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Abstract: Urban change detection is an important part of sustainable urban planning, regional
development, and socio-economic analysis, especially in regions with limited access to economic and
demographic statistical data. The goal of this research is to create a strategy that enables the extraction
of indicators from large-scale orthoimages of different resolution with practically acceptable accuracy
after a short training process. Remote sensing data can be used to detect changes in number of
buildings, forest areas, and other landscape objects. In this paper, aerial images of a digital raster
orthophoto map at scale 1:10,000 of the Republic of Lithuania (ORT10LT) of three periods (2009-2010,
2012-2013, 2015-2017) were analyzed. Because of the developing technologies, the quality of the
images differs significantly and should be taken into account while preparing the dataset for training
the semantic segmentation model DeepLabv3 with a ResNet50 backbone. In the data preparation
step, normalization techniques were used to ensure stability of image quality and contrast. Focal
loss for the training metric was selected to deal with the misbalanced dataset. The suggested model
training process is based on the transfer learning technique and combines using a model with weights
pretrained in ImageNet with learning on coarse and fine-tuning datasets. The coarse dataset consists
of images with classes generated automatically from Open Street Map (OSM) data and the fine-tuning
dataset was created by manually reviewing the images to ensure that the objects in images match the
labels. To highlight the benefits of transfer learning, six different models were trained by combining
different steps of the suggested model training process. It is demonstrated that using pretrained
weights results in improved performance of the model and the best performance was demonstrated
by the model which includes all three steps of the training process (pretrained weights, training on
coarse and fine-tuning datasets). Finally, the results obtained with the created machine learning
model enable the implementation of different approaches to detect, analyze, and interpret urban
changes for policymakers and investors on different levels on a local map, grid, or municipality level.

Keywords: urban change; aerial images; transfer learning

1. Introduction

Sustainable regional development can be achieved only by employing proper statistical
information of the regions, such as building density, industrialization score, road network
indicators, proportion of slums and informal settlements in the region, and others. These
parameters can be applied to develop future urban growth scenarios [1,2] and use them in
the decision-making process [3]. However, there are several major issues with access to
statistical data. Some developing regions lack reliable statistical data because the census is
not carried out regularly. The model trained on data-rich areas can be applied to extract
complex features such as road network and urban areas in data-poor areas [4]. Another
issue is that data are not collected at the considered spatial detail level. For example,
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in linking the quality of life index to European administrative units at the level of basic
regions for the application of regional policies (NUTS2—nomenclature of territorial units
for statistics), the socio-economic indicators were not available or were incomplete in time
or space [5]. Access to urban change data is essential when planning regional infrastructure
and identifying shifting consumer trends. Historically, more residents lived in the rural
areas, but later they started to move closer to the city center. Currently, the residents are
moving to the suburbs due to high housing prices in the city or other personal reasons.
Because of this trend, the density of population in the suburbs is rapidly growing, which
causes issues due to lack of the appropriate infrastructure, such as schools, hospitals,
shopping places, and other facilities. This results in decreased productivity, e.g., because of
higher levels of traffic jams. Infrastructure could be planned in advance if proper future
urban growth estimates were developed. Moreover, the forecast of the urban development
is important for the private companies to plan their investment strategies.

The progress of robotics, computer vision techniques, and consumer computational
resources enables the application of remote sensing data to estimate the statistical param-
eters from the bird’s view. Aerial and satellite images can be used to determine the land
use type, the type of residential area, the urban growth rate, and many other parameters
which can be later applied in the analysis of urban development. On the other hand, the
process of aerial image collection and preparation is expensive and time-consuming, and
therefore is performed every few years. Due to the developing technologies, the quality of
images collected in different periods differs significantly and the direct change detection
methodologies cannot be applied. Our research focuses on developing the methodology
that enables the estimation of change dynamics at the selected regional level after a short
training process of the machine learning model. Our contribution includes the scheme
for dataset collection and preparation for the training, the training scheme based on the
transfer learning and its analysis, and the examples of model application at different levels.

The remainder of the paper is organized as follows: Section 2 reviews related work.
The problem description is provided in Section 3. Materials and methods are given in
Section 4. Section 5 illustrates the results. The conclusions are given in Section 6.

2. Related Work

Various data sources and methodologies can be employed to conduct urban change
analysis. For example, demographic change can be estimated according to socio-economic
indicators [6] and other statistical data. However, this type of data lacks focus on the spatial
aspect of the change. Thus, remote sensing data can be used as an additional source for
urban change analysis. The main types of remote sensing data are optical and synthetic-
aperture radar (SAR) images. The optical images are usually acquired using unmanned
aerial vehicles and satellites [7]. They can be grouped into panchromatic, multispectral,
and hyperspectral images according to the number of spectral bands that varies from one
to thousands [8]. The SAR images are created by transmitting, receiving, and recording
radio waves from the satellite to the target scene. The main advantage of SAR technology is
that it can be applied independently of weather conditions [9]. A comprehensive overview
of remote sensing data application for economics has been provided in [10]. The examples
provided in the article include applying analysis of night lights to determine local economic
activity, studying impact of infrastructure investments, monitoring land use, and others.
To detect change in a series of remote sensing data, mainly two approaches are used.

The first approach is based on the unsupervised learning methods. The goal of these
methods is to identify change of pixels in RGB images without addressing the types
of detected objects. The motivation to apply unsupervised learning methods is usually
based on lack of labeling data, its poor quality, or the enormous amount of manual work
required to prepare the appropriate labels. Change detection methods have been applied
to satellite or aerial images taken with a timespan. For example, Celik proposed to apply
principal component analysis (PCA) and C-fuzzy means clustering to determine changes
between two images of the Landsat database in 2007 and 2011 [11]. The C-fuzzy means
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clusterization was performed for vectors obtained from square nonoverlapping blocks of
the difference image after PCA. The vectors were grouped into two clusters and represented
image blocks with and without change. Jong and Bosman developed an unsupervised
method for change detection in satellite images [12]. In the proposed method, the difference
image of two temporal images was generated based on the feature maps of convolutional
neural networks which are used for the semantic segmentation of the input images. The
multiscale and multiresolution Gaussian-mixture-model guided by saliency enhancement
was proposed in [13]. The suggested framework is based on definite steps and implements
image segmentation by wavelet fusion of difference images. The authors state that the
model outperforms the state-of-the-art unsupervised machine learning models. Due to a
shortage of datasets that can be used in change detection problems, the transfer learning
approach was applied in [14] to develop a convolutional neural network (CNN) model
for the image segmentation task and later transfer the feature extraction to train it for
change detection.

Another approach is based on the supervised learning and focuses on detecting objects,
such as roads, buildings, and forests, in the remote sensing data. The deep-learning-based
change detection methods are grouped as late fusion and early fusion in [15]. In the late
fusion methods, the difference image is generated, and the change detection is performed
only after the image segmentation is applied for each image separately. In the methods
of early fusion, the difference image is generated in the beginning from the input images.
The authors combine early fusion and late fusion and propose an effective CNN-based
model to detect local changes in aerial images [15]. The attention-guided Siamese network
based on a pyramid feature was proposed in [16] and showed excellent change detection
results in complex urban environments. Transfer learning is also widely applicable in image
analysis and, therefore, analysis of remote sensing data. The pretrained network was used
to extract socio-economic indicators from satellite images and determine poverty levels
in Uganda [4]. It enables the ability to overcome a shortage of training data, as low-level
features have already been learned during training on ImageNet. However, the authors
emphasize the different characteristics of object-centric images in the ImageNet dataset
and satellite images. The transfer learning can also be applied on custom datasets. For
example, to estimate slum regions, the initial CNN model was trained on high-quality
satellite images of QuickBird and further transferred to Sentinel-2 images [17]. Results
of remote sensing data analysis can be combined with various socio-economic indicators,
thus reducing the costs of surveys. The CNN model trained on high-resolution satellite
images was employed to predict poverty in five African countries. As the method requires
only publicly available data, it reduces survey costs and helps to estimate wealth level
accurately [18]. High-resolution satellite images were used to train a CNN-based machine
learning model which predicts assets and after transfer learning can be applied to predict a
variety of socio-economic indicators [19].

To sum up, most publications are dedicated to identifying objects of a specific class at
the finest level in high-resolution satellite images. Low-resolution images (e.g., Copernicus)
are mainly a used in the research to identify the type of land use (e.g., agriculture land).
Usually, such visual information is integrated with radar images and focuses on reflection
analysis. Only a limited number of studies for a series of images at the country level has
been identified. In most of them, limited information on the methodological approach and
possible issues is provided. Thus, our publication focuses on filling this gap.

In this publication, we focus on creating a strategy that enables the extraction of land
use change indicators from a series of visual geospatial data after a short training process.
The strategy is based on the transfer learning application for convolutional neural networks.
The pretrained convolutional neural network was trained in two additional steps. In the
first step, the automatically generated coarse dataset was used for training. In the second
step, the fine-tuning was performed on the manually supervised dataset. This article
expands the research presented in [20] by analyzing the performance of the models which
were created using different combinations of the suggested training steps and highlighting
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change detection at the fine level of analysis. Six machine learning models were trained
to demonstrate the impact of the suggested training steps. Afterwards, several examples
were provided on how the obtained results can be further processed and analyzed at
different levels. For example, on the finest level the results can be viewed as a class map of
a specific location. On the middle level, the results of different periods can be compared by
calculating the difference of indicators in the grid cell. On the highest level, the dynamics
of the indicator can be analyzed at the municipality level. With respect to the level, the
results of urban change analysis can be useful for policymakers and investors.

3. Problem Description

The semantic segmentation of aerial images can be applied to identify land use in any
area, such as city, municipality, or country, without the necessity to relate it to administra-
tive unit. The socio-economic indicators, such as population density, road network, and
others, can be estimated by analyzing the segmentation results. However, such application
provides estimation of indicators for one image acquisition period. In order to use the
indicators in the decision-making process, the socio-economic dynamics should be esti-
mated by analyzing a time series of aerial images. The problem occurs due to a significantly
different quality of aerial images obtained in time, as the collection of aerial images is
an expensive and time-consuming process. The image preprocessing techniques must be
applied to avoid the biased results which may appear due to the different resolution. The
aerial images of three different periods were used for the model training in order to reduce
model bias which appears due to different technical parameters of images. As a result,
the model can be applied to segment aerial images acquired in a period which was not
included in the training set. This enables the creation of additional points in the time series
of the indicator or identify changes by comparing segmentation results of images from
different periods.

4. Materials and Methods
4.1. Dataset Selection

The changes in the land use (for example, new buildings, forests, agricultural land)
can be identified from the series of aerial images of the same location. The example of such
an idea is demonstrated in Figure 1 as the new buildings appear in the aerial image of the
last period.

I - il

4 Fifm s Br
2012-2013 m.

s

2015-2017 m.

Figure 1. Example of view difference at the same location in different periods.

Dynamics of indicators reflecting changes in buildings, forests, and other land use may
determine a development rate of the region. By analyzing change speed of different munic-
ipalities, it is possible to identify clusters of similar development patterns. Visual data of
Lithuania were selected for the analysis to track changes in the series of visual information
and interpret the generalized results. The research focuses on two main objectives:

1.  To create a machine learning (ML) model, which enables the ability to obtain inter-
pretable values on the local level for images of different periods and process the results
at a detailed level;
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2. To demonstrate the applicability of the transfer learning approach in the ML model
training process.

Different data sources for visual data were investigated. The requirements for the data
were to ensure the adequate resolution of the images and to provide historical data. For
example, Copernicus Sentinel Missions [21] do not fit these criteria due to low resolution
for the building segmentation and unavailable historical data. Admittedly, the accuracy of
the model can be improved by enhancing image resolution. Shermeyer and Etten suggested
a technique to apply super-resolution to satellite images and concluded that such approach
yielded a 13-36% improvement of mean average precision as the best results when detecting
objects [22]. The image resolution can also be enhanced by applying a discrete wavelet
transform [23]. Furthermore, Sentinel-2 data were used to perform pixel-wise classification
of the built-up areas [24,25]. However, the lack of historical data is a major issue in rejecting
some data sources. A digital raster orthophoto map at scale 1:10,000 of the Republic of
Lithuania (ORT10LT) covers three different periods (2009-2010, 2012-2013, 2015-2017) and
has an acceptable quality of images. The ORT10LT is provided by the State Enterprise
National Centre for Remote Sensing and Geoinformatics “GIS-Centras” (SE “GIS-Centras”).
Thus, this dataset was chosen for the analysis.

One of the issues that must be considered in the analysis of a time series of remote
sensing data is stability of the model accuracy for images of different periods. For instance,
if model accuracy for the images of one period is 90%, and another of 86%, it would be
unclear whether the error appears due to labeling that does not match the actual information
in the image of the specific period or due to the error of the machine learning (ML) model.
Thus, it is important to ensure that accuracy for images of different periods is consistent.
The ORT10LT images of different periods have different quality due to the image spectrum
and resolution. The resolution of ORT10LT images in the first period was 0.5 m x 0.5m
and 8 bit RGB depth (7 bit effective); for the images of the second and third periods, the
resolution increased to 0.25 m x 0.25 m per pixel. The color depth for the images in the
second period was 8 bit RGB and 16 bit for the images of the third period. The changes
in spectrum and resolution parameters were caused by the fact that in time, technical
capabilities enabled attaining better quality. The technology jump can be demonstrated by
the fact that before 2000, visual data for the same region were available only in grey scale
compared to the current RGB of 16 bit depth.

4.2. Methodology Overview

A scheme for the suggested ML model training is provided in Figure 2. The training
process consists of three main steps and is based on the concept of the transfer learning. The
DeepLabv3 model (M) with a ResNet50 backbone is initialized with random parameters.
In the first step, the model pretrained on the ImageNet data is loaded (M1). The second
and third steps are dedicated to adjusting the model for the specific problem and contains
training the model on coarse (M12) and fine-tuning (M123) datasets. The coarse dataset
was generated automatically by selecting different locations and labeling the images based
on the Open Street Map (OSM) data. However, the ground truth data may vary due to
the time delay between the actual changes, which are visible in images and data input to
registers or external databases. This is a reason why an additional step with training on the
fine-tuning dataset was added. The fine-tuning dataset was created according to the same
principles as the coarse dataset, but the images were manually reviewed and only the ones
for which labeled data meet the visual information were used in the training process. Both
coarse and fine-tuning datasets cover all three analyzed periods. As the images of different
periods have different quality, they were normalized to match the lowest quality (oldest
in time).
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Step 1 Step 2 Step 3
Coarse dataset Fine-tuning dataset
Image
Net
Normalizing spectrum and size
(0.5m / px) of images
M M1 M12 M123

DeeplLabV3

Figure 2. Scheme of ML model training steps.

The scheme of ML model application is provided in Figure 3. The analyzed images are
normalized according to parameters used in the training step. The preprocessed images are
fed into the ML model and return the inference results. The interpretation of the obtained
results depends on the analysis level.

Deep Lab v3

Normalizing spectrum and
size (0.5m / px) of images

INFERENCE
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ORT10LT
(2009-2010 / 2012-2013 / 2015-2017)

Example of inference results

(Period 2015-2017, BirZai municipality, Lithuania)

Figure 3. Scheme of ML model application.
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4.3. Dataset Collection and Preprocessing

The ORT10LT is the digital orthophoto graphic map M 1:10,000 of the territory of
the Republic of Lithuania. It is based on aerial photographs and is created in periods of
3 years. Images of periods of 20092010, 2012-2013, 2015-2017 were selected as a source of
country-specific visual information. The OSM data were used for labeling as ground truth
source. The labeling process consists of two steps. The first step is dedicated to collecting
vector data from OSM data. In the second step, the GDAL library is employed to rasterize
OSM vectors on geographical images. The labeling process is defined in Figure 4.

: - Dataset
Uniform Geospatial Data
Ground truth
httpﬁs://www.openstreetmap.org/ 1. Python Software
/- OpenStreetMap (Shapely, RasterlO, ...)

ORT10LT

=
a

2. Python Software

(GDAL, ...)

Figure 4. The scheme of two-step data labeling process.

The OSM data can be used to define labels of fine level categories based on the
purpose of land use type, for example, commercial, residential, educational, agricultural,
and industrial. For this research, 4 generalized classes were selected to represent houses,
forests, water, and other categories. The labels of the selected categories were defined
as polygons (vector data from database). The software for labeling was written by the
authors in the Python programming language. It uses models from the GluonCV toolkit
with deep learning framework MXNet and geographic data processing library GDAL (for
transformations from coordinates to pixels and from vector to raster coordinates). All data
are represented as images (or can be viewed as 3 x 1024 x 1024 tensors). The ground
truth labels are represented as indexed images of the respective height and width. After
the inference is performed, the indexed images are associated to metadata of geographical
position (ESRI world file was used in the research). For the complete overview of results,
the images were combined into a mosaic.

Finally, following the dataset analysis, two types of problems were identified in the
selected dataset:

e Logical—the OSM data do not always match the objects in images due to ill-timed
mapping or changes in the environment as time passes. For example, a building is
identified in the image but the label in OSM data is absent or new houses have been
built recently and are not detected in the images of older periods.

e Quality—the results for images taken in different periods or locations may vary due
to lighting and resulting shadows (early morning vs. afternoon); different angles at
which the images were taken; different equipment used to take the images which
results in different color response and dynamic range (some images are blurry because
the photos were taken in early morning or at night).
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In order to ensure that training data represent the complete variety of analyzed classes,
the images were prepared by combining two image selection approaches. For the first part
of the dataset, a random building from the OSM database was selected and centered in
the image of 1024 x 1024 pixels. This part guarantees that there is a significant part of
labeled buildings in the dataset either from urban or rural areas. For the second part of the
dataset, images were constructed by the same technique but selecting random points of the
country as the image center. The majority of the Lithuanian landscape is identified as forests
or fields. Therefore, this class mostly generates images which represent vegetation class.
Finally, for the coarse training dataset, 5000 locations were selected (4000 with buildings
and 1000 with vegetation, covering a total area of 1250 km?), resulting in 15,000 images
(5000 images for each period, 3 images of the same location). Coarse validation set was
created based on the same principles for 1000 locations (3000 images). The combination of
image selection techniques and a relatively large number of images enables reducing the
impact of the logical problem. Examples of different locations are provided in Figure 5.

Figure 5. Sample images selected with a house centered (a,b) and random (c,d) which represent a
diverse land use types, such as city (a), outskirts (b), vegetation (c), and village (d).

The fine-tuning dataset was created according to the same principles; however, the
images were manually reviewed by removing the ones for which the labeled data did not
meet the actual visible data. Such preparation of a dataset is a time-consuming process and
requires thoroughness. Thus, the prepared dataset is small compared to the one prepared
automatically. Ultimately, 321 locations (210 with buildings and 111 with vegetation,
covering a total area of 80 km?) were selected. Fine-tuning validation set consists of
32 locations (96 images).

To solve the problems related to the different quality of images, normalization proce-
dure was used as follows:

1. Resolution was normalized to 0.5 m/pixel to fit the resolution of the lowest quality images;

2. Contrast was normalized using a 2-98% percentile interval; all pixels over and under
the interval were clipped to minimum or maximum values;

3. Standard computer vision normalization procedure was applied to transform images
so that the dataset distribution mean value is equal to 0 and standard deviation value
is equal to 1 for each channel. The normalization procedure was performed with the
assumption that initial distribution has mean values equal to 0.485, 0.456, and 0.406
and standard deviation values equal to 0.229, 0.224, and 0.225 for red, green, and
blue channels, respectively. The values applied to normalize tensors are based on the
statistical analysis of over 1.2 million images of ImageNet dataset.

4.4. Training Computer Vision Model

Various deep neural network architectures can be employed to detect changes in the
satellite images. The network that combines DilatedResNet50 backbone, atrous convolu-
tions, and spatial attention module was suggested to detect changes in high-resolution
satellite images [26]. A network architecture with a Siamese-based backbone was sug-
gested for remote sensing image change detection tasks [27]. The transfer learning ap-
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proach was applied in [14] to train the U-Net model and obtain the change mask on the
difference image.

The network configuration DeepLabv3 with a Resnet-50 backbone was chosen for com-
putational model in this research. This architecture makes it possible to perform training
with GluonCV MXNet framework on images of 1024 x 1024 pixels (3 x 1024 x 1024 tensor)
using consumer GPU such as 2080 Ti with 11 GB RAM using minimum batch size. Al-
though there are models which have better accuracy, GPU memory required to train such
models is much higher [28]. For example, GluonCV MXNet model DeepLabv3+ with an
Xception-71 backbone has approximately two percent better accuracy on the PASCAL VOC
test compared to DeepLabv3 with ResNet-101. However, experimental results with 0.11.0
GluonCV and MXNet 1.8.0 versions for selected size images show that DeepLabv3 based on
backbones Resnet50, Resnet101, and Resnet152 require approximately 10.5 GB, 14 GB, and
17 GB memory, in comparison to all DeepLabv3+ models with the same backbones which
require 27 GB GPU memory measuring at the first epoch when memory usage is stabilized
after training several batches. Thus, the selected model can be trained on the dataset
generated from the whole country in a reasonable computational time and provide results
of practically acceptable accuracy. The training was carried out on Cluster 3x servers with
2x AMD EPYC 7452 32-Core Processor and NVIDIA A100-PCIE-40GB with 512 GB RAM
with batch size 4. As mentioned previously, automatically generated labels do not always
match the actual class in images due to changes in the environment or mislabeled areas.
Moreover, there are detection regions which represent a single class (for example, forest
only). Focal loss focuses on misclassified examples and shows good practical results in
dealing with imbalanced data. Thus, it was used as a loss function instead of Softmax
entropy loss [25]. Focal loss FL(p;) is defined by the following equation [29]:

FL(p:) = —a(1— pt)"log(p:) 1)

where « is for a-balanced form to reduce impact for detection outliners; vy is the focal factor.
If v = 0, focal loss corresponds to cross-entropy loss. If higher -y values are applied, the
impact of easy examples is reduced, and the total loss value is scaled down. This leads to
higher probability of correcting misclassified examples. The class classification function p¢
has the following definition:

ptz{p Yy=1 @)

1—p otherwise

where y specifies the ground truth class y € {1} and p € [0,1] is the model probability for
the class. For this experiment, & = 0.25 and *y =2.
The technical specifications of the selected model are as follows:

1. Inputlayer: 1024 x 1024 pixels (result taken from 896 x 896 pixels) ~448 m x 448 m
(or ~0.2 km?) area;

2. Coarse learning: learning rate 5 x 10~%; momentum 0.5; 5000 samples per epoch;

3.  Fine-tune learning: learning rate 5 x 10~°; momentum 0.1; 100 samples per epoch.

The model trained under the suggested approach is further referred to as M123,
meaning that it includes all three steps (pretrained weights on ImageNet, coarse learning,
and fine-tuned learning) of the transfer learning process. In order to demonstrate the
importance of each step and the advantage of the transfer learning, in total six DeepLabv3
models with a ResNet50 backbone were trained using combinations of the steps provided
in Figure 2. The strategies are summarized in Table 1.

The mean value of the focal loss (1) and mloU (mean intersection over union) values
for the coarse validation set during 50 training epochs on the coarse dataset of the models
M2 and M12 are provided in Figure 6a,b, respectively. Figure 6 shows that using the
pretrained on the ImageNet model (M12) gives significantly better results (smaller focal
loss value and larger mloU value) from the beginning of the training.



ISPRS Int. ]. Geo-Inf. 2022, 11, 246

10 of 19

Table 1. Summarized strategies used in training models.

Model Title Using Weights Pretrained on the Training on Coarse Dataset Training on Fine-Tuning
ImageNet (Step 1 in Figure 2) (Step 2 in Figure 2) Dataset (Step 3 in Figure 2)
M2 v
M12 v v
M3 v
M23 v v
M13 v v
M123 v v v
Coarse Learning Coarse Learning
0.10 1.0
—_— M2 —_ M2
— M12 — M12

0.08 q

focal loss
o
(=3
&

=
=3
IS

0.021 —

0.8
0.6

0.2

mioU

0.0

0.00

T
10

T T T T T T T
20 30 40 50 10 20 30 40 50
epoch epoch

(a) (b)

Figure 6. Evaluation metrics (focal loss (a) and mIoU (b)) for coarse validation set during the
coarse training of the models M2 (without pretraining on ImageNet) and M12 (with pretraining

on ImageNet).

During the training process, the validation set is used to evaluate the accuracy of the
model for the unseen data. The values of the focal loss, mloU, and pixel accuracy for the
coarse validation set after the training of the models M2 and M12 are provided in Table 2.
Using a pretrained on ImageNet model results in approximately 1.7 times higher mIoU
value and the focal loss value lower than 0.05.

Table 2. Focal loss, mIoU, and pixel accuracy values for the coarse validation set after the training.

Model Title Focal Loss mloU Pixel Accuracy
M2 0.02426 0.40869 0.85503
M12 0.01225 0.71063 0.91519

Similarly, the analysis during the training on the fine-tuning dataset for the models
M3, M23, M13, and M123 was performed. The mean value of the focal loss (1) and mloU
(mean intersection of the union) values for the fine-tuning validation set during 100 training
epochs of the models M3, M23, M13, and M123 are provided in Figure 7a,b, respectively.
The largest loss and smallest mloU values were obtained for the M3 model. This model
also shows the largest progress in learning (biggest difference between the values in the
starting and finishing epochs), as the model is trained with initial random coefficients and
starts to extract useful features and patterns. For the first 5 epochs, models M13 and M23
show similar loss and mloU values. In later epochs, values obtained for M23 converge in
first 10 epochs, whereas values obtained for the M13 model demonstrate further learning.
This phenomenon is caused by the fact that image sets of completely different nature were
used in the different steps of training M13; that is, the ImageNet dataset was used for the



ISPRS Int. ]. Geo-Inf. 2022, 11, 246

11 of 19

0.12

0.10 A

o o
o o
> ©

focal loss

o
o
=

0.02 A

0.00

pretraining, and the fine-tuning dataset was used in the adjustment step. The pretrained
model can extract basic features, such as contours and patterns, but the learning proceeds
to adjust for the fine-tuning dataset of aerial images. During training of the M23, the model
is already trained on a similar dataset and does not show a significant improvement. The
best loss and mloU values were demonstrated by the M123 model. This model was created
according to the suggested training process, and the training on the fine-tuning dataset
was performed after training the pretrained model on the coarse dataset. However, there
was just a slight improvement for this model. The pretrained models M23 and M123 start
from loss function values close to the ones which the models M2 and M12 converged
after training models on the coarse dataset (Figure 6). The accuracy estimates depend
on the validation set. It should be noted that in the fine-tuning validation dataset some
inconsistencies of labeling are clarified; therefore, it results in higher loss value.

Fine-tuning Fine-tuning

MM\AMMMW—MW

1.0
V"'\jV == Sl

— M23 |

— M23
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Figure 7. Evaluation metrics (focal loss (a) and mlIoU (b)) for fine-tuning validation set during the
fine-tune training of the models M3, M23, M13, M123.

The values of the focal loss, mloU, and pixel accuracy for the fine-tuning validation
set after the training of the models M3, M13, M23, and M123 are provided in Table 3. It is
demonstrated that using a pretrained on ImageNet model results in approximately 2 times
higher mIoU value (M13 and M123 compared to M3 and M23 values, respectively). In
addition, the highest mIoU and pixel accuracy values were obtained for the model that was
created using all three steps of the suggested training scheme.

Table 3. Focal loss, mloU, and pixel accuracy values for the fine-tuning validation set after
the training.

Model Title Focal Loss mloU Pixel Accuracy
M3 0.07739 0.30296 0.60999
M13 0.01738 0.63443 0.90958
M23 0.02911 0.44274 0.77934
M123 0.00767 0.83142 0.95199

Images of all three periods were included in training and validation datasets. The
suggested model training process had an image normalization step. This step was incor-
porated in the data preprocessing to maintain stable accuracy of the model and ensure
that using images of different periods in application is valid. To demonstrate that using
normalized images from different periods do not cause significantly different accuracy, loss
and mloU values for fine-tuning validation subsets grouped by period are provided in
Figure 8a,b, respectively.
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Figure 8. Evaluation metrics (focal loss (a) and mIoU (b)) for fine-tuning validation set and its subsets
during the fine-tune learning.

The focal loss, mloU, and pixel accuracy values of the model M123 for the validation
subsets of images from different periods after the training are provided in Table 4. The
focal loss values are lower than 0.01 for all subsets and the dataset itself. The mIoU and
pixel accuracy values of the subsets differ less than 2% with respect to the mIoU and pixel
accuracy value of the full dataset.

Table 4. Focal loss, mIoU, and pixel accuracy values for the fine-tune validation subsets of different
periods for the M123 model after the training.

Model Title Focal Loss mloU Pixel Accuracy
2009-2010 subset 0.00798 0.83311 0.95185
2012-2013 subset 0.00793 0.82983 0.95234
2015-2017 subset 0.00880 0.82733 0.94491

full validation dataset 0.00767 0.83142 0.95199

The normalized confusion matrices of model M123 segmentation results for the fine-
tune validation set and its subsets of different periods are given in Figure 9. The confusion
matrices include all classes used in segmentation, that is, house, forest, water, and other.
The matrices show that over 90% of predictions match the true labels for forest, water, and
other classes for full validation set and its subsets. In addition, the predictions for the house
class exceeded 75% of the true house class labels in the dataset and its subsets. It should be
noted that the most frequent false prediction for house class was as other class. The reason
for this phenomenon is that ground truth components of houses have sharp edges and
complex geometry, and these features are not maintained in the inference results. Moreover,
the components are small, and the number of house components is large compared to
other classes.

The examples of images and their inference results compared to ground truth are
provided in Figure 10. White color represents intersection of ground truth and inference
results, green color represents ground truth, which is not covered by the inference re-
sults, and red color represents inference results which do not cover ground truth. The
main dataset problems are demonstrated in the examples given in Figure 10. Firstly, the
house under construction is included in ground truth but was not detected by the model
(Figure 10a,d). Secondly, the house is not detected due to shadowing (Figure 10b,e). Finally,
there are buildings that are detected by the model but were not included in the ground
truth (Figure 10b,c,e,f). The examples demonstrate that the inference results correspond
to ground truth. The calculations show that more than 80% of house components in the
ground truth have more than 50% overlap with the inference results.
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Figure 9. Normalized confusion matrix of M123 segmentation results for full fine-tuning validation
set and its subsets of different periods.
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Figure 10. Cont.
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(e)

Figure 10. Examples of the original images (a—c) and results of their inference results compared to

the ground truth (d—f). White color represents the match between ground truth and inference, green
represents the ground truth which is not covered by the inference results, and red represents the
inference results which do not cover ground truth.

5. Results

The model was developed to detect four main classes (houses, forest, water, and other).
The direct results obtained with the developed model enables the ability to analyze and
interpret the results on different levels.

On the finest level, the results of the model can be analyzed locally and visualized
using standard map software, i.e., QGis and ArcGis. Figures 11 and 12 demonstrate the
results obtained with the model using the QGIS software. The results show the identified
buildings, water, and forest areas.

0 100 200 m
—— )
(b)

Figure 11. The example of inference using image from 2009-2010 dataset with a random posi-

tion: (a) original ORTO10 view; (b) inference results; (c) overlay of original image and transparent

inference results.

The obtained results of different periods can be applied to highlight changes between
the images of two periods in the same location. The initial images of periods 2009-2010
and 2012-2013 and the modified ones with a layer which represents change in building
class are provided in Figure 13.

On the middle level, the model can be applied to identify the urban change of the
region by creating a heat map. The country was divided into a grid and the value of a
grid cell was determined by the total number of buildings detected per grid cell. Then,
the difference between the respective grid cells of different periods was calculated and
visualized in Figure 14 together with example images of three different locations L1, L2,
and L3 for both periods. Location L1 represents the area of urban expansion as a new block
of houses is expanding in the suburbs. Location L2 represents an existing block of allotment
gardens which in time becomes a residential area as small old summer houses are replaced
by new detached houses. Location L3 was chosen to demonstrate development of a new
block of apartment buildings.
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Figure 12. The segmentation results on the finest level: (a) OSM map view of Kaunas city center;
(b) processed data of Kaunas city center of the selected time period (2009-2010) with segmented
buildings (magenta), water (blue), forest/trees (brown), and other (white) categories.

Figure 13. The example of change identification: (a,b) Original ORTO10LT images of periods
2009-2010 and 2012-2013, respectively; (c,d) images with a hatch layer which represents mismatch of
the building class in segmentation results.

The same methodological approach can be applied to remote sensing data of higher
frequency, for example, satellite images. Using more data points would enable performing
an analysis of urban change dynamics at a more detailed level and forecast future growth
patterns of the monitored region.

Obviously, more generalized data can be useful in urban development analysis at the
municipality level to plan infrastructure, identify patterns, and make political decisions.
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Figure 14. Heat map of difference between total number of buildings in grid cell for periods 2009-2010
and 2012-2013 in Kaunas city and region and examples of images in locations L1, L2, L3.

6. Conclusions

Semantic segmentation of satellite or aerial images is usually applied to small regions
and specific problems, such as building extraction [30-34]. Research on a higher level (city
or country) of satellite images is mainly focused on estimating socio-economic indicators
or poverty level [18,35,36]; thus, they were usually focused on the final result rather than
the process itself. This publication fills in the missing gaps by providing a methodological
approach on how to prepare the training data for coarse and fine-tune learning, that is,
how to ensure a variety of different classes and deal with images of different quality.
The provided methodological approach can be applied in different countries for aerial
or satellite images in order to determine the urban change patterns. In this work, the
transfer learning technique was applied for creating a machine learning model according
to the training scheme which was initially proposed in [20]. The DeepLabv3 model with a
ResNet50 backbone initially pretrained on the ImageNet data was selected. The following
two steps of learning on coarse and fine-tuning datasets were carried out to adjust the
model. In the coarse learning step, the model was trained on a dataset automatically labeled
with OSM data. This enabled learning features specific to the aerial dataset. The fine-tuning
step was dedicated to increasing the accuracy of the model, as the manually revised data
were used in training. In this article we consider the importance of each step in the training
scheme. To demonstrate the benefits of using the transfer learning approach, five additional
machine learning models were strained under different strategies which included various
combinations of training steps. The model, which was created with respect to the suggested
procedure, demonstrated more accurate results compared to the other five models which
were developed using various combinations of learning steps. Obviously, this model is
trained on the largest variety of images (ImageNet, coarse, and fine-tuning datasets) and
its training lasts the longest time if time of the initial training on ImageNet is considered.
It was also demonstrated that images of different periods do not have bias, as the focal
loss value is low for all subsets and mloU and the pixel accuracy values have less than 2%
difference compared to the respective values of the full dataset.

It was demonstrated that the neural network using OSM as a ground truth dataset
is capable of making semantic segmentation with reasonable accuracy. However, expert
input is necessary in the data preparation stage to consider the differences in mapping,
such as the use of the most recent ground truth data with the assumption that there are
not many changes in data over the years. Normalization of the different quality images
on spectrum and contrast enables analyzing and interpreting results on various levels for
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the series of images from different periods. The generalized results could be used to detect
urban change patterns by using a heat map of difference, while for the fine level analysis, it
is possible to review local changes on a map of a specific location.

Analysis and estimation of urban growth patterns could be used for several purposes
and different parties. For instance, investors might use the identification of the growth of
the households to purchase real estate for rent purposes or for reselling real estate. The
city usually grows with respect to housing prices. That is, if housing prices are high in
one area of the city, consumers tend to purchase houses in parts of city where prices are
lower. Later, the price growth usually shifts to balance supply and demand. Other users
might be government, which should provide region plans based on the current situation
and future estimates. Housing development and population density should be taken into
consideration during planning infrastructure objects such as schools, hospitals, and the
road network. Planning of such infrastructure in advance could lead to lower construction
costs, more efficient regions, and, therefore, better sustainable management and higher
productivity. Thus, the proposed methodological approach can be applied in developed
markets to obtain more accurate real-time urban growth analysis and in developing markets
to better understand the current market situation, especially if statistical data are limited.
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