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Abstract: Trees are the key components of urban vegetation in cities. The timely and accurate
identification of existing urban tree species with their location is the most important task for improving
air, water, and land quality; reducing carbon accumulation; mitigating urban heat island effects;
and protecting soil and water balance. Light detection and ranging (LiDAR) is frequently used
for extracting high-resolution structural information regarding tree objects. LiDAR systems are a
cost-effective alternative to the traditional ways of identifying tree species, such as field surveys
and aerial photograph interpretation. The aim of this work was to assess the usage of machine
learning algorithms for classifying the deciduous (broadleaf) and coniferous tree species from 3D
raw LiDAR data on the Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey. First,
ground, building, and low, medium, and high vegetation classes were acquired from raw LiDAR data
using a hierarchical-rule-based classification method. Next, individual tree crowns were segmented
using a mean shift clustering algorithm from high vegetation points. A total of 25 spatial- and
intensity-based features were utilized for support vector machine (SVM), random forest (RF), and
multi-layer perceptron (MLP) classifiers to discriminate deciduous and coniferous tree species in the
urban area. The machine learning-based classification’s overall accuracies were 80%, 83.75%, and
73.75% for the SVM, RF, and MLP classifiers, respectively, in split 70/30 (training/testing). The SVM
and RF algorithms generally gave better classification results than the MLP algorithm for identifying
the urban tree species.

Keywords: machine learning; classification; LiDAR; 3D point cloud; urban trees

1. Introduction

Urban areas have become one of the main habitats for human beings in recent years.
Cities are suffering from various problems, such as air and water pollution, flood risk, and
urban heat island effects, and urban life for citizens is becoming extremely difficult due
to overpopulation and unplanned urbanization. Urban forests, especially trees, provide
a sustainable solution to solve these ecological problems and help to improve the living
conditions of the urban residents [1]. Urban trees are of major importance for the residents,
offering various economic, environmental, health, and aesthetic benefits in urban envi-
ronments [2]. Trees are crucial to improving the air, land, and water quality; absorbing
and mitigating carbon dioxide (CO2); lowering urban temperatures; reducing the storm
water runoff, wind speed, and noise pollution; as well as supporting biodiversity and
providing shelters for different animals [1,3–6]. In addition to these environmental and eco-
logical benefits, urban trees have many social and psychological effects, such as improving
physical/mental health, alleviating life stresses, encouraging residents to build stronger
social relationships, potentially reducing crime, and making neighborhoods more attractive
places [2,7,8]. As a main component of city structures, urban trees decorate parks, roads,
and pavements, provide recreational areas, and create shade, as well as influencing real
estate value [2,4]. Contrary to the numerous benefits for cities and residents, some urban
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trees have some adverse effects, such as causing allergic reactions [9] and environmental
pollution, damaging historical texture, and obstructing the silhouette of cities [2]. Different
tree species face different environmental stresses, so they have different benefits or dis-
advantages for the urban ecology [10,11]. Due to the mostly positive, and few negative,
effects of urban trees, accurate information about individual tree species in cities is im-
portant to enable city planners and local administrators to understand the value of urban
vegetation for ecosystem services. Thus, the detection and monitoring of urban tree species
is necessary for urban planning and protection, disaster management, and sustainable
development of urban areas, and require detailed up-to-date data sources [2,12].

To date, many tree species identification studies have focused on forest areas rather
than urban areas [13]. Urban environments have a complex structure with many different
objects, such as buildings with different types and heights, vegetation on top of buildings,
power lines, temporary objects, paved roads, driveways, road signs, and parking lots, in
comparison with forests, where the surrounding areas are comparatively homogeneous
and the tree crowns are generally densely distributed [13,14]. In urban environments, trees
spatially exist with other urban elements, and they can be in groups of trees or in irregular
spatial designs, as well as being isolated or evenly spaced [15]. Urban trees generally have
a large variation in structural characteristics, according to planting purposes. Urban areas
are faced with specific challenges in tree species identification applications because of the
above mentioned factors [13].

Aerial photo interpretation and field surveys are the two traditional methods used
to identify urban tree species in farraginous urban environments [3]. These traditional
ways are successful in local and small-scale studies, but in fact are labor-intensive, ex-
pensive, time-consuming, and are generally not appropriate for the entire coverage of
large urban areas [3,6,16,17]. Based on specialized photo interpreters’ experience, the large
discrepancies between different interpreters are one of the disadvantages of the aerial photo
interpretation technique. Today, the latest remote-sensing technologies offer a significant
solution to the drawbacks of the traditional methods with their efficient, reliable, rapid, and
repeatable methods for monitoring and analyzing urban tree species. Furthermore, they
enable more cost-effective project budgets, especially for large-scale applications [6,8,11,18].
Over the last few decades, space-borne or airborne multispectral and hyperspectral im-
ages have been utilized for tree species identification [19–22]. However, multispectral and
hyperspectral images have their own limitations, such as inadequate spectral resolution,
shadowing, and obscuring impacts, which are caused by background features, spectral mix-
tures, etc. [21,23,24]. During multispectral and hyperspectral image acquisition, the lighting
conditions change, both in time and in space [25]. In different parts of urban environments,
the same urban tree species can have dissimilar spectral reflectance, or different urban tree
species can have a similar spectral signature in the process of obtaining tree species using
optical remote-sensing methods [21,26,27]. In addition, optical remote-sensing imagery
is generally restricted to obtaining detailed information about the understory due to the
heterogeneity of the urban environment [28]. Recently, active sensing light detection and
ranging (LiDAR) systems have been successfully used in the detection of urban tree species,
providing 3D information with high spatial resolution, returning multiple signals and high
scanning speed [22,28,29]. Airborne light detecting and ranging systems can penetrate
tree crowns, supply geometric and radiometric information, exhibit some of the inner
structure of trees, and collect intensity data [30]. LiDAR capabilities can also be improved
by increasing point density.

In tree species classification studies using LiDAR datasets, the test areas, used data
types, number of classified tree species, and classification methods vary from application
to application. Discrete-return LiDAR data are used in general, but full-waveform LiDAR
data, which use a newer technology, have been used in recent applications for tree species
classification [31–36]. While a LiDAR point cloud can be used alone in the classification
of classic tree species, aerial photographs, satellite images, or hyperspectral images can
be used additionally to a LiDAR point cloud as supplementary data for integrated tree
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species classification applications [37–45]. Raw LiDAR data or gridded LiDAR data, which
enable the direct use of traditional image classification algorithms, can be used for tree
species classification [46–49]. In some tree species classification studies, only deciduous
and coniferous tree species are distinguished, while in others, a large number of different
species are classified [50,51].

Nowadays, machine learning algorithms are used in many remote-sensing appli-
cations, such as change detection [52], monitoring of active wildfires [53], land usage
identification [54], road edge detection [55], ground water potential assessment [56], marine
oil spill detection, prediction, and vulnerability assessment [57], biomass and soil mois-
ture retrievals [58], etc. The support vector machine (SVM), decision tree, random forest
(RF), k-nearest neighbor (KNN), and artificial neural network (ANN) methods, which are
traditional machine learning methods, have been mostly utilized for the classification of
the LiDAR data to acquire tree species [17,59]. Zhang and Liu [47] aimed to analyze the
applicability of LiDAR-derived geometric and intensity metrics to classify adjacent and
dominant tree species using the support vector machine method at the individual tree level
in their study area. Koma et al. [60] examined the object-based classification of urban trees
using full-waveform three-dimensional LiDAR data in Vienna, Austria. The applicability of
the geometric and radiometric features of deciduous trees and the coniferous pine species
in an urban environment have been investigated using a random forest classification algo-
rithm with the combined use of geometric and radiometric features. An overall accuracy
of 87.5% was achieved as the most reliable classification by Koma et al. [60]. LiDAR data
and hyperspectral imagery (0.5 m) were fused to differentiate eight common tree species in
Dian et al. [61] by using vertical, spatial, and spectral features as an input to the classifica-
tion of a support vector machine in Anyang, Henan, China, and a voting procedure was
used to generate a tree species map. Shen and Cao [62] used hyperspectral images and
LiDAR point cloud, which are acquired simultaneously, to classify five tree species with
a RF classifier, aimed at detecting the most important variables for the classification, and
an evaluation of the contribution of combined use of two different datasets. Shi et al. [21]
used an RF classifier to obtain six different tree species and drew attention to the impor-
tance of using 37 different LiDAR features derived under leaf-on and leaf-off conditions.
Kim et al. [63] analyzed the possible usage of LiDAR intensity data using a linear discrimi-
nant function to differentiate broadleaved and coniferous tree species and obtained overall
classification results verifying their success. A methodology for coniferous and deciduous
tree species classification in a forest area using both a k-means and expectation maximation
(EM) classifier with full-waveform LiDAR features was proposed in Reitberger et al. [64],
and a maximum overall accuracy of 85% in a leaf-on situation was reported. Ørka et al. [31]
classified coniferous and deciduous tree species with linear discriminant analysis (LDA) in
a boreal forest reserve in Norway using intensity and ALS-derived structural features and
succeeded with 88% overall classification accuracy.

The primary aim for this research is to assess the potential usage of the support vector
machine, random forest, and multi-layer perceptron machine learning algorithms for the
classification of deciduous and coniferous tree species, using the Davutpasa Campus of
Yildiz Technical University, Istanbul, Turkey as the urban study area.

The paper is subdivided into four main sections. Section 2 defines the materials
and methods, including the study area, used dataset, general workflow, high vegetation
classification, individual tree crown segmentation, feature extraction, urban tree species
classification, and performance analysis subsections. The results and discussion in Section 3
presents an experimental evaluation and analysis of the machine learning-based urban tree
classification process. Finally, Section 4 concludes the work presented in this paper.

2. Materials and Methods
2.1. Study Area

The Davutpasa Campus of Yildiz Technical University, located in the Istanbul province
district in northwest Turkey (41◦01′33” N, 28◦53′21” E), was selected as the urban study
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area and includes buildings of several types and heights, vegetation of different types and
heights, paved roads, driveways, road signs, and parking lots (Figure 1). The selected
urban study area (approximately 4.7 ha) in the Davutpasa Campus of Yildiz Technical
University (approximately 125 ha) was used for testing the performance of SVM, RF, and
MLP machine learning algorithms to discriminate deciduous and coniferous tree species
(Figure 2). In the study area, different types of deciduous trees, such as linden, cherry,
sycamore, mulberry, quince, plum, apple, and locust, and coniferous trees, including red
pine, stone pine, blue spruce, and Norway spruce were available.
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2.2. LiDAR Data and Field Data

The 3D LiDAR point-cloud data used in this study were acquired in September
2013 with a “Riegl LSM-Q680i” full-waveform laser scanner by the Istanbul Metropolitan
Municipality. The LiDAR point cloud was provided in Log ASCII Standard (LAS format)
with an average density of 16 points/m2. The flying height and speed of the helicopter were
approximately 600 m and 148 km/h, respectively. The used LiDAR dataset was acquired at
up to 400,000 Hz pulse repetition frequency (at a near infrared laser wavelength) with a
scanning angle of 60◦ (±30◦). The data were recorded with a rotating polygon mirror in
parallel scan lines with beam divergences of less than or equal to 0.5 mrad. The laser data
were recorded with multiple returns (echoes) and 16-bit uncalibrated intensity information.

The ground-truth data for tree species were acquired by field investigation and photo
interpretation within the study area. The species of each tree in the study area was deter-
mined accurately as deciduous or coniferous.
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2.3. General Workflow

In this research, a tree species classification method from raw 3D LiDAR data based
on SVM, RF, and MLP machine learning algorithms was developed to provide tree species
identification with high efficiency in terms of time and cost for large-scale applications.
As a first step, the ground, building, and low, medium, and high vegetation classes were
acquired from a raw LiDAR point cloud with a hierarchical rule-based classification method;
then, individual tree crowns were segmented using a mean shift clustering algorithm from
high vegetation points. Feature extraction was conducted for each individual tree, and
these features were used to classify the deciduous and coniferous tree species in the urban
study area with SVM, RF, and MLP algorithms. An accuracy assessment for the classified
tree species was carried out. A 10-fold cross-validation and feature importance process with
Mean Decrease Gini (MDG) were also performed to evaluate the stability of the models
and to analyze the effects of the classification features. TerraScan software and the Python
programming language were utilized in this research. The flow chart of the proposed
machine learning-based urban tree species classification process is shown in Figure 3.
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2.4. High Vegetation Classification

The proposed method in this study starts with a classification of the high vegetation
points from raw LiDAR point cloud data. The 3D raw LiDAR point cloud was classified
with a hierarchical rule-based classification method using spatial features. The ground,
building, low vegetation, medium vegetation, high vegetation, low point, air point, and
default classes were obtained based on the standard point classes of the American Society
for Photogrammetry and Remote Sensing (ASPRS) [65]. In the rule-based classification
algorithms, the information about the terrain surface is converted to a set of rules; thus
each terrain class has its own characteristic rules, and the classification is carried out based
on these rules [66,67]. In this study, each individual LiDAR point was classified into the
appropriate classes with point-based rules using spatial features. The details of the used
point-based classification of the LiDAR data with the hierarchical rule-based classification
method to acquire the high vegetation class (using the TerraScan module of TerraSolid
software) can be found in Yastikli and Cetin [68].

2.5. The Segmentation of Individual Tree Crowns

In the segmentation process, the high vegetation points are partitioned into subsets
of neighboring points called “segments”. Individual tree crowns were achieved as a
consequence of the segmentation step. The segmentation process was carried out using the
mean shift clustering algorithm, which was first proposed by Fukunaga and Hostitler in
1975 [69]. Mean shift is an iterative and non-parametric method that shifts each data point
based on the local maxima of density function with Kernel Density Estimation (KDE) [70].
This method chooses a random point as the cluster center from the used dataset, updating
the cluster centers on the condition that the mean of the candidate points should be in
a certain region. This segmentation algorithm automatically sets the number of clusters
according to the bandwidth that determines the size of the region to be searched. The
bandwidth is the most important parameter that needs to be specified in the mean shift
process [71]. The bandwidth can be estimated with manual iterations or by using the
bandwidth function. In this study, the 2D point-based segmentation of high vegetation has
been conducted based on the x and y Cartesian coordinate pair of each raw LiDAR point
to acquire individual tree crowns. The bandwidth parameter was estimated with manual
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iterations, and the high vegetation points were segmented by the flat kernel with a proper
bandwidth of 3. The segmentation processes with mean shift clustering were performed
with the Python programming language (Python 3.6.4), along with scikit-learn library. The
segmentation results could be categorized as correct detection, under-segmentation, over-
segmentation, missed, and noise [72]. The generated segments in this study include both
the under-segmentation, which means multiple crowns were segmented as a single crown,
and over-segmentation, which means a single crown was segmented as multiple crowns.

2.6. Feature Extraction

The extraction of the features to be used in the classification model by applying
statistical analysis is a critical step in the machine learning field [73]. In our proposed
approach (see Figure 1), the classification features were calculated using the height and
intensity information of the LiDAR points, and they were then used as input to the ma-
chine learning-based classification algorithms for the classification of urban tree species.
The spatial- and intensity-based features were obtained from the raw 3D LiDAR point
clouds to differentiate the urban tree species. The determined features were generated for
each tree crown using LiDAR height and intensity information, including minimum and
maximum values, and results of statistical analyses (mean, standard deviation, skewness,
kurtosis, etc.) [11,21,74,75]. In Table 1, the 25 generated features for the classification of
targeted urban tree species using SVM, RF, and MLP algorithms are given. Z indicates the
Z coordinate of the LiDAR points in the national coordinate system, and intensity indicates
the uncalibrated intensity value of the LiDAR points in Table 1.

Table 1. The generated spatial- and intensity-based features from LiDAR data.

LiDAR Data

Spatial-Based Features Intensity-Based Features

Number of points –
Maximum Z Maximum intensity
Minimum Z Minimum intensity

Standard deviation of Z Standard deviation of intensity
Mean Z Mean intensity

Skewness of Z Skewness of intensity
Kurtosis of Z Kurtosis of intensity

Z range Intensity range
5th percentile of Z 5th percentile of intensity
25th percentile of Z 25th percentile of intensity
50th percentile of Z 50th percentile of intensity
75th percentile of Z 75th percentile of intensity
90th percentile of Z 90th percentile of intensity

2.7. The Classification of Urban Tree Species

In the classification step, class labels were assigned to the obtained segments based
on generated feature values. The generated segments on the study area were classified as
deciduous or coniferous trees using machine learning algorithms. Machine learning is a
type of automation as a branch of artificial intelligence, and it works on the function and
structure of algorithms by constructing a data-driven model for estimations from sample
inputs [76]. SVM, RF, and MLP are the chosen machine learning classifiers used in this
study. Information about the used machine learning classifiers and performance analyses
is given in the following subsection.

2.7.1. Support Vector Machine

Support vector machine (SVM) was developed in 1995 by Vladimir Naumovich Vap-
nik [77]. SVM is a non-parametric supervised machine learning algorithm that performs
the classification process based on the statistical learning concept with adaptive compu-
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tational learning [78]. SVMs are very popular kernel-based statistical machine learning
algorithms [79]. Kernel-based methods, such as support vector machines, are the main
subject of a study on classification, clustering, and regression problems [80]. A hyper-
plane or a set of hyperplanes were constructed between groups or observation classes
by support vector machines in an infinite dimensional space to separate the samples [81].
The hyperplane is the decision surface for maximizing the distance to the neighboring
data points in the classes [82,83]. The data points nearest to the obtained hyperplane are
called support vectors [84]. Detecting the best separation hyperplane with the highest
margin distance between the nearest points of the two classes is the objective of the SVM
approach [85]. The linear hyperplane is only sufficient for linearly separable data. If the
data are not linearly separable, the support vector machine method can map the data onto
a higher dimensional space where they are linearly separable with a kernel function, such
as sigmoid, polynomial, normalization, radial basis function (RBF), and Laplacian radial
basis function kernel [79,83].

In the present work, the radial basis function (RBF) kernel was used in SVM algorithm.
The most important C and gamma (G) parameters were analyzed manually in detail, and the
determined C value was 100,000,000, while the gamma value was 5.092462164188164× 10−10.

2.7.2. Random Forest

Random forest (RF) [86] is a widespread, powerful, non-parametric machine learning
algorithm based on the bagging principle of decision tree classifiers [21]. The RF algorithm
provides reliable classifications with the estimations acquired from an ensemble of classifi-
cation and regression trees (CARTs) [72]. The random vectors in RF are used to develop
individual trees consisting of root nodes, internal nodes, branches, and leaf nodes in the
forest. In its simplest form, RF requires the number of trees (n) to constitute the “forest”
and the number of features (m) to be used in each node in the trees [87]. In random forest,
each tree votes for the most popular class at each input instance, and the final classification
is defined by the majority votes of the entire forest trees [87,88]. The RF commonly uses the
Gini index as a splitting criterion to determine which attribute to split during the learning
phase of the tree [89,90]. The impurity level of the samples assigned to a node is measured
with the Gini index [89]. A bootstrap sample, which is two-thirds of the original data,
also known as an “in-of bag” sample, is used in the training of trees, and the one-third
remainder data called as “out-of bag” samples are used in estimating the classification error
and determining the importance of the classification features [6,91].

RF provides a variable importance measure (VIM), which is a key advantage according
to alternative machine learning algorithms [92]. The Mean Decrease Accuracy (MDA) and
Mean Decrease Gini (MDG) are two different VIMs in RF to identify the most relevant
features or perform a feature selection procedure [90,93]. While MDA is the average of the
difference between two out-of-bag test errors, MDG assesses the difference between the
Gini index before and after classification [94].

In this research, n_estimators (the number of decision trees in the forest) and max_features
(the number of features considered for the best split) parameters in the RF algorithm were
analyzed for accurate classification. A total of 150 trees and 10 features at each split were
used as n_estimators and max features, respectively. We also present the feature importance
measures with MDG.

2.7.3. Multi-Layer Perceptron

Today, one of the most popular research topics in the machine learning and artificial
intelligence fields is artificial neural network (ANNs) [95]. Multi-layer perceptron (MLP), a
specific form of ANN, consists of the connection of neurons (the process elements) with
each other in a given order, and each neuron is connected to another neuron in the next
layer with connections that are named as weights [95,96]. Each neuron in a multi-layer
perceptron structure receives an input array, and then generates a single output. MLP has
one input layer, one or more hidden layer, and one output layer [76].
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The information flows from the input to the output layer unidirectionally through the
hidden layers, as MLP is a feed-forward neural network [97]. Each layer has a different
role in a multi-layer perceptron algorithm. The first (input) layer indicates the inputs of
the problem, and the last (output) layer represents the outputs of the problem. The main
computational core of the multi-layer perceptron algorithm is the hidden layers [98]. The
MLP structure used in this study is shown in Figure 4. As can be seen from Figure 4, the
proposed MLP approach has a hidden layer with 20 neurons, as well as an input layer with
25 neurons and an output layer with 2 neurons.
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2.8. Performance Analysis

Evaluation methods are needed to determine the classification success of a model [99].
The performance of the proposed machine learning-based classification model is evaluated
by dividing the used dataset into training/testing samples. The accuracy of the classifi-
cations cannot be truly achieved, if the reference dataset is comparably small, and only a
single split into training and test samples is used [18]. By applying iterative data-splitting,
the cross-validation process allows us to validate the stability of the proposed classification
technique [100]. In cross-validation, first the dataset is split into several different subsets,
then a group is determined as a test set and the remaining groups are used as training
sets, and the process is repeated for all possible training and test sets. Therefore, all the
combinations are tested, and a performance value is acquired with the cross-validation by
taking the average of each split result [101,102].

The classification performance of the used machine learning algorithms was quanti-
tatively assessed with a statistical measurement of accuracy [73]. Equations (1)–(4) show
the computed performance measures: the accuracy, recall, precision, and F1-score for tree
species classification using a confusion matrix [103–105]. Accuracy indicates the ratio
of correctly classified samples to all samples. Recall is used to assess the proportion of
correctly predicted positive samples by the classification algorithm to the total number
of samples that should be recognized as correct. Precision is used to estimate the ratio of
correctly classified positive samples to the total predicted positive samples [106,107]. The
F1-score is calculated with the harmonic mean of recall and precision measures [108]. The
potential values of accuracy, recall, precision, and F1-score range from 0 to 1. The values
closer to 1 describe a better classification performance, and the values closer to 0 express
lower classification results [109]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1− score = 2
Precision× Recall
Precision + Recall

(4)

TP, TN, FP, and FN in Equation (1) define the true positive, true negative, false
positive, and false negative samples, respectively. TP refers to the entities classified correctly
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according to the ground-truth data, and TN defines the entities that were not acquired in
the classification and also do not exist in the ground-truth data. FP represents the entities
that have been obtained with the classification but do not exist in the ground-truth data,
and FN refers to the entities defined as correct in the ground-truth data that were not
acquired in the classification [2,110,111].

In this study, the machine learning-based classification models were formed with 70%
training and 30% test samples. The classification results were interpreted using the accuracy,
recall, precision, and F1-score values on the test dataset (30%). A 10-fold cross-validation
was also used to evaluate the stability of the proposed machine learning-based SVM, RF,
and MLP algorithms for tree species classification. All the segmentation processes of the
high vegetation points, the urban tree species classification, and the performance analysis
in this research were performed in the Jupyter Notebook environment with the Python
programming language (Python 3.6.4), along with scikit-learn library.

3. Results and Discussion

As the first step in the proposed methodology, the high vegetation classification results
acquired with a hierarchical rule-based classification of a three-dimensional raw LiDAR
point cloud using spatial (geometric) features are given in Figure 5. When the point-based
classification results were analyzed, it was clearly seen that the points of high vegetation
were obtained successfully; therefore, almost all the tree points in the study area were
accurately assigned to the high vegetation class.
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Individual tree crown segmentation is the second step of the proposed machine
learning-based urban tree species classification after the high vegetation classification
process. A total of 346 tree crowns were obtained using mean shift segmentation (2D kernel
with a proper bandwidth of 3) in the study area as the primary results of 2D point-based
tree crown segmentation. Under- and over-segmented urban trees existed in the study
area, especially in areas where the trees were dense and the tree crowns were mixed with
each other (see the red rectangles in Figure 5). The segmentation accuracy of the tree
crowns was 77% based on ground-truth data. As we were focused on individual trees,
the under-segmented and over-segmented tree crowns were removed from the output of
mean shift segmentation. As a result, 265 individual tree crowns were obtained for the
classification process of tree species (Figure 6). The ground-truth data, which were required
for training and testing the machine learning-based classification models, were created by
manually labeling the obtained individual tree segments as deciduous or coniferous trees
based on visual interpretation and field investigation (Figure 7).
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Figure 7. Training and test samples in the study area: (a) training sample set; (b) test sample set.

The segmented individual trees were classified into deciduous or coniferous tree
species based on the spatial- and intensity-related features (see Table 1) of the LiDAR
data with support vector machine, random forest, and multi-layer perceptron machine
learning classification methods using determined parameters and 25 generated features. In
the 3D point-based classification process, 193 deciduous and 72 coniferous trees, in total
265 individual tree crowns, were used. Each classifier (SVM, RF, and MLP) was trained
with the same randomly determined training sample set (185 trees, which was 70% of the
total segmented 265 tree crowns), and the remaining test samples (80 trees, which was 30%
of the total segmented 265 tree crowns) were used to validate the classification performance
of the models (Figure 7).



ISPRS Int. J. Geo-Inf. 2022, 11, 226 11 of 19

The classification results for urban deciduous and coniferous trees using SVM, RF, and
MLP classification models are shown in Figure 8. As mentioned earlier, the classification
results were interpreted by means of accuracy, recall, precision, and F1-score on the test
dataset (30%). The overall accuracies for the proposed machine learning-based classification
of urban tree species with SVM, RF, and MLP classification models are given in Table 2. The
urban tree species classification results obtained from our study area show that the machine
learning methods were able to classify the urban tree species using the 3D raw airborne
LiDAR data with sufficient accuracy. According to the obtained overall classification
accuracies of urban tree species, the RF classifier had the best classification accuracy with
83.75%, while SVM had a 3.75% lower classification accuracy and MLP had a 10% lower
classification accuracy than RF.
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Table 2. Overall accuracy values of the proposed three classification algorithms.

Classifier Overall Accuracy

SVM 80.00%
RF 83.75%

MLP 73.75%

The recall, precision, and F1-score values of each tree species (deciduous and conifer-
ous trees) were also calculated and are shown in Figure 9. According to the recall values,
RF was the best classification method for deciduous trees with a 0.943 recall value in the
study area. The recall values of the SVM and MLP classifiers were also high, similar to the
RF method, and were 0.887 and 0.925, respectively for deciduous trees. Lower recall values
of the SVM, RF, and MLP algorithms were obtained for coniferous trees compared with
deciduous trees in the study area. While the SVM and RF values were quite similar, the
recall of the MLP algorithm was the worst with 0.370. Therefore, MLP is an insufficient
method for the coniferous tree species. Similar precision values (0.825 and 0.833) were
obtained for deciduous trees with the SVM and RF classifiers. MLP was the least successful
classification method for deciduous trees according to the precision values (0.742). For the
coniferous tree species, the RF classifier was the best method with 0.850 precision values.
The values of 0.739 and 0.714 are the lower precision values for the coniferous tree species
using the SVM and MLP methods, respectively, in the study area. Regarding the F1-scores,
the coniferous tree species were classified worse than the deciduous tree species, and all
the classification methods (SVM, RF, and MLP) were the successful for the deciduous tree
species (with values of 0.855, 0.885, and 0.824). For the coniferous tree species, the MLP
classifier was the worst classification method according to the 0.488 F1-score value. RF was
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the best classification method, and SVM was a relatively good algorithm for deciduous
trees with regard to F1-scores (0.723 and 0.680, respectively). In general, the recall, precision,
and F1-score values for the deciduous tree species were higher than for the coniferous tree
species in the study area. Consequently, the SVM, RF, and MLP machine learning classifiers
produced more successful classification results for the deciduous trees species compared
with the coniferous tree species.
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In this study, the classification success of the SVM, RF, and MLP classification models
were tested using cross-validation. A 10-fold cross-validation was performed for the
classification models in order to obtain better confidence classification results, evaluate the
stability of the models, and avoid overfitting, as can be seen in Table 3. The average RF
classification accuracy was the highest (81.54%) with the 10-fold cross-validation, which
was 0.44% higher than SVM and 17.82% higher than the average MLP classification accuracy
(see Table 3). The MLP classifier had the worst average classification accuracy. While the
accuracy of the two urban tree species classified with SVM and RF algorithms was similar,
the accuracy acquired with the MLP algorithm was relatively low compared to these.

Table 3. The 10-fold cross-validation results of the proposed three classification methods.

Classifier 10-Fold Cross-Validation Average Accuracy

SVM 81.10%
RF 81.54%

MLP 63.72%

A feature importance process was also conducted in this study to analyze the impact
of the used 25 spatial- and intensity-based features of the tree species classification with
RF. The Mean Decrease Gini (MDG) was used to indicate the feature importance in the
RF classification (Figure 10). While the most important classification feature among the
25 features is “90th percentile of Z”, the least important classification feature was the
“5th percentile of Z”. “Minimum Z”, “Number of points”, “Z range”, “75th percentile of
Z”, and “Standard deviation of Z” were the next five most important features following
“90th percentile of Z”. Generally, the spatial-based features had a higher importance than
the intensity-based features for the proposed 3D point-based classification according to
MDG in the RF classification.
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The three widely-used machine learning algorithms (SVM, RF, and MLP) were selected
to assess their usage for urban tree species classification. The results of this study provide
preliminary findings for deciduous and coniferous tree species classification using 3D raw
LiDAR data in an urban area. When the performances of our machine learning-based
classification algorithms were analyzed, it was noted that the support vector machine,
and particularly the random forest classifier, discovered reliable solutions, even for the
urban tree objects that showed similar geometrical and textural properties, whereas the
multi-layer perceptron classifier solutions were not competitive (Tables 2 and 3). The
success of the RF classifier against the SVM and MLP classifiers can be explained by the
fact that the RF classifier is suitable for handling unbalanced samples and adds additional
randomness to the classification model during the growing trees as well as searching for
only the best features among a random subset of features in the splitting process of each
node [112–115]. Compared with the SVM and RF classification models, the MLP models
can have numerous weights for optimizing in each iteration [114,116,117]. In addition,
the MLP needs more training data and more parameter tuning in the training stage [117].
Considering these reasons, the MLP classifier is less successful than the SVM and RF
classifiers for the classification of urban tree species.

Most of the tree species classification studies in the literature have used a canopy
height model (CHM) produced from LiDAR points, as well as features derived from
full-waveform LiDAR data for deciduous and coniferous tree species [47,49,118,119]. In
this study, commonly used spatial- and intensity-based features were computed from
a traditional LiDAR dataset without using any reference terrain surface model or any
CHM [11,75,120,121]. The features derived from full-waveform LiDAR data were not used
since the full-waveform information was not available in our LiDAR dataset [21,64]. Based
on deciduous and coniferous tree species classification, the maximum overall classification
accuracy of 85% in Reitberger et al. [64], and the overall classification accuracy of 88%
in Ørka et al. [31] are comparable with our maximum overall classification accuracy of
84% with random forest. However, the k-means and the expectation maximation (EM)
classifier used in Reitberger et al. [64] and the linear discriminant analysis (LDA) classifier
used in Ørka et al. [31] are different from our SVM, RF, and MLP machine learning-
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based classifiers. The full-waveform LiDAR features used in Reitberger et al. [64] and
the structural and echo-based features used in Ørka et al. [31] were not included in our
classification features. The study areas in Reitberger et al. [64] and in Ørka et al. [31] were
selected as forest areas that were not comparable with our urban study area. Considering
the obtained overall accuracy metrics in our urban study area, the proposed machine
learning-based classification algorithms in tree species classification using the 3D raw
LiDAR data were successful.

The number of training and test samples in the study area was relatively small in
comparison with similar studies such as Yu et al. [121] and Nguyen et al. [122], but the
obtained accuracies of the machine learning-based classifications are comparable. The
classification results obtained from our study could serve as the basis for a pilot study in
future deciduous and coniferous tree species classification studies using machine learning
algorithms in large-scale urban applications.

4. Conclusions

In this paper, a machine learning-based 3D LiDAR point cloud classification algorithm
was proposed to classify urban tree species as deciduous or coniferous using SVM, RF,
and MLP. The experimental results indicate that SVM and RF classifications generally
outperform MLP classification. The obtained results could be improved by extending
the size of the used training and test samples, in addition to using full-waveform LiDAR
to a produce larger number of spatial- and intensity-based features for discriminating
deciduous and coniferous tree species in urban environments.

The classification results are encouraging with respect to the difficult study area,
which included heterogeneous urban structures with dense trees in different sizes, ages,
and species. This study offers insights for urban authorities regarding the potential use
of machine learning algorithms for classifying deciduous (broadleaf) and coniferous tree
species from 3D raw LiDAR data in urban environments using spatial- and intensity-
based LiDAR features. Compared with traditional field surveys and aerial photograph
interpretation methods for tree species classification, the proposed approach has essential
benefits, such as automation, especially in terms of reducing the manpower and field study
requirements. Many activities, such as the management, planning, and maintenance of
urban trees, as well as the identification of endemic tree species, can be easily carried out
in urban environments with the proposed machine learning-based 3D raw LiDAR point
classification approach.
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