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Abstract: The widespread of shipborne Automatic Identification System (AIS) equipment will con-
tinue to produce a large amount of spatiotemporal trajectory data. In order to explore and understand
the hidden behaviour patterns in the data, an interactive visual analysis method combining multiple
views is proposed. The method mainly includes four parts: using a trajectory compression algorithm
that takes into account the vessel motion characteristics to preprocess the vessel trajectory data;
displaying and replaying vessel trajectories based on Electronic Chart System (ECS), and proposing
a detection algorithm for vessel stay points based on the principle of spatiotemporal density to
semantically label vessel trajectories; using the Fast Dynamic Time Warping (FastDTW) similarity
measurement algorithm and the Ordering Points to Identify the Clustering Structure (OPTICS) clus-
tering algorithm to cluster vessel trajectories to show the differences and similarities between vessel
traffic flows; and showing the distribution of vessels and the variation trend of vessel density based
on the vessel heatmap. Based on the AIS data of the Yangtze River Estuary, three cases are used to
prove the usefulness and effectiveness of the system in vessel behaviour analysis.

Keywords: Automatic Identification System (AIS); vessel trajectories; vessel behaviour; visual analytics

1. Introduction

Vessel trajectory data mainly refers to the Automatic Identification System (AIS) data.
AIS is an advanced radio technology that combines Global Positioning System (GPS),
very high frequency (VHF), and data processing technology to enable different marine
entities to exchange relevant information in a strictly defined format. This may be a
simple exchange of position, course, speed and identity information between individual
vessels, or a more complex data exchange between professional shore equipment and
buoy positioning equipment [1,2]. AIS plays a significant role in ship collision avoidance,
information exchange, maritime surveillance, etc. Its correct use helps to strengthen the
safety of life at sea, improve the safety and efficiency of navigation, and protect the marine
environment [3].

AIS data has temporal and spatial information, and the amount of information is very
large. In only the lower reaches of the Yangtze River, nearly 100 million pieces of AIS
data are generated every day, which typical of spatiotemporal big data. According to the
characteristics of AIS spatiotemporal big data, through visualization and analysis, AIS can
track vessel trajectories and statistics and analyze vessel traffic flows, cargo flows, etc. This
has extremely important significance for guiding ship operation, maritime surveillance,
and shipping trade [4]. At present, the analysis and research of AIS big data has gradually
become a hot spot and challenge in the field of maritime research [5–8]. Huang et al. [9]
mainly studied the compression and visualization of large vessel trajectories and their
graphics processing unit (GPU) acceleration implementation. Zhou et al. [10] proposed
a ship classification method based on behaviour clustering by analyzing port AIS data.
Wang et al. [11] proposed a system identification modelling method for ship maneuvering
motion based on support-vector machines (SVM). These studies either focus on how
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to clearly display the AIS trajectory data or focus on analyzing the vessel behavioural
characteristics behind the data. Although certain results have been achieved, the two are
not organically unified.

Therefore, this paper proposes a visual analysis method combining multiple views to
explore and analyze vessel behaviour patterns. The method in this paper is mainly divided
into four parts: preprocessing the vessel trajectory data based on a trajectory data com-
pression algorithm that takes into account the characteristics of vessel motion; displaying
and replaying vessel trajectories based on the Electronic Chart System (ECS), proposing a
detection algorithm for vessel stay points based on the principle of spatiotemporal density
to semantically label vessel trajectories; using the fast dynamic time warping (FastDTW)
similarity measurement algorithm [12] and the ordering points to identify the clustering
structure (OPTICS) density clustering algorithm [13,14] to cluster vessel trajectories to
show the differences and similarities between vessel traffic flows; displaying the vessel
heatmap based on the principle of kernel density, and intuitively showing the trend of
vessel distribution and density changes.

The rest of this paper is organized as follows. In Section 1, related work is discussed.
In Section 2, an overview of the system is given. In Section 3, the data and proposed
methodology are explained in detail. In Section 4, visual components and interactive tools
for vessel behaviour analysis are presented. In Section 5, a case study of the Yangtze River
Estuary is conducted, and results are analyzed. Finally, Section 6 concludes the paper with
recommendations for further research.

2. Related Work
2.1. Visualization of Trajectory Data

With the widespread use of shipborne AIS equipment, there are more and more
methods for statistical analysis of large-scale AIS data. Because vessel trajectory data
is typical spatiotemporal big data, which contains complex temporal and geographic
information, efficient visualization tools and methods are needed to help people analyze
trajectory data.

Willems et al. [15,16] and Scheepens et al. [17] proposed the use of density maps to
interactively explore the attributes of vessel trajectory data and analyze vessel motion. The
experimental results showed that they are effective in detecting abnormal vessels. However,
the method has a high requirement on hardware performance. Wang et al. [18] proposed
an interactive trajectory visualization analysis tool and proved its effectiveness in detecting
vessel motion patterns and potential illegal activities and pointed out that the tool’s visual
analytics environment is relatively simple and needs to be improved. Wu et al. [19]
constructed a global shipping density map based on AIS data, showing the distribution
of global vessels and traffic. However, the parameter setting of the method depends on
personal experience and lacks interpretability. Jin et al. [20] proposed a visual analytics
framework to interactively explore the characteristics of vessel behaviour by means of
integrating visualization with data mining and a human–computer-interaction-controlling
model. However, since the framework cannot support analysis of vessel behaviour with
big data sets in real time, its efficiency must be improved. Zou et al. [21] proposed a 4D
time density algorithm, applied volume visualization techniques to visualize the resulting
density volume, and explored the movement patterns of moving objects in space and
time through a real application case. However, this algorithm has the limitations of high
computational complexity and low rendering efficiency. He et al. [22] assessed and explored
AIS data quality visually, using a visual analysis platform for AIS data quality. Zhang
et al. [23] proposed an interactive visual method to identify trajectory stay points, but
the method is only effective over a short period of time, and the effect is poor when the
trajectory is long. Storm-Furru et al. [24] designed an interactive web-based geographic
visual analysis tool in order to use the trajectory of a fishing boat to identify unreported
catch operations. Oztürk et al. [25] developed a tangible visual analysis tool that uses AIS
data to analyze maritime traffic on a spatiotemporal basis. This approach could analyze the
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safety structure of fairways and individual vessels at a micro level and is a good attempt at
visualization technology in the field of maritime traffic.

2.2. Data Mining with Trajectory

Trajectory data is a representation of a vessel’s navigation behaviour, which can map
out information such as the vessel’s navigation mode and behaviour rules. At present,
many scholars have conducted in-depth and effective discussions on the research of vessel
trajectory data mining methods.

Wei et al. [26] designed an AIS trajectory compression algorithm considering space
and motion features of trajectories based on the Douglas–Peucker and sliding window
algorithm, which can compress AIS trajectories according to ships’ behavioural charac-
teristics. The main drawbacks of the algorithm are that the threshold coefficient cannot
be determined adaptively and that the running time is long. Chen et al. [27] proposed an
improved SRC (sparse representation classification) model based on Lp-norm to classify
vessel motion patterns, which can effectively classify vessel motion patterns in inland
waterways. The proposed model is superior to those of other representative classification
methods. Zhao et al. [28] proposed a combined method composed of DBSCAN (Density-
based spatial clustering of applications with noise) algorithm and recurrent neural network,
which can quickly detect abnormal behaviour of vessels in speed, course, and route. How-
ever, the method has a high requirement on the quality of sample vessel trajectory data,
which makes practical application more complicated. Liu et al. [29] proposed a real-time
identification framework of regional collision risk based on AIS data, which provides the
possibility for collision risk monitoring and collision risk analysis. Liu et al. [30] took
inbound and outbound ships as the research objects and, based on the traffic flow structure
characteristics driven by AIS trajectory data, proposed a method to estimate the navigation
capacity of busy waterways. The proposed approach provides support for the design
of channels and the determination of scheduling schemes for ships in busy waterways.
Chen et al. [31] proposed a convolutional neural network-ship motion pattern classification
(CNN-SMMC) algorithm based on AIS data, which can effectively extract detailed ship
movement information and fully realize ship motion classification. Similar to the CNN
classification method, this method also has the limitations of difficult parameter setting
and high requirements for sample quality. Wang et al. [32] combined ship AIS and channel
geocoding data to model traffic flow characteristics, estimated the correlation between ship
speed and congestion, and analyzed the shipping traffic performance of different segments.
Their work provides useful insights into testing the rationality of speed limits in other
waterways or shipping channels. Yan et al. [33] combined semantic trajectory and graph
theory to realize the extraction and expression of maritime traffic routes in large sea areas
in a relatively simple and easy way. However, their method does not consider the influence
of ship types, so the robustness of the method needs to be strengthened.

Although many valuable conclusions have been obtained in the previous work, the
visualization method focuses on how to display AIS trajectory data efficiently and with
high quality, while the vessel behaviour analysis focuses on the efficiency of algorithms and
ignores visualization. At present, there is still a lack of an interactive visualization system
for comprehensive and efficient analysis of vessel behaviour. Therefore, this paper proposes
more systematic and comprehensive visual analysis tasks by combining vessel trajectory
data visualization and vessel-behaviour-oriented feature visualization and designs and
implements a visualization system with high efficiency, concise, multi-view cooperation,
which intuitively displays vessel behaviour and traffic flow characteristics.

3. System Overview

This paper designs a visual analysis system to explore vessel behaviour and statisti-
cally analyze vessel traffic flow. Figure 1 shows the workflow of the system and mainly
includes three parts: a data processing module, a visual component module, and a visual
interaction module.
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Figure 1. Overview of system workflow.

(1) The data processing module mainly realizes data preprocessing and storage. Due
to the high sampling rate and multiple sources of AIS data, the amount of data is large
and there is duplication. In order to facilitate storage and calculation, the original data
need to be deduplicated and compressed. Due to equipment problems, AIS data is prone
to noise and data missing (as shown in Figure 2), so it is necessary to denoise and repair
the trajectory data. The visualization of large-scale trajectory data cannot be carried out by
interactive visual analysis because of its large storage capacity and slow query acquisition.
This paper uses data warehouse [34] to manage data, which can effectively reduce the
calculation cost of the system and improve the work efficiency of the system.
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Figure 2. The trajectories with outliers recorded by AIS loggers: (a) an AIS trajectory with two noise
points; (b) an AIS trajectory that suffers from the data missing problem.

(2) The visual component module mainly realizes the detection of vessel stay points,
the display and playback of vessel trajectories based on ECS, the analysis of vessel traffic
flow based on density clustering, and the vessel heatmap. Through collaborative work
between components, it effectively helps users understand data distribution, overview
trajectory data relationships, explore vessel behaviour patterns, and observe detailed
trajectory data.

(3) The visual interaction module designs rich interface interactions. By setting up a
visual menu, users can complete basic operation of ECS: trajectory data import and export,
trajectory data compression, trajectory data display and playback in different periods and
regions, trajectory clustering analysis, vessel heatmap, and so on.
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4. Data and Methodology
4.1. Data
4.1.1. Data Description

AIS data contains 27 kinds of AIS messages, among which position report, static
report, and voyage report contain the most important vessel information. An AIS position
report can generate an AIS trajectory point, while a vessel’s AIS trajectory is a series of
continuous trajectory points of the same vessel. The AIS position report is broadcast at an
interval of 2–180 s, depending on the navigation status of the vessel and the type of AIS
(Class A or Class B). According to the requirements of the International Telecommunication
Union (ITU), the reporting intervals and further details for AIS are shown in Table 1 [35].
Therefore, AIS trajectory data can restore the movement of vessels to a certain extent. In
addition to providing vessel position information, AIS data can also provide information
such as destination, vessel type, size, and the current speed and course of the vessel
corresponding to the trajectory point [4]. Therefore, correct use of AIS is helpful for judging
ship movement and coordinating collision avoidance actions and plays an important role
in preventing collisions, especially for ships navigating in waters with poor visibility. At
the same time, it must also be noted that not every vessel is equipped with AIS; although
some vessels are equipped with AIS, the use and settings are not standardized. AIS data
may also be delayed, so the received data may not be correct. The main function of AIS
data is ship identification and academic research, not real-time ship collision avoidance.

Table 1. Reporting interval requirements for AIS equipment.

Class A Equipment Equipment Other than Class A

Ship’s Dynamic Conditions Reporting Interval Platform’s Conditions Reporting Interval

Ship at anchor or moored and not
moving faster than 3 knots 3 min Class B “SO” 1 ship not moving faster

than 2 knots
3 min

Ship at anchor or moored and moving
faster than 3 knots 10 s Class B “SO” 1 ship with a speed of

between 2–14 knots
30 s

Ship with a speed of between
0–14 knots 10 s Class B “SO” 1 ship with a speed of

between 14–23 knots
15 s

Ship with a speed of between
0–14 knots and changing course 10/3 s Class B “SO” 1 ship with a speed of

greater than 23 knots
5 s

Ship with a speed of between
14–23 knots 6 s Class B “CS” 2 ship not moving faster

than 2 knots
3 min

Ship with a speed of between
14–23 knots and changing course 2 s Class B “CS” 2 ship moving faster than

2 knots
30 s

Ship with a speed of greater than
23 knots 2 s Search and rescue aircraft, AIS

base station 10 s

Ship with a speed of greater than
23 knots and changing course 2 s Aids to navigation 3 min

1 Class B “SO” means an AIS equipment using Self-Organized Time-division Multiple Access (SOTDMA) technology;
2 Class B “CS” means an AIS equipment using Carrier-Sense Time Division Multiple Access (CSTDMA) technology.

As a useful big data research object, AIS data has high research value. Through the
visual analysis of AIS data, the potential pattern information of vessels can be obtained,
and maneuvering behaviours and navigation characteristics of vessels can be identified.

4.1.2. Data Preprocessing

Low-quality data will lead to low-quality mining results. To improve data quality,
we must preprocess the data. In the first step, AIS data have high sampling rates and
heterogeneity, which inevitably lead to noise, redundancy, and repetition, so it is necessary
to clean the data. AIS data cleaning mainly includes deduplication, filling missing values,
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and smoothing noise [36]. The second step is trajectory compression. Due to the high
sampling rate of AIS equipment, the amount of trajectory data is large, which will seriously
affect the storage and analysis efficiency. Therefore, it is necessary to compress the trajectory
data. In this paper, a vessel trajectory compression method considering time and speed
characteristics is adopted, and the specific method will be described in Section 4.2.1. In the
third step, only the position report is insufficient in the trajectory data analysis, and the
static report and the voyage report are indispensable. Therefore, it is necessary to integrate
different message data together, that is, to perform data integration. In this paper, different
messages are matched and integrated according to the common attributes of their Maritime
Mobile Service Identities (MMSI) and the timestamps of messages. In the fourth step, it is
necessary to perform data reduction because the integrated AIS data set is large and direct
analysis without preprocessing will make such analysis impractical or unfeasible. This
paper analyzes the specific tasks in detail; selects different attribute subsets for different
task data sets; and removes irrelevant, weakly related, or redundant attributes.

4.1.3. Data Storage and Access

In order to facilitate data storage and acquisition, this paper uses a topic-oriented,
integrated, and relatively stable data collection method, data warehouse, to manage data.
The data warehouse in this paper adopts the traditional three-tier system structure. The
bottom layer is the warehouse database server, which is a relational database system used
for data extraction, cleaning, loading, and refreshing [37,38]; the middle layer is an online
analytical processing (OLAP) server, which is responsible for multi-dimensional analysis
such as the slicing, cutting, and drilling of data; the top layer is the customer layer, including
query and analysis tools. The data warehouse model adopted in this paper is a virtual
warehouse from the structural point of view, which is a collection of views on the operation
database. For example, this paper stores AIS data from different port waters and different
periods in view mode.

4.2. Methodology
4.2.1. Trajectory Compression

At present, most vessel trajectory compression algorithms, such as Douglas–Peucker [39],
Visvalingam–Whyatt [40], are based on the geometric features of trajectory. However,
besides geometric features, trajectory data also contains motion features such as speed
and time interval, and the motion state of the trajectory subject has great influence on
the geometric shape of trajectory data. To solve this problem, in order to keep more
characteristic information of the trajectory data and ensure the integrity of trajectory
information better, this paper uses a trajectory data compression algorithm which considers
the characteristics of vessel motion [41]. The algorithm sets the anchor point, then gradually
opens the “window”. At each step, there are two halting conditions—one based on the
synchronous distance measurement and the other based on the difference in speed between
previous and next trajectory segments. These speeds are not the measured speeds of the
vessel because the algorithm assumes that these speeds are unavailable; instead, they are
speed values derived from timestamps and locations. The specific simplification process is
summarized in Algorithm 1:
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Algorithm 1: simplification algorithm considering vessel behavioural characteristics (SBC)

Input: trajectory points list, s[p1, · · · , pn] (where trajectory point p includes: timestamp, location);
distance difference threshold, max_dist_threshold;
speed difference threshold, max_spd_threshold.
Output: simplified trajectory points list
// the number of trajectory points in s
if len(s) ≤ 2 then
return s
else
// initially set the halting condition to false
is_halt← f alse
e← 1
while (e ≤ len(s) and not is_halt) do
i← 1
while (i < e and not is_halt) do
// t representatives timestamp, ∆e and ∆i are timestamp difference
∆e← s[e]t − s[0]t
∆i← s[i]t − s[0]t

// loc representatives the location of trajectory point
// (x, y) representatives the (longitude, latitude) coordinates of a trajectory point(

x′i , y′i
)
← s[0]loc + (s[e]loc − s[0]loc)∆i/∆e

// dist is a function that takes two points and returns the distance between them
// v representatives average speed between the previous and next trajectory segment
vi−1 ← dist(s[i]loc, s[i− 1]loc)/(s[i]t − s[i− 1]t)
vi ← dist(s[i + 1]loc, s[i]loc)/(s[i + 1]t − s[i]t)
If dist

(
s[i]loc,

(
x′i , y′i

))
> max_dist_threshold or ‖vi − vi−1‖ > max_spd_threshold then

is_halt← true
else i← i + 1
end if
end while
if is_halt then
// concatenates two trajectories
return [s[0]] + SBC(s[i, len(s)], max_dist_threshold, max_spd_threshold)
end if
e← e + 1
end while
if not is_halt then
// a new sequence consisting of the first and last point in s
return [s[0], s[len(s)]]
end if
end if

Step 1: Enter the sequence points of a vessel trajectory s (trajectory point includes:
timestamp, location), distance threshold max_dist_threshold, and speed threshold
max_spd_threshold. If the length of s is greater than 2, initialize the halting condition
is_halt to false and proceed to Step 2, otherwise return the sequence s.

Step 2: Starting from the second point, each point in s is used as the anchor point, and
the external forward traversal is performed to the end of s. If the anchor point does not
reach the end of s and is_halt is false, then proceed to Step 3; otherwise, proceed to Step 5.

Step 3: Let the subsequence before the anchor point be the moving point set f of the
anchor point. In f , starting from the second point, each point is the moving point of the
anchor point, and the internal forward traversal is performed to the anchor point. In the
internal traversal process, two halting conditions are verified: one is that the synchronous
distance measurement (the spherical distance between the predicted position and the actual
position of the moving point, and the predicted position of the moving point is obtained by
Equations (1)–(4)) is greater than max_dist_threshold, and the other is that the difference in
average speed between the previous and next trajectory segment separated by the moving
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point is greater than max_spd_threshold. If the halting condition does not hold, shift the
moving point forward to continue the internal traversal (if the moving point reaches the
anchor point, stop the internal traversal, move the anchor point forward, and proceed to
Step 2), otherwise is_halt is true and proceed to Step 4.

4 e = te − ts (1)

4 i = ti − ts (2)

x′i = xs + (xe − xs) ∗ 4i/4e (3)

y′i = ys + (ye − ys) ∗ 4i/4e (4)

where4e is the timestamp difference between the anchor point and the first point,4i is the
timestamp difference between the moving point and the first point, (xe, ye) is the position
of the anchor point, (xs, ys) is the position of the first point, and

(
x′i , y′i

)
is the predicted

position of the moving point.
Step 4: Intercept the points after the moving point in s to obtain a new sequence s′,

and take s′ as the input for Step 1, perform recursive processing. Connect the first point in
s and the return value of the recursive function to form a new sequence and return it.

Step 5: If is_halt is false, a new sequence consisting of the first and last point in s is
returned. Otherwise, no processing is done.

4.2.2. Stay Point Detection

Identifying and analyzing vessel stay points (berthing points, anchoring points) is an
important part of trajectory analysis. It can not only provide necessary basic information
for the safe navigation and berthing of vessels, but also provide important decision support
for port planning and construction. However, the existing methods either do not consider
the time continuity of trajectory points, or only consider the time continuity, resulting
in insufficient recognition ability of stay points. Based on the literature [42], this paper
presents a density-based identification method of vessel stay points which considers the
spatiotemporal aggregation of trajectory points and takes into account the time continuity
and directivity of trajectory points. The algorithm mainly includes three steps: density
calculation, stay point identification, and type judgment. Figure 3 shows the framework of
stay point detection algorithm.
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Step 1: Density calculation. In this step, each point of the trajectory point sequence
is taken as an anchor point in turn. According to the distance threshold, by searching
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backward and forward along the timeline, the density interval of each anchor point is
obtained (there is a longest continuous subsequence in a given vessel trajectory point
sequence, and if the spherical distance between any point in the subsequence and the anchor
point is less than the given distance threshold, the subsequence is the density interval of
the anchor point). Based on the density interval, the density (number of trajectory points
in density interval) and the time span (time difference between the starting point and the
ending point of the density interval of trajectory points) of the anchor point are calculated.
If the time span of the anchor point is longer than the time threshold, the anchor point
is a candidate stay point, and a candidate stay point list (hereinafter referred to as CSPs)
is generated.

Step 2: Identification of stay points. The candidate stay points in the CSPs have met
the distance threshold and the time threshold. However, the density intervals of these
candidate stay points may overlap, so in the process of stay point identification, the CSPs
are iteratively identified and updated according to density from high to low, and disjoint
stay points are obtained until the CSPs is empty.

Step 3: Type judgment. There are two states of vessel stay: berthing and anchoring.
During anchoring, the vessel will show periodic yaw due to the influence of hydrodynamic
force, wind force, and anchor chain tension. Especially when the vessel is anchored in tidal
waters, the position of the vessel will change with the change of the tidal stream. Therefore,
the standard deviation of the positions and speeds of the stay point is larger during the
anchoring period and smaller during the berthing period. Calculate the standard deviation
of the positions and speeds at each stay point. If the standard deviation of the stay point is
greater than the threshold, it is an anchoring point. Otherwise, it is a berthing point.

4.2.3. Trajectory Clustering

Clustering analysis divides data objects into clusters according to data similarity
and keeps the maximum distance between clusters and the minimum distance within
cluster. Vessel trajectory clustering is an extension of clustering analysis in spatiotemporal
trajectory. Its purpose is to group vessel trajectories with similar behaviours into one class
based on spatial or temporal similarity. Through clustering, we can find vessel navigation
patterns, analyze navigation rules, detect abnormal behaviours, and predict future motion
behaviours. There are two necessary parts in the process of vessel trajectory clustering.
One is similarity measurement between trajectories, and the other is trajectory clustering.

(1) Similarity measurement. Trajectory similarity is usually calculated by a distance
function. In this paper, the FastDTW distance measure is used to express the similarity
between two trajectories. FastDTW has the same advantage as DTW, which is that it is
not limited by whether the number of points between two trajectories is the same, but it
greatly reduces the calculation complexity of DTW and improves the clustering efficiency.
FastDTW combines restriction and data abstraction to speed up the calculation of DTW.

(2) Trajectory clustering. In this paper, the density-based clustering algorithm OPTICS
is used to cluster vessel trajectories. The OPTICS algorithm is chosen because it is specially
developed for processing spatial data. It can obtain clusters of arbitrary density without
setting the number of clusters as an explicit parameter. Perhaps most importantly, it can
handle clusters of different densities commonly found in maritime traffic.

In this paper, the FastDTW similarity measurement algorithm and the OPTICS cluster-
ing method are combined to realize fast vessel trajectory clustering without parameters.

4.2.4. Heatmap

Vessel density refers to the number of vessels in a certain instantaneous unit area of
water. It reflects the density of vessels in the waters, and also reflects the busy degree and
dangerous degree of vessel traffic in the waters to a certain extent. It plays an important role
in vessel traffic diversion, anchorage range planning, ship routing system design, and so
on. The traditional vessel density representation method is the vessel density distribution
map. Although it can qualitatively and quantitatively reflect the spatial distribution, it is
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not convenient and intuitive, and it is difficult to highlight key areas, which makes the
user experience poor. Heatmaps can simply aggregate data using different colors and
brightness to reflect different density degrees, and intuitively show the density degree
of spatial data [43]. Therefore, this paper proposes using a heatmap to represent vessel
density distribution.

The heatmap is based on kernel density analysis [9,44]. In kernel density analysis,
the number of vessels per unit area is distributed to the designated neighborhood with
the change trend of kernel function, and the overlapping areas are added. Finally, the
continuous and smooth vessel density in various places in the water area is obtained, which
intuitively reflects the distribution of discrete measured values in the continuous area. The
following is a brief production process of a heatmap:

Step 1: Vessel unit density calculation. The water area is rasterized, and the number of
vessels in each instantaneous unit area of the water area is counted, and the vessel density
distribution map is obtained.

Step 2: Kernel density analysis. Gaussian function (Equation (5)) is selected as the
kernel function to calculate Gaussian kernel. The weighted Gaussian kernels are weighted
locally with the vessel unit density as the weight, the weighted Gaussian kernels are added,
and the added results are normalized. Finally the kernel density analysis value is obtained.

G(x, y) = 1/2πσ2 · exp
(
−
(

x2 + y2
)

/2σ2
)

(5)

Step 3: Generate a bitmap, use the kernel density analysis value as an index, map
colors from the preset gradient color band, and recolor the bitmap to realize the heatmap.

5. Visual Design

Trajectory visualization in this paper is developed by DirectX (a collection of appli-
cation programming interfaces developed by Microsoft to handle the higher demands of
graphic programming found in today’s applications), which ensures the ability to present
thousands of data points or lines in computer terminals and supports real-time fast draw-
ing of a large number of trajectories [45]. All visual views are based on ECS, scaled and
converted synchronously with ENCs (Electronic Navigational Charts). In order to improve
visualization efficiency, this paper uses a trajectory compression algorithm which considers
vessel motion characteristics (Section 4.2.1 of this paper) to compress trajectory data on
multiple scales. In large-scale displays, more trajectory points should be reserved, and
the trajectory should be compressed slightly by controlling the threshold value, and vice
versa. Based on the demand of vessel AIS data analysis in the industry (for example,
maritime surveillance, fleet dynamic monitoring, ship motion law analysis, and so on) [46]
and the above data processing flow and analysis method, this paper designs a multi-view
visual analysis system, which mainly includes the visual interaction and three visual views:
trajectory display and playback, trajectory clustering, and ship heatmap.

5.1. Trajectory Display and Playback

Vessel trajectory display and playback have a wide range of application scenarios,
which can be seen in the analysis of vessel navigation characteristics, the study of water
traffic mechanism, the identification of violations, accident investigation and evidence
collection, etc. According to the actual requirements of trajectory visualization, this pa-
per designs two trajectory display and playback modes: multi-vessel mode and single
vessel mode.

(1) Multi-vessel mode. AIS data records the trajectories of almost all vessels on
the route, which is very suitable for research or forensics work such as vessel trajectory
distribution, traffic flow analysis, accident investigation, and so on. However, the navigable
waters of vessels are wide, and there is a large number of vessels. Only some areas and
some vessels are relevant. If they are displayed and replayed directly without screening, it
will affect the efficiency of data query and trajectory rendering and increase unnecessary
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interference. Therefore, this paper develops multi-ship trajectory display and playback
functions. By loading external files or setting the range of interest area (longitude and
latitude of upper-left and lower-right vertices in a rectangular area) and time span (start
and end time), all vessels sailing through interest area in the set time period are queried,
and the loading or query results are presented in the form of list. The result list lists
the vessels’ names, MMSI, number of trajectory points, start times, end times, and other
information. By clicking on the result list, the vessel trajectories can be selectively displayed
and replayed.

(2) Single vessel mode. When we are only required to visualize the trajectory data
of a certain vessel and conduct microscopic studies such as the analysis of vessel motion
characteristics and navigation behaviours, the multi-vessel mode becomes less suitable.
When the historical position of the vessel is unknown, it is impossible to query the trajectory
through the region of interest. Therefore, this paper develops the function of the single
vessel trajectory display and playback. By setting any one of the vessel name, MMSI, or
call sign and time span of the particular vessel, the single vessel trajectory can be queried
quickly, and the query results can be displayed or replayed. The single vessel trajectory
mode can show the position, speed, course, and other microscopic information of the vessel
in the chart. The proposed method of vessel stay point identification based on density
(Section 4.2.2 of this paper) can effectively identify the berthing and anchoring states of the
vessel and label the vessel trajectory semantically.

Both modes support the export function of query results and save them in CSV format.
Users can choose whether to display or replay only, or both at the same time.

5.2. Trajectory Clustering

The purpose of designing a trajectory clustering view is to group trajectories with
similar behaviours into one class based on spatial or temporal similarity and to separate
outlier trajectories so as to find the movement patterns of vessels and analyze the movement
law. In this paper, the FastDTW algorithm and the OPTICS clustering algorithm are used to
achieve fast vessel trajectory clustering. Trajectory data can be obtained by default setting,
manual parameter setting, or external data import, and the obtained data can be further
screened and compressed by manual parameter setting. Trajectory clustering visualization
is based on multi-vessel trajectory display, which supports fast visualization of clustering
results. Different trajectory clusters are distinguished by color and synchronized with chart
color mode switching. This view provides the function of exporting clustering results,
which is convenient for follow-up research.

5.3. Vessel Heatmap

Although the trajectory map can show the distribution of trajectories intuitively,
when showing more trajectory data, it will cause visual clutter, which makes it difficult
to highlight key areas and makes the user experience poor. Therefore, this paper designs
a vessel heatmap to show the trend of vessel distribution and density change from the
perspective of time and space; color is used to reflect data, and progressive color is used to
map the amount of data in consecutive time periods. The red area indicates a large number
of vessels and a high density, while the green area represents a relatively small number
of vessels and a relatively low density. Vessels are mobile; with the change of time, the
spatial position and quantity of vessels in the waters will change, and the distribution and
density of vessels in the waters will also change accordingly. By continuously updating the
heatmap, the distribution and density change trend of vessels can be displayed intuitively.
The heatmap of the selected area can be observed and updated by dragging the time
progress bar.

5.4. Interaction Design

Vessel trajectory data contains a large amount of information, and it is difficult to show
spatial and temporal information, relationship information, and statistical information



ISPRS Int. J. Geo-Inf. 2022, 11, 244 12 of 19

of trajectory data reasonably with a single visual scheme. Therefore, this paper adopts
the method of multi-view linkage and cooperation and uses interactive means to support
visual analysis. The following are some interactions supported by this system:

(1) Chart interaction. All visualization in this paper is based on ECS. The system
supports basic display, background control, zoom, roaming, hierarchical display, and so on.

(2) Labels. In the trajectory display view, the trajectory point information is displayed
by a pop-up window, and the user can control the display and hiding of the trajectory point
pop-up window by moving the mouse; stay points are displayed by static icons. Vessel
trajectory data granularity changes with the scale of ENCs; trajectory labels also change so
as to prevent the overlapping and occlusion of labels.

(3) Visual controls. The user selects time threshold and range threshold through
the input control in the toolbar to control the import and export of trajectory data; the
trajectory playback speed and progress are controlled by a sliding bar control; the starting
and stopping of trajectory display, trajectory playback, and heatmaps are controlled via
button control.

6. Case Analysis

In this paper, the available AIS historical data collected from 1 to 30 April 2019 con-
sisted of more than 6.5 million pieces of AIS information broadcast by about 10,000 different
vessels in the Yangtze River Estuary regions, covering an area of more than 2000 square
kilometers spanning from 122◦10′ E to 122◦40′ E in longitude and from 30◦55′N to 31◦15′N
in latitude. After preprocessing the data, such as cleaning and compression, 1.5 million
pieces of position report data were extracted.

For the three visual analysis modules proposed in Section 5, three cases are shown,
corresponding to Sections 5.1–5.3, to illustrate the usefulness and effectiveness of this system.

6.1. Vessel Trajectory Display and Playback

ECS is widely used in vessel navigation, vessel traffic management, vessel dispatching,
and so on. All the views in this paper are displayed on the basis of it. Figure 4 is a chart of
the Yangtze River Estuary. The system supports basic display, background control, scaling,
roaming, and multi-layer display of ENCs.
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Multi-vessel trajectory display is widely used in macroscopic traffic analysis fields
such as vessel trajectory distribution and traffic flow analysis. Figure 5 is a multi-vessel
trajectory display in which each green line represents a vessel historical trajectory. Figure 5a
is the trajectory display from 1 to 3 April, and Figure 5b is the trajectory display from 1 to
10 April. The areas with concentrated lines in the Figure 5 are generally the waters such as
customary vessel routes and anchorages. In the Figure 5, there are many vessels passing
through area A, which is the customary route of some vessels. However, according to the
routing system, area A is not a legal route. This finding has certain significance for future
maritime surveillance and fairway setting. By comparing Figure 5a with Figure 5b, it can
be seen that when the number of trajectories is large, visual clutter will be caused, and the
number of trajectories should be reasonably controlled in actual use.
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Figure 5. Multi-vessel trajectory display: (a) trajectory display from 1 to 3 April; (b) trajectory display
from 1 to 10 April.

As shown in Figure 6, the historical trajectory of a vessel in the Yangtze River Estuary
on 28 April 2019 is shown. In Figure 6a, the position points in the trajectory are represented
by white dots with time labels, and the adjacent position points are connected by directed
arrows. The red signs mark the stay points of the vessel. The details of the position point
are displayed in the form of pop-up boxes, which are triggered when the mouse is placed
over the position points. The granularity of vessel trajectory data changes with the scale of
ENCs and is displayed hierarchically. As shown in Figure 6b, the historical speed of a vessel
appears in the form of an interactive chart. The development of the single-vessel trajectory
display function facilitates the microscopic research of vessel motion characteristics and
navigation behaviour analysis.

Vessel trajectory playback is widely used in the fields of vessel violation identification,
accident investigation, evidence collection, etc. Figure 7 is an example of multi-vessel
trajectory playback at the Yangtze River Estuary at a certain time on 28 April 2019. Double-
clicking the yellow vessel AIS target activates the target. The static and dynamic information
of the target can be viewed in the information window. The speed and progress of trajectory
playback are controlled by a sliding bar, and the starting, pausing, and stopping of playback
are controlled by buttons. During playback, the vessels’ historical trajectories can be
selectively displayed.
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6.2. Vessel Trajectory Clustering

Vessel trajectory clustering can be used to find the motion patterns of vessels, analyze
movement rules, and detect abnormal behaviour of vessels. In this paper, the FastDTW
algorithm and the OPTICS algorithm are used to realize fast vessel trajectory clustering.
Figure 8 shows the clustering results of vessel trajectories in the Yangtze River Estuary from
1 to 3 April 2019. Trajectories with the same flow direction and adjacent distances in the
figure are clustered together, and different trajectory clusters are distinguished by color. The
differences and similarities among traffic flows (clusters) can be intuitively found through
color difference. By comparing the static and voyage reports of vessels, it can be seen that
the draft of all vessels in traffic flows A and B in the figure is above 7 m, while the draft of
all vessels in traffic flows C and D is below 7 m. Therefore, it can be concluded that “the
north channel is the exclusive channel for vessels with larger draft, and the south channel
is the exclusive channel for vessels with smaller draft”, which is consistent with actual
navigation. Through the study of the vessel trajectories in the traffic flow, the differences
and similarities of the vessels in the traffic flow can be further found, such as the subtle
differences in the vessel type and voyage time of the vessels in the cluster.
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6.3. Vessel Heatmap

This paper designs a vessel heatmap, uses color to reflect the data, and shows the
distribution and density trends of vessels from the perspective of space and time. Figure 9
shows the vessel heatmap at a certain time on 10 April 2019. According to the principle of
a heatmap, the darker the red color in the heatmap, the higher the density, so the density of
vessels in areas A, B, C, and D in the figure is higher. Generally speaking, there are many
vessels in the intersection waters, and the density of vessels is higher there. According to
the ship routing system of the Yangtze River Estuary, it can be seen that areas B, C, and
D in the figure are the intersection waters, which proves the effectiveness of the heatmap
to a certain extent. By continuously observing the heatmap of the waters, it can be found
that the density of vessels in areas B, C, and D changes greatly before and after high and
low tides, while the density of vessels changes relatively little at other times. In navigation
practice, vessels generally take the tide to enter and exit the estuary at high and low tide
times, and the density of vessels in waters B, C, and D is relatively high at this time, which
also proves the effectiveness of the heatmap to a certain extent.
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7. Conclusions

This paper designs a visual analysis system combining multiple views to explore and
analyze vessel behaviour patterns. This paper completes the storage and acquisition of
vessel trajectory data by data warehouse; uses a trajectory compression algorithm that
considers the characteristics of vessel motion to preprocess the trajectory data; proposes an
algorithm based on the principle of spatiotemporal density to detect stay points of vessels
and label the vessel trajectory semantically; uses the FastDTW similarity measurement
algorithm and the OPTICS clustering algorithm to achieve the rapid clustering of vessel
trajectories; and combines the view of trajectory display and playback, the view of trajectory
clustering, the view of vessel heatmap, etc., to display vessel trajectory data in multi-view
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and multi-mode displays. An empirical case study of the Yangtze River Estuary was carried
out using the proposed method, indicating that the system is practical and effective.

For the visual analysis of vessel trajectory data, the research in this paper still has some
drawbacks. For example, when dealing with a large number of trajectories, the system
efficiency is not high; some views are not aesthetically pleasing and some operations are
not user-friendly enough; the types of views are not rich enough, and the data analysis is
not in-depth; and there is a lack of consideration for vessels without AIS or equipped with
AIS that is not used in a standard way.

Future research will be carried out considering the following directions: (1) using GPU
to accelerate the calculation of the FastDTW distance measure to improve the efficiency
of trajectory clustering; (2) adopting Model-View-ViewModel (MVVM) architecture to
reduce system coupling and simplify the system operation process to improve the user
experience; (3) combining other attributes of trajectory data and using more advanced
visualization techniques (such as a stacked space–time cube or dynamic map) to build
richer and in-depth analytic views; (4) attempting to visualize vessel behaviour based on
vessel video surveillance images, shore-based surveillance radar images, LiDAR point
clouds, and Synthetic Aperture Radar (SAR) images in the future.
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