatial Pattern of Land Surface Temperatures, Land Cover
and Neighborhood Socioeconomic Characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [CrossRef] [PubMed]

36. Ahmed, S. Assessment of Urban Heat Islands and Impact of Climate Change on Socioeconomic over Suez Governorate Using
Remote Sensing and GIS Techniques. Egypt. J. Remote Sens. Space Sci. 2018, 21, 15–25. [CrossRef]

37. Zheng, Y.; Zhou, Q.; He, Y.; Wang, C.; Wang, X.; Wang, H. An Optimized Approach for Extracting Urban Land Based on
Log-Transformed DMSP-OLS Nighttime Light, NDVI, and NDWI. Remote Sens. 2021, 13, 766. [CrossRef]

38. Baloch, M.A.; Khan, S.U.-D.; Ulucak, Z.S.; Ahmad, A. Analyzing the Relationship between Poverty, Income Inequality, and CO2
Emission in Sub-Saharan African Countries. Sci. Total Environ. 2020, 740, 139867. [CrossRef]

39. Sakti, A.D.; Fauzi, A.I.; Takeuchi, W.; Pradhan, B.; Yarime, M.; Vega-Garcia, C.; Agustina, E.; Wibisono, D.; Anggraini, T.S.;
Theodora, M.O.; et al. Spatial Prioritization for Wildfire Mitigation by Integrating Heterogeneous Spatial Data: A New Multi-
Dimensional Approach for Tropical Rainforests. Remote Sens. 2022, 14, 543. [CrossRef]

40. Wang, Y.; Li, J.; Wang, L.; Lin, Y.; Zhou, M.; Yin, P.; Yao, S. The Impact of Carbon Monoxide on Years of Life Lost and Modified
Effect by Individual-and City-Level Characteristics: Evidence from a Nationwide Time-Series Study in China. Ecotoxicol. Environ.
Saf. 2021, 210, 111884. [CrossRef]

41. Sakti, A.D.; Rahadianto, M.A.E.; Pradhan, B.; Muhammad, H.N.; Andani, I.G.A.; Sarli, P.W.; Abdillah, M.R.; Anggraini, T.S.;
Purnomo, A.D.; Ridwana, R.; et al. School Location Analysis by Integrating the Accessibility, Natural and Biological Hazards to
Support Equal Access to Education. ISPRS Int. J. Geo-Inf. 2022, 11, 12. [CrossRef]

http://doi.org/10.3390/su5124988
http://doi.org/10.1080/15481603.2016.1276705
http://doi.org/10.3390/rs6021705
http://doi.org/10.3390/ijgi10070481
http://doi.org/10.1109/JSTARS.2015.2418201
http://doi.org/10.1016/j.energy.2018.11.022
http://doi.org/10.1080/01431160010007015
http://doi.org/10.1080/15481603.2015.1022420
http://doi.org/10.1016/j.cageo.2009.01.009
http://doi.org/10.1109/LGRS.2018.2830797
http://doi.org/10.3390/ijgi10010011
http://doi.org/10.3390/ijgi9070436
http://doi.org/10.3390/su10061895
http://doi.org/10.3390/ijgi7030083
http://doi.org/10.23953/cloud.ijarsg.64
http://doi.org/10.35648/20.500.12413/11781/ii020
http://doi.org/10.1016/j.jenvman.2011.02.006
http://www.ncbi.nlm.nih.gov/pubmed/21371807
http://doi.org/10.1016/j.ejrs.2017.08.001
http://doi.org/10.3390/rs13040766
http://doi.org/10.1016/j.scitotenv.2020.139867
http://doi.org/10.3390/rs14030543
http://doi.org/10.1016/j.ecoenv.2020.111884
http://doi.org/10.3390/ijgi11010012


ISPRS Int. J. Geo-Inf. 2022, 11, 275 27 of 28

42. Han, C.; Gu, Z.; Yang, H. EKC Test of the Relationship between Nitrogen Dioxide Pollution and Economic Growth—A Spatial
Econometric Analysis Based on Chinese City Data. Int. J. Environ. Res. Public Health 2021, 18, 9697. [CrossRef]

43. Bakhsh, K.; Akmal, T.; Ahmad, T.; Abbas, Q. Investigating the Nexus among Sulfur Dioxide Emission, Energy Consumption, and
Economic Growth: Empirical Evidence from Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 7214–7224. [CrossRef] [PubMed]

44. Duque, J.C.; Patino, J.E.; Ruiz, L.A.; Pardo-Pascual, J.E. Measuring Intra-Urban Poverty Using Land Cover and Texture Metrics
Derived from Remote Sensing Data. Landsc. Urban Plan. 2015, 135, 11–21. [CrossRef]

45. Sakti, A.D.; Tsuyuki, S. Spectral Mixture Analysis of Peatland Imagery for Land Cover Study of Highly Degraded Peatland
in Indonesia. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science; Copernicus
Publications: Göttingen, Germany, 2015; Volume XL-7/W3.

46. Niu, T.; Chen, Y.; Yuan, Y. Measuring Urban Poverty Using Multi-Source Data and a Random Forest Algorithm: A Case Study in
Guangzhou. Sustain. Cities Soc. 2020, 54, 102014. [CrossRef]

47. Zhou, Y.; Liu, Y. The geography of poverty: Review and research prospects. J. Rural Stud. 2019, in press. Available online:
https://www.sciencedirect.com/science/article/abs/pii/S0743016718303899 (accessed on 30 September 2021). [CrossRef]

48. Statistics Indonesia (BPS). Regency/Municipality Poverty Data and Information in 2020; Statistics Indonesia: Jakarta, Indonesia, 2020.
49. Wasonowati, C.; Sulistyaningsih, E.; Indradewa, D.; Kurniasih, B. Physiological Characters of Moringa Oleifera Lamk in Madura.

In AIP Conference Proceedings; American Institute of Physics: University Park, MD, USA, 2019; Volume 2120, p. 30024.
50. Wisnubroto, E.I.; Rustiadi, E.; Fauzi, A.; Murtilaksono, K. The Dynamic Changes in Peri-Urban Agricultural Area and Typology

of Multi-Function Agriculture in Batu City, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 667, 12093. [CrossRef]
51. Setiawan, F.C.; Rahadian, S. Social, Cultural and Political Conditions in Malang Before Kanjuruhan Kingdom. Soc. Sci. Stud.

Sustain. ISSUES 2019, 63, 63–69.
52. Santoso, E.B.; Aulia, B.U. Ecological Sustainability Level of Surabaya City Based on Ecological Footprint Approach. IOP Conf. Ser.

Earth Environ. Sci. 2018, 202, 12044. [CrossRef]
53. Nurmasari, Y.; Wijayanto, A.W. Oil Palm Plantation Detection in Indonesia Using Sentinel-2 and Landsat-8 Optical Satellite

Imagery (Case Study: Rokan Hulu Regency, Riau Province). Int. J. Remote Sens. Earth Sci. 2021, 18, 1–18. [CrossRef]
54. Saadi, T.D.T.; Wijayanto, A.W. Machine Learning Applied to Sentinel-2 and Landsat-8 Multispectral and Medium-Resolution

Satellite Imagery for the Detection of Rice Production Areas in Nganjuk, East Java, Indonesia. Int. J. Remote Sens. Earth Sci. 2021,
18, 19–32.

55. Putri, S.R.; Wijayanto, A.W. Learning Bayesian Network for Rainfall Prediction Modeling in Urban Area Using Remote Sensing
Satellite Data (Case Study: Jakarta, Indonesia). In Proceedings of the International Conference on Data Science and Official
Statistics, Online, 13–14 November 2021; Volume 2021, pp. 77–90.

56. Tingzon, I.; Orden, A.; Sy, S.; Sekara, V.; Weber, I.; Fatehkia, M.; Garcia, M.; Dohyung, H. Mapping Poverty in the Philippines
Using Machine Learning, Satellite Imagery, and Crowd-Sourced Geospatial Information. SPRS-Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2019, 42, 425–431. [CrossRef]

57. Ledesma, C.; Garonita, O.L.; Flores, L.J.; Tingzon, I.; Dalisay, D. Interpretable Poverty Mapping Using Social Media Data, Satellite
Images, and Geospatial Information. arXiv 2020, arXiv:2011.13563.

58. Earth Observation Group Payne Institute for Public Policy Colorado School of Mines VIIRS Nighttime Day/Night Band
Composites Version 1. Available online: https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_
MONTHLY_V1_VCMCFG (accessed on 10 September 2021).

59. Zhao, N.; Cao, G.; Zhang, W.; Samson, E.L.; Chen, Y. Remote Sensing and Social Sensing for Socioeconomic Systems: A Compari-
son Study between Nighttime Lights and Location-Based Social Media at the 500 m Spatial Resolution. Int. J. Appl. Earth Obs.
Geoinf. 2020, 87, 102058. [CrossRef]

60. Zhou, N.; Hubacek, K.; Roberts, M. Analysis of Spatial Patterns of Urban Growth across South Asia Using DMSP-OLS Nighttime
Lights Data. Appl. Geogr. 2015, 63, 292–303. [CrossRef]

61. Copernicus ESA European Union Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Available online: https://developers.
google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (accessed on 10 September 2021).

62. Purevdorj, T.S.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between Percent Vegetation Cover and Vegetation Indices. Int.
J. Remote Sens. 1998, 19, 3519–3535. [CrossRef]

63. Lee, J.; Lee, S.S.; Chi, K.H. Development of an Urban Classification Method Using a Built-up Index. In Proceedings of the 6th
WSEAS International Conference on Remote Sensing, Takizawa, Japan, 4–6 October 2010; pp. 39–43.

64. McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

65. NASA LP DAAC at the USGS EROS Center MOD11A1.006 Terra Land Surface Temperature and Emissivity Daily Global
1 km. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A1 (accessed on
15 September 2021).

66. Copernicus ESA European Union Sentinel-5P OFFL CO: Offline Carbon Monoxide. Available online: https://developers.google.
com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO (accessed on 10 September 2021).

67. Copernicus ESA European Union Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide. Available online: https://developers.google.
com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2?hl=en (accessed on 10 September 2021).

http://doi.org/10.3390/ijerph18189697
http://doi.org/10.1007/s11356-021-15898-9
http://www.ncbi.nlm.nih.gov/pubmed/34468945
http://doi.org/10.1016/j.landurbplan.2014.11.009
http://doi.org/10.1016/j.scs.2020.102014
https://www.sciencedirect.com/science/article/abs/pii/S0743016718303899
http://doi.org/10.1016/j.jrurstud.2019.01.008
http://doi.org/10.1088/1755-1315/667/1/012093
http://doi.org/10.1088/1755-1315/202/1/012044
http://doi.org/10.30536/j.ijreses.2021.v18.a3537
http://doi.org/10.5194/isprs-archives-XLII-4-W19-425-2019
https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG
https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG
http://doi.org/10.1016/j.jag.2020.102058
http://doi.org/10.1016/j.apgeog.2015.06.016
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
http://doi.org/10.1080/014311698213795
http://doi.org/10.1080/01431169608948714
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A1
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2?hl=en
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2?hl=en


ISPRS Int. J. Geo-Inf. 2022, 11, 275 28 of 28

68. Copernicus ESA European Union Sentinel-5P OFFL SO2: Offline Sulphur Dioxide. Available online: https://developers.google.
com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2 (accessed on 10 September 2021).

69. Open StreetMap Open StreetMap. Available online: https://www.openstreetmap.org/ (accessed on 15 July 2020).
70. Tamilselvi, R.; Sivasakthi, B.; Kavitha, R. An Efficient Preprocessing and Postprocessing Techniques in Data Mining. Int. J. Res.

Comput. Appl. Robot. 2015, 3, 80–85.
71. Fauzi, A.I.; Sakti, A.D.; Robbani, B.F.; Ristiyani, M.; Agustin, R.T.; Yati, E.; Nuha, M.U.; Anika, N.; Putra, R.; Siregar, D.I.; et al.

Assessing Potential Climatic and Human Pressures in Indonesian Coastal Ecosystems Using a Spatial Data-Driven Approach.
ISPRS Int. J. Geo-Inf. 2021, 10, 778. [CrossRef]

72. Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery.
Int. J. Remote Sens. 2003, 24, 583–594. [CrossRef]

73. Raymaekers, J.; Rousseeuw, P.J. Transforming Variables to Central Normality. Mach. Learn. 2021, 1–23. [CrossRef]
74. Sugiyono. Educational Research Methods: Quantitative, Qualitative and R&D Approaches; Alfabeta: Bandung, Indonesia, 2010.
75. Wang, B.; Tian, J.; Yang, P.; He, B. Multi-Scale Features of Regional Poverty and the Impact of Geographic Capital: A Case Study

of Yanbian Korean Autonomous Prefecture in Jilin Province, China. Land 2021, 10, 1406. [CrossRef]
76. Liu, Y.; Xu, Y. A Geographic Identification of Multidimensional Poverty in Rural China under the Framework of Sustainable

Livelihoods Analysis. Appl. Geogr. 2016, 73, 62–76. [CrossRef]
77. Wang, Y.; Chen, Y. Using VPI to Measure Poverty-Stricken Villages in China. Soc. Indic. Res. 2017, 133, 833–857. [CrossRef]
78. Goyal, M.K.; Singh, V.; Meena, A.H. Geospatial and Hydrological Modeling to Assess Hydropower Potential Zones and Site

Location over Rainfall Dependent Inland Catchment. Water Resour. Manag. 2015, 29, 2875–2894. [CrossRef]
79. Uddin, M.N.; Islam, A.K.M.S.; Bala, S.K.; Islam, G.M.T.; Adhikary, S.; Saha, D.; Haque, S.; Fahad, M.G.R.; Akter, R. Mapping of

Climate Vulnerability of the Coastal Region of Bangladesh Using Principal Component Analysis. Appl. Geogr. 2019, 102, 47–57.
[CrossRef]

80. Cartone, A.; Postiglione, P. Principal Component Analysis for Geographical Data: The Role of Spatial Effects in the Definition of
Composite Indicators. Spat. Econ. Anal. 2021, 16, 126–147. [CrossRef]

81. Sakti, A.D.; Takeuchi, W. A data-intensive approach to address food sustainability: Integrating optic and microwave satellite
imagery for developing long-term global cropping intensity and sowing month from 2001 to 2015. Sustainability 2020, 12, 3227.
[CrossRef]

82. Varshney, K.R.; Chen, G.H.; Abelson, B.; Nowocin, K.; Sakhrani, V.; Xu, L.; Spatocco, B.L. Targeting Villages for Rural Development
Using Satellite Image Analysis. Big Data 2015, 3, 41–53. [CrossRef] [PubMed]

83. Assael, H.; Keon, J. Nonsampling vs. Sampling Errors in Survey Research. J. Mark. 1982, 46, 114–123. [CrossRef]
84. Sarmah, H.K.; Hazarika, B.B.; Choudhury, G. An Investigation on Effect of Bias on Determination of Sample Size on the Basis of

Data Related to the Students of Schools of Guwahati. Int. J. Appl. Math. Stat. Sci. 2013, 2, 33–48.
85. Sari, F.E.K.; Fitria, I.; Hariyanto, D.D.; Fachriansyah, M.A. Internship Lecture Report Analysis of Internal Control Activities of

the National Socio-Economic Survey (Susenas) Central Bureau of Statistics Jombang Regency; STIE PGRI Dewantara: Surabaya,
Indonesia, 2019.

86. Afifah, U.N.; Faradis, R. Sosial Ekonomi Nasional Survey (Susenas) Data Optimization with Small Area Estimation (SAE) Case
Study: Village Level Proverty Estimation in Belitung Timur Regency. In Proceedings of the Seminar Nasional Official Statistics,
Jakarta, Indonesia, 24 September 2019; Volume 2019, pp. 132–139.

87. Chakravarty, S.R.; Deutsch, J.; Silber, J. On the Watts Multidimensional Poverty Index and Its Decomposition. World Dev. 2008, 36,
1067–1077. [CrossRef]

88. Jalan, J.; Ravallion, M. Geographic Poverty Traps? A Micro Model of Consumption Growth in Rural China. J. Appl. Econom. 2002,
17, 329–346. [CrossRef]

89. Grant, U. The Chronic Poverty Report 2004–2005; Institute for Development Policy & Management, University of Manchester:
Manchester, UK, 2004.

90. Addison, T.; Harper, C.; Prowse, M.; Shepherd, A.; Barrientos, A.; Braunholtz-Speight, T.; Evans, A.; Grant, U.; Hickey, S.;
Hulme, D.; et al. The Chronic Poverty Report 2008–2009: Escaping Poverty Traps. Eur. J. Dev. Res. 2008, 21, 159.

91. Maurya, R.; Gupta, P.R.; Shukla, A.S.; Sharma, M.K. Building Extraction from Very High Resolution Multispectral Images Using
NDVI Based Segmentation and Morphological Operators. In Proceedings of the IEEE-International Conference on Advances In
Engineering, Science and Management (ICAESM-2012), Nagapattinam, India, 30–31 March 2012; pp. 577–581.

92. Mia, B.; Bhattacharya, R.; Woobaidullah, A.S.M. Correlation and Monitoring of Land Surface Temperature, Urban Heat Island
with Land Use-Land Cover of Dhaka City Using Satellite Imageries. Int. J. Res. Geogr. 2017, 3, 10–20.

93. Wu, J.; He, L.-Y.; Zhang, Z. Does China Fall into Poverty-Environment Traps? Evidence from Long-Term Income Dynamics and
Urban Air Pollution. FEEM Work. Pap. 2019, 5, 1–27.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2
https://www.openstreetmap.org/
http://doi.org/10.3390/ijgi10110778
http://doi.org/10.1080/01431160304987
http://doi.org/10.1007/s10994-021-05960-5
http://doi.org/10.3390/land10121406
http://doi.org/10.1016/j.apgeog.2016.06.004
http://doi.org/10.1007/s11205-016-1391-5
http://doi.org/10.1007/s11269-015-0975-1
http://doi.org/10.1016/j.apgeog.2018.12.011
http://doi.org/10.1080/17421772.2020.1775876
http://doi.org/10.3390/su12083227
http://doi.org/10.1089/big.2014.0061
http://www.ncbi.nlm.nih.gov/pubmed/27442844
http://doi.org/10.1177/002224298204600212
http://doi.org/10.1016/j.worlddev.2007.10.003
http://doi.org/10.1002/jae.645

	Introduction 
	Materials and Methods 
	Study Area 
	Data Used in This Study 
	Methodology 
	Data Collection and Pre-Processing 
	Data Transformation 
	Data Integration 
	Correlation Analysis and Variable Selection 
	Relative Spatial Poverty Index (RSPI) Calculation 
	Validation Assessment 


	Results 
	Correlation Model Development 
	Relative Spatial Poverty Index Calculation 

	Discussion 
	RSPI Numerical Evaluation 
	RSPI Ground Truth Analysis 
	Comparison between the Obtained RSPI and the Official Poverty Data 
	Limitations and Future Possible Directions 

	Conclusions 
	Appendix A
	References

