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Abstract: Semantic technologies have proven their relevance in facilitating the interpretation of
Earth Observation (EO) data through formats such as RDF and reusable models, especially for the
representation of space and time. While rasters are the usual data format for the results of image
processing algorithms, a recurrent problem is transferring the pixel values of these rasters into features
that make sense of the areas of interest on the Earth, thus facilitating the interpretation of their content.
This paper addresses this issue through a semantic data integration process based on spatial and
temporal properties. We propose (i) a modular and generic semantic model for the homogeneous
representation of data qualifying a geographical area of interest thanks to territorial units (land parcels,
administrative units, forest areas, etc.) that we define as divisions of a larger territory according to a
criteria in relation with human activities; and (ii) a semantic extraction, transformation and load (ETL)
process that builds on the model and the data extracted from rasters and that maps aggregated data
to the corresponding unit areas. We evaluate our approach in terms of the (i) adaptability of the
proposed model and pipeline to accommodate different use cases (vineyard and urban expansion
monitoring), (ii) added value of the generated datasets to assist in decision making, and (iii) scalability
of the approach.

Keywords: earth observation; semantic data integration; spatial and temporal data; change detection;
land cover; NDVI

1. Introduction

Earth Observation (EO) is a field that has evolved significantly in recent years thanks
to large-scale Earth monitoring programs, such as the US Landsat Program (https://
www.usgs.gov/land-resources/nli/landsat, accessed date: 23 December 2021) and the EU
Copernicus Program (http://www.copernicus.eu/en, accessed date: 23 December 2021).
In particular, with the Copernicus program launched by the European Space Agency (ESA),
EO satellites collect data that will be combined with observation data from sensor networks
on the Earth’s surface. Nowadays, two types of satellites are in production, Sentinel-1 and
Sentinel-2, with several other types being expected by 2030. Since 2015, these satellites have
provided high-quality Earth images (estimated at 8-10TB of data per day), providing users
with free, reliable, and up-to-date Earth image data and metadata. The availability of these
data sources has paved the way for better support of existing domain-specific applications
and for the emergence of new ones, from agriculture to forestry, environmental monitoring
to urban planning, climate studies, and disaster monitoring. These data sources, coupled
with the development of machine learning algorithms, have stimulated image processing
and its application in various fields.

One common data format in satellite image processing is the raster. A raster models
geographical phenomena as a regular surface in which each cell (or pixel) is associated

ISPRS Int. J. Geo-Inf. 2022, 11, 149. https://doi.org/10.3390/ijgi11020149 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11020149
https://doi.org/10.3390/ijgi11020149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-2578-9138
https://orcid.org/0000-0003-3653-3223
https://orcid.org/0000-0002-0096-2766
https://orcid.org/0000-0003-2840-005X
https://www.usgs.gov/land-resources/nli/landsat
https://www.usgs.gov/land-resources/nli/landsat
http://www.copernicus.eu/en
https://doi.org/10.3390/ijgi11020149
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11020149?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2022, 11, 149 2 of 18

with an indicator (e.g., NDVI or change indicator) or a phenomenon value according to
a predefined coding or classification (e.g., a land cover classification or a level of change
coding). Several rasters can be provided for the same geographical area to monitor either
the same phenomenon at different dates or different phenomena; they can be compared
or combined to generate a new one [1]. However, from a decision-making perspective,
the interpretation of their content requires additional higher-level data or knowledge
representations associated with features that bring meaning to some areas of interest
on Earth.

This paper deals with the integration of data computed from rasters as a way of
qualifying areas of interest based on their spatial and temporal properties. For this purpose,
we use the notion of territorial unit, which we define as a part of a larger territory, where the
territory is divided according to a criterion linked to human activities (administration, law,
economy, agriculture, etc.) and normalized in legally defined and accepted nomenclatures.
Then, we assume that the areas of interest correspond to some territorial units selected for
their relevance (in granularity or meaning) for the task in hand. Thus, areas of interest can
be either administrative units (i.e., departments, counties) as defined in the NUTS (https:
//ec.europa.eu/eurostat/web/nuts/, accessed date: 23 December 2021) nomenclature,
economical units (i.e., agricultural parcels), or cultural units (i.e., parish, language areas).
Areas of interest are typically represented as geospatial features in a vector format. We are
interested in studying (i) what kind of ontology is required to support knowledge extraction
from EO data and to describe homogeneously different analysis results (observed properties
or indicators) provided by the rasters; (ii) how to make rich EO data captured thanks to
image processing and other kinds of related EO accessible and usable; and (iii) how to
enable the data traceability (data sources, raster calculation, semantic process) to improve
user confidence and data exploitation.

The main contributions of this paper can be summarized as follows:

• A generic semantic model that allows the semantic and homogeneous description of
spatio-temporal data to qualify predefined areas and to keep track of their provenance.
This model is extendable to handle any kind of observed EO property and has been
applied to several use cases.

• A configurable and reproducible semantic Extract, Transform and Load (ETL) process
(the process is encapsulated as a docker image, accessible on https://hub.docker.
com/r/h2020candela/triplification, accessed date: 23 December 2021), based on the
proposed model. We have defined a set of transformation functions to populate the
semantic model with data and obtain a homogeneous semantic data representation.
One of the features of this process is to extract and aggregate data from rasters together
with data from other sources. Aggregation takes place on territorial units’ areas.

• An EO Sentinel eco-system that allows exploiting Sentinel images, since we can
represent and calculate different properties from Sentinel images (e.g., NDVI, change)
or to import raster datasets from external sources (e.g., land cover data).

We evaluate our approach in terms of the adaptability of the proposed model to
address different use cases (vineyard and urban expansion monitoring), the adaptability of
the pipeline, and the added value of the generated datasets to assist in decision making.
We also discuss the scalability of the approach and the relationship between the image
resolution and the size of the reference territorial units. This paper extends [2] in two
directions: (i) we detail the proposed semantic models and (ii) we extend the discussion on
the use cases in which our models and pipeline have been applied.

This work was developed in the scope of the CANDELA (http://www.candela-h2020.
eu/, accessed date: 23 December 2021) European project, which aims at creating a platform
that provides building blocks and services that allow users to quickly use, manipulate,
explore, and process Copernicus data as well as large open datasets. We contribute with
this project by proposing a semantic-oriented data integration, as presented in this paper,
and a semantic search module upon the integrated data.

https://ec.europa.eu/eurostat/web/nuts/
https://ec.europa.eu/eurostat/web/nuts/
https://hub.docker.com/r/h2020candela/triplification
https://hub.docker.com/r/h2020candela/triplification
http://www.candela-h2020.eu/
http://www.candela-h2020.eu/
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The remainder of this paper is organized as follows. Section 2 discusses key related
work. Section 3 presents our semantic model for integrating geographical areas and data
extracted from rasters through their spatial and temporal dimensions. Section 4 details the
semantic data integration process. Section 5 describes the experimental evaluation of our
approach. Finally, Section 6 ends the paper and provides perspectives for future work.

2. Related Work

Our proposal concerns two main fields: semantic extraction, transform, and load (ETL)
processes for data integration; and raster data processing, as discussed in the following.

2.1. Semantic ETL for EO Data Integration

The transformation and integration of (open) EO data can be addressed as a semantic
ETL process, where the ETL process is guided by a semantic model. This model must
homogeneously represent the data sources. In [3], the authors model EO imagery as a
data cube with a specific place and time, thanks to the W3C RDF Data Cube (QB) ontol-
ogy [4]. The RDF Data Cube combines standard vocabularies such as the Sensor Network
vocabulary (SSN) (https://www.w3.org/TR/vocab-ssn/, accessed date: 23 December
2021), OWL-Time (for temporal concepts) [5], the Simple Knowledge Organisation System
(SKOS) (https://www.w3.org/TR/skos-reference/, accessed date: 23 December 2021) to
manage concept labels, and PROV-O (https://www.w3.org/TR/prov-o/, accessed date:
23 December 2021) (an ontology to represent the provenance of the data generated by
the integration process). In [6], QB was used to publish tabular time series data and to
structure it into slices that support multiple views on the data. Another spatio-temporal
data cube is the semantic EO data cube proposed by [7]: it contains EO data where each
observation is linked to at least one nominal (i.e., categorical) interpretation. Following a
semantic ETL approach along with ontology-based data access (OBDA), the work from [8]
proposes to extend Data Cube, GeoSPARQL (an OWL ontology and RDF query language
for geospatial data) [9]), and OWL-Timein order to offer access to Copernicus services
information. Here, SOSA (a lightweight but self-contained core ontology of SSN [10]) is
adopted to represent observation collections, but alignments exist between SOSA and QB
vocabularies to describe them as multi-dimensional data according to a ‘data cube’ model.

Closer to us, the work from [11] defined an ETL process to integrate EO image and
external data sources, such as Corine Land cover, Urban Atlas, and Geonames. The process
is carried out based on their SAR ontology. Another close work in terms of datasets is
from [12], where data are integrated and published as Linked Open Data (LOD) based
on an ontology, which was called proDataMarket. Three data sources, the Spanish land
parcel identification system, Sentinel-2 satellite, and LiDAR flights, are integrated. In [13],
satellite images are classified and enriched with additional semantic data to enable queries
about what can be found at a particular location. In our approach, an exploitation of our
integrated data facilitates image search.

Finally, while we do not fully address the scalability of our approach, several works are
dealing with the management of large volumes of EO data. In [14], a framework helps to in-
tegrate and process large-scale heterogeneous big data generated from multiple sources for
decision support to prevent natural disasters. The semantic integration of EO and non-EO
data is based on the MEMOn modular ontology that reuses the BFO (Basic Formal Ontology
(https://basic-formal-ontology.org/, accessed date: 23 December 2021)), SSN, and ENVO
(Environmental Ontology (https://sites.google.com/site/environmentontology, accessed
date: 23 December 2021)) ontologies.

While many approaches aim at producing open linked datasets, others focus on the
methodological aspects of interconnecting heterogeneous data. For instance, to manage
heterogeneous sensor data products, ref. [15] uses several related ontologies that form the
INSAT-3D satellite description vocabulary. In [16], environmental services make extensive
use of iOT data and data from government, national and European agencies. Our study

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/prov-o/
https://basic-formal-ontology.org/
https://sites.google.com/site/environmentontology
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here is close to these approaches in the sense that we guide the integration process on top
of an ontology reusing existing standards.

2.2. Processing of Raster Data in a Semantic Framework

Raster data can be represented in two ways: either by treating the entire raster grid as
coverage or by providing procedures to extract vector objects from the raster matrix. The
first approach relies on constructing a semantic representation of the raster pixels so that
each pixel attributes (geometry, values) are maintained. In [17], the RDF Grid coverage
ontology is designed to allow a native integration of coverage in RDF triplestores. The
gridded structure of the data is preserved and can be queried using SPARQL. Recently, the
Ontop-spatial extension [18] has been developed to process raster data and create virtual
geospatial RDF views above it.

The second approach consists of extracting entities from rasters and representing
them as ontological features. These entities are sets of raster elements (i.e., sets of pixels)
that meet a certain context-dependent definition. In [19], the approach integrates and
processes scientific vector and raster data from LOD repositories using vectorization and
mathematical tools for geo-processing. First, bounding boxes for input raster are used to
query LOD endpoints for entities corresponding to a certain concept. The returned entities
along with their geometry are next used to select raster pixels for supervised training based
on content-based descriptors. Finally, the results can be vectorized and inserted back into
the original repository. In [11], the approach proposes restructuring the images in patches
that have a fixed size, on which external information is associated. Each patch is directly
transformed into a feature based on the ontology. The work from [20] extends current
standards to represent raster geo-data. A region of interest (ROI) is first polygonized, and
then, the data are transformed into a semantic representation using R2RML mapping rules.
This workaround is arguably not a complete solution to represent raster files in RDF, as the
original geometric source of the data is not preserved [21]. Here, the areas of interest are
predefined; hence, the geometries (polygons) are known.

Another close work is from [22], where a raster allows for modeling geographical
phenomena as a regular surface in which each cell (or pixel) is associated with a phe-
nomenon value. Each value associated with a pixel corresponds to an observation whereas
we aggregate the values of a region. While their modeling is close to ours in terms of reused
vocabularies, they do not represent metadata and provenance nor exploit Sentinel images.
Our work adapts the one presented in [23,24] in several ways, with a different focus on the
pipeline that generates RDF data from EO rasters and other data sources. Moreover, we do
not need to consider versions of administrative units, and we explicitly refer to satellite
images thanks to which we can compute new indices (in [23], only the land cover was
considered), and we keep track of their provenance.

Finally, with respect to the work from [25,26], we are rather interested in identified
areas of interest, whereas these authors seek to identify Regions of Interest (ROIs) that have
been affected by significant changes and to associate contextual knowledge with these ROIs
to annotate changes. Their approach has been applied to fire detection.

3. Semantic Model

We propose a semantic model to represent data from rasters that provide the observed
properties of a region of interest divided into territorial units (land parcel, administrative
unit, forest, etc.) along with their spatio-temporal dimensions. This model also allows us to
keep track of the integrated data and metadata.

We developed this model following the NeOn methodology [27], which is a flexible
methodology that proposes several scenarios. In particular, the scenario Reusing ontological
resources [28] aims at selecting the most appropriate set of ontological resources with the
ontology requirements. This scenario involves different activities, such as searching for
candidate ontological resources that satisfy the requirements and evaluating them to check
if they meet the developer’s needs, which is followed by the selection activity. In our case,
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we defined a set of requirements and searched for ontologies able to: (a) represent metadata
concepts; (b) keep track of the raster files used as input of the ETL process; and (c) represent
different types of data (territorial units, temporal and spatial data).

As a result of this search, we identified and manually evaluated the following existing
resources, which are well-known in the domain: OGC standards such as GeoSPARQL
(for geospatial data representation) and W3C recommendations such as OWL-Time (for
representing temporal data), SOSA (for earth observations), DCAT (https://www.w3
.org/TR/vocab-dcat-2/, accessed date: 23 December 2021) (a metadata vocabulary for
cataloguing datasets), and PROV-O (for the provenance of the data generated by the
integration process). Hence, our model relies on these selected models.

We propose a model composed of several interconnected sub-models describing the
various types of data. We detail these sub-models in the following sections: tom, a territorial
observation model to represent territorial units and their observations (captured in raster
files); eom, an EO model to represent Sentinel image metadata; and eoam, an EO analysis
model to represent rasters produced by image processing or vectors.

3.1. Territorial Observation Model (tom)

The Territorial Observation Model (tom) (Figure 1) represents any output of EO
analysis activities—as long as it comes in raster format—as a collection of observations
collected in the area of a territorial unit. The class tom:GeoFeatureObservationCollection
(the sosa:ObservationCollection class is an extension proposed in a current working draft
of SOSA— https://www.w3.org/TR/2020/WD-vocab-ssn-ext-20200116/, accessed date:
23 December 2021) represents a collection of observations (of type tom:GeoFeatureObservation),
each of them observing a given property (sosa:ObservableProperty) on a given territorial unit.

Territorial units, having a footprint on Earth, are represented using the tom:GeoFeature
class that specializes the classes sosa:FeatureOfInterest and geo:Feature. They belong to a
type (tom:GeoFeatureType), such as an administrative unit (commune, county), a cadastral
parcel, an agricultural parcel, a forest, or a geospatial data grid (such as Sentinel tiles).
Using the sosa:hasSimpleResult property, each observation is associated to the value of the
percentage covered by the property among all observed properties in the collection to
which it belongs. For example, observations on a territorial unit can tell that it is covered
by 40% of Mixed Forest and 60% of Coniferous Forest. The prov-o:Entity class allows us to
keep track (using the prov-o:wasDerivedFrom property) on the one hand of the raster file
used to create the collections of observations and on the other hand of the vector file used
to create the territorial units (with classes from the eoam module described below).

The OWL file of this model is available at melodi.irit.fr/ontologies/tom/, accessed date:
23 December 2021 and can be visualized in WebVOWL at http://melodi.irit.fr/ontologies/tom/
webvowl/index.html, accessed date: 23 December 2021.

3.2. Sentinel Images Metadata (eom)

The Sentinel image metadata (eom) is the sub-model dedicated to the representation
of Sentinel image metadata. It mainly describes the product (an image) as the result of
a sosa:Observation. Each observation is associated with a temporal information, namely
the capture date (sosa:phenomenomTime) and a spatial information, namely the captured
area (either by the geometry property of the eom:Product or by the sosa:hasFeatureOfInterest
relation). To reduce the cost of image indexing, we assume that each Sentinel-2 image
is mapped to a tile. So, the model proposes a class to represent tiles as spatial entities
(geo:Feature). The model has been designed to take into account both Sentinel-1 and Sentinel-
2 image metadata Figure 2.

https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/TR/2020/WD-vocab-ssn-ext-20200116/
melodi.irit.fr/ontologies/tom/
http://melodi.irit.fr/ontologies/tom/webvowl/index.html
http://melodi.irit.fr/ontologies/tom/webvowl/index.html


ISPRS Int. J. Geo-Inf. 2022, 11, 149 6 of 18

Figure 1. Territorial Observation Model (tom) representing property values of territories calculated
from EO rasters.

Figure 2. Sentinel image metadata (eom) that relies on the tile concept to gather descriptions of
images having the same footprint.

The OWL file of this model is available at melodi.irit.fr/ontologies/eom/, accessed date:
23 December 2021 and can be visualized in WebVOWL at http://melodi.irit.fr/ontologies/
eom/webvowl/index.html, accessed date: 23 December 2021.

3.3. EO Analysis Model (eoam)

In the EO analysis model (eoam), Sentinel images are consumed in different kinds of
analyses, such as machine learning algorithms that identify changes between two images.

melodi.irit.fr/ontologies/eom/
http://melodi.irit.fr/ontologies/eom/webvowl/index.html
http://melodi.irit.fr/ontologies/eom/webvowl/index.html
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Eoam provides information about the results (raster datasets) of these activities, since
they are or will be consumed by the semantic integration process. Thanks to the PROV-O
vocabulary, it is possible to know which Sentinel images have been used (eom:Product) as the
input of a process (eoam:EOAnalysis) and which agent (prov-o:wasAssociatedWith) realized
it. DCAT is used to represent catalog metadata of both raster and vector datasets. Thus,
both raster files (eoam:RasterFile) and vector files (eoam:GeoFeatureFile) are considered as
distributions of these datasets. A raster distribution is described by properties coming from
the DCAT vocabulary: temporal coverage (dct:temporal), spatial properties (dct:Location),
and spatial resolution (dcat:spatialResolutionInMeter). A vector distribution is described by
the main attributes of the file such as the file size (dcat:byteSize), the file format (dct:format),
or the coordinate reference system (CRS) used (dct:conformsTo) Figure 3.

Figure 3. EO analysis model (eoam) providing information about the results of raster (e.g., Sentinel
images) analyses.

The OWL file of this model is available at melodi.irit.fr/ontologies/eoam/, accessed date:
23 December 2021 and can be visualized in WebVOWL at http://melodi.irit.fr/ontologies/
eoam/webvowl/index.html, accessed date: 23 December 2021.

4. EO Data Analysis Process

Before detailing the EO ETL process, we present the overall semantic architecture of
our proposal.

4.1. Architecture

The architecture of the EO data analysis pipeline is depicted in Figure 4. This pipeline
is composed of three main tasks:

• Satellite images processing and analysis: This task consists of processing and analyzing
satellite images coming from a DIAS (Data and Information Access Services) (in our

melodi.irit.fr/ontologies/eoam/
http://melodi.irit.fr/ontologies/eoam/webvowl/index.html
http://melodi.irit.fr/ontologies/eoam/webvowl/index.html
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project, CreoDias (https://creodias.eu/, accessed date: 23 December 2021)). Possible
analyses can range from simple ones such as NDVI calculation to more sophisticated
analyses such as change detection on time series or land cover annotation. The task
generates raster files as output.

• Semantic data integration: The task extracts data from the raster files using vector files
that contain the territorial units to be observed. Vector sources could come from open
data repositories or from our semantic database through Semantic search.

• Semantic search: The task aims to analyze the integrated data by querying the semantic
database. The SPARQL query results can be used to perform once again the first two
tasks for further analysis, either as parameters for guiding the process or as input data.
The results can also be used by specialized GIS applications for detailed analyses of
the whole integrated data.

Figure 4. Overall architecture of the proposed approach.

4.2. Semantic ETL Process

The semantic process is divided into several steps: (i) data extraction from raster and
vector files; (ii) data transformation; and (iii) data load into the triplestore. Overall, it relies
on the definition of semantic mappings by identifying the parts of the data source schemes
that are related to the semantic data models, supporting the extraction process; and on the
definition of transformation functions for populating the data models. The steps of the
process are described in the following paragraphs.

4.2.1. Data Extraction from Raster and Vector Files

This step aims at extracting and structuring the data according to different objectives.
The process requires two sources: a vector and a raster. First, metadata (e.g., issue date,
format, CRS, or spatial extent) are extracted. Next, the vector file is processed to extract
information about territorial units of a given type, including their geometry (a polygon),
which is projected to the WGS84 CRS coordinate (the default CRS in GeoSPARQL). They
will populate the tom:GeoFeature class. The raster is also processed to qualify each territorial
unit contained in the vector file.

Currently, we distinguish two types of raster files, depending on the type of their
pixel values:

• Categorical rasters (as for land cover): in this kind of raster, a pixel value is a code that
represents a class. Thus, additional information is needed to decode it. For example,
in a CESBIO raster, pixel values encode a type of landcover; the value 15 is decoded as
a vineyard;

• Continuous rasters (as for NDVI or change indicators): a pixel value is processed to
be automatically classified into a level (or class) such as Very low, Low, Middle, High,
or Very high, for instance.

https://creodias.eu/
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In order to qualify a territorial unit from a raster, either new properties (e.g., mean
values) are extracted by pixel aggregation, or spatial masks are created to eliminate unde-
sired areas (i.e., only the area inside the unit footprint is preserved). For example, the land
cover of a land register parcel is calculated from a raster in three steps: (i) projecting the
parcel and the raster land cover onto the same coordinate reference system; (ii) applying
the parcel geometry as a mask onto the land cover raster image file; and (iii) calculating
the percentage of each land cover class occupying the parcel. For example, the parcel
presented in Figure 5 covers 16 pixels: 14 of them are annotated as vineyards (code 15), and
the other two are grassland (code 13). Hence, 87.5% of the parcel are vineyards and 12.5%
are grassland.

Figure 5. Example of feature mask (15: vineyard, 13: grassland).

This process requires four parameters:

• Period or date of validity of the raster data: this information will be represented as a
time:TemporalEntity associated with each tom:GeoFeatureObservationCollection (one per
territorial unit) using the sosa:phenomenonTime property.

• Type of raster: this information, e.g., specific land cover, NDVI, or change, repre-
sented as an instance of tom:GeoFeatureObservablePropertyType, will be linked to each
tom:GeoFeatureObservationCollection.

• ID of the satellite images used to generate the raster. This ID is represented as an
instance of eom:Product.

• Agent who generated the raster, in other words, who performed the EO analysis
process. This information is converted to an instance of prov-o:Agent.

The values extracted from the data sources are represented in a pivot format (JSON).

4.2.2. Data Transformation

This step aims at transforming the processed data into the semantic one. Templates
that define the mappings between the extracted data (in JSON) and the ontologies are
used as a basis in this process. Templates are usually written by hand. Although different
data translation tools exist, such as D2RQ (http://d2rq.org/, accessed date: 23 Decem-
ber 2021), Ultrawrap (https://capsenta.com/ultrawrap/, accessed date: 23 December
2021), Morph (http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/315-
morph-rdb/, accessed date: 23 December 2021), Ontop (http://ontop.inf.unibz.it/, ac-
cessed date: 23 December 2021), or GeoTriples (http://geotriples.di.uoa.gr/, accessed date:
23 December 2021), we chose to adapt the mapping template and processing mechanism
described in [29]. This choice is motivated by the fact that it contains functions that help
perform more sophisticated operations, especially feature masking. The output of this step
is a set of RDF files.

4.2.3. Data Load

The final step is to import the RDF files into the triple store, following a materialization
approach. Data sources are transformed into RDF graphs which are then loaded into a
triple store and accessed through a SPARQL query engine. The advantage of such an

http://d2rq.org/
https://capsenta.com/ultrawrap/
http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/315-morph-rdb/
http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/technologies/315-morph-rdb/
http://geotriples.di.uoa.gr/
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approach is to facilitate future processing, analysis, or reasoning on the materialized RDF
data. More precisely, this choice is motivated by three reasons:

• It is not easy to perform on-demand mapping, since the data sources we considered
(presented below) are available in different formats (JSON, GeoTIFF, shapefile, or even
remote compressed files (see Section 5.1), which requires a prior pre-processing step.

• A geospatial triplestore can be used as a warehouse to store semantic data to perform
data enrichment and linking.

• Different datasets may be offered by several endpoints requiring a federation mech-
anism. However, there is currently no query engine mature enough to answer
GeoSPARQL queries over such a federation [8]. Considering that we send a sin-
gle GeoSPARQL query to examine the territorial units stored in different triplestores,
spatial comparisons on the fly are not possible.

In the following, we present an example SPARQL query on the resulting triplestore.
This query retrieves all territorial units (their ID, type, and geometry) located in an area,
defined by [zoneWKT] (for example, POLYGON (−0.457 45.125, 0.936 45.085, 0.869 44.099,
−0.500 44.138, −0.457 45.125)) corresponding to the area of our Vineyard use case (see
below), having observable properties with values greater than 0.5, in a given time inter-
val defined by [startDate] and [endDate] (for example, 2017-04-01T00:00:00 and 2017-05-
01T00:00:00).

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX tom: <http://melodi.irit.fr/ontologies/tom.owl#>
PREFIX provo: <http://www.w3.org/TR/prov-o/>
PREFIX eoam: <http://melodi.irit.fr/ontologies/eoam.owl#>
PREFIX dcat: <https://www.w3.org/TR/vocab-dcat-2/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?geofeature ?type_name ?wkt ?dti1 ?dti2 ?value
WHERE
{
?obsv a tom:GFObservation.
?obsv sosa:observedProperty ?prop.
?obsv sosa:hasSimpleResult ?value.

FILTER(?value>=0.5).
?obsvCol sosa:hasMember ?obsv.
?obsvCol sosa:hasFeatureOfInterest ?geofeature.
?geofeature geo:hasGeometry/geo:asWKT ?wkt.

FILTER(geof:sfContains("[zoneWKT]"^^geo:wktLiteral, ?wkt)).
?obsvCol sosa:phenomenonTime ?timeInterval.
?timeInterval time:hasBeginning/time:inXSDDateTime ?dti1.
?timeInterval time:hasEnd/time:inXSDDateTime ?dti2.

FILTER((?dti1 <="[endDate]"^^xsd:dateTime &&
?dti2>="[startDate]"^^xsd:dateTime))).

?geofeature tom:hasType/tom:name ?type_name.

}
limit 100

The entire semantic ETL process is implemented using the docker technology and is
publicly available (https://hub.docker.com/r/h2020candela/triplification), accessed date:
23 December 2021.

https://hub.docker.com/r/h2020candela/triplification
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5. Experimental Evaluation

The evaluation was performed on two use cases describing different types of EO
properties of a territorial unit. Since the integration process is performed by users based on
their purpose, the integrated database is built according to these use cases.

The semantic data generated for these use cases is stored in a database that can be
exposed through a semantic search interface or accessed via a SPARQL endpoint (http:
//melodi.irit.fr/tom/), accessed date: 23 December 2021.

We evaluated the approach in terms of (i) adaptability of the proposed model to
two use cases; (ii) adaptability of the pipeline to each use case; and (iii) added value of
the generated datasets to assist in decision making. We also discuss the scalability of
the approach.

5.1. Use Cases

Two use cases of the CANDELA project were chosen for the demonstration:

• Vineyard use case: The objective of this use case is to recover changes in vineyards that
have been damaged by natural hazards such as frost or hail. These climatic events can
cause significant losses in vineyards and reduce wine productions. Their periods are
known to the user who selects the corresponding images. The study area is located in
the Aquitaine region of France. The vineyards in this region were reported as heavily
damaged by frost on 20 April 2017. We chose the village of Saint-Emilion (INSEE code:
33394) to conduct the study. Saint-Emilion is a small well-preserved medieval village
that is famous for its prestigious red wine, which is called Grands Crus Classés.

• Urban expansion use case: The use case aims at studying the changes associated
with urban expansion on agricultural areas. This type of study can help land man-
agers with their planning. We studied changes on villages between 2017 and 2020
around the Bordeaux city, one of the largest cities in France, which is surrounded by
agricultural areas.

Despite their difference in nature, both use cases share a common set of raster types:

• Change indicator: Two partners of the project, Thales Alenia Space France and Thales
Alenia Space Italy, have each developed a change detection application to identify
various types of changes between two Sentinel images. These tools produce change
indicator raters representing the probability of changes between 0 and 1.

• NDVI: NDVI information is obtained by processing near-infrared and red sensors of
Sentinel images. The output of the calculation is a matrix of values between −1 and 1
characterizing the NDVI of each pixel. Since the values between −1 and 0 represent
the elements composed of water, these values are set to 0 so that the rasters contain
only values between 0 and 1.

• Land cover: The datasets provide information about the land cover of an area on Earth.
The CESBIO land cover datasets (http://osr-CESBIO.ups-tlse.fr/~oso/, accessed date:
23 December 2021) are used for our use cases. They cover the French territory with a
spatial resolution of 10 m2.

Regarding the territorial units (vector datasets), land register data are used for the first
use case, while the second use case exploits administrative unit data.

• Land register: Land register data are available from the French government data web-
site (https://cadastre.data.gouv.fr/datasets/cadastre-etalab, accessed date:
23 December 2021) in GeoJSON format or shapefiles.

• Administrative unit data: Information of villages inside an area of interest can be
obtained from OpenStreetMap-based datasets that are published on the French gov-
ernment website (https://www.data.gouv.fr/en/datasets/decoupage-administratif-
communal-francais-issu-d-openstreetmap, accessed date: 23 December 2021). The
datasets are available in shapefiles and are updated yearly.

http://melodi.irit.fr/tom/
http://melodi.irit.fr/tom/
http://osr-CESBIO.ups-tlse.fr/~oso/
https://cadastre.data.gouv.fr/datasets/cadastre-etalab
https://www.data.gouv.fr/en/datasets/decoupage-administratif-communal-francais-issu-d-openstreetmap
https://www.data.gouv.fr/en/datasets/decoupage-administratif-communal-francais-issu-d-openstreetmap
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5.2. Adaptability of the Model

The adaptability (or genericity) of the proposed model to accommodate two use cases
(each use case uses its own data describing different kinds of EO properties of an territorial
unit) is proved by the following facts:

• The model treats all the raster datasets, and their versions, in the same way, as
long as they exist in the correct format. They can contain change, NDVI, or land
cover information.

• Different classifications can be used to observe the same type of EO property. For
example, the land cover observations can come from Corine Land Cover, Global Land
Cover Share, CESBIO, or other open sources.

• The system can consume any vector source that describes territorial divisions, such
as agricultural parcels, land register parcels, administrative units, Sentinel tiles, or
forest units.

5.3. Adaptability of the Pipeline

Since the components of the pipeline are organized as services, the users can customize
the pipeline by choosing and chaining up as many services as they want.

• Vineyard use case: (i) We first obtain all the parcels of the Saint-Emilion village from
the cadastre data and the CESBIO land cover raster for 2017. Then, semantic data
integration is used to integrate the land cover and parcels information. (ii) Vineyard
parcels within villages are retrieved via semantic search. (iii) Appropriated Sentinel-2
images are used for NDVI calculation. (iv) These images are also used for change
detection. (v) The generated rasters from the 3rd and 4th steps along with the vector
from the 2nd step are integrated into the semantic database. (vi) Finally, semantic
search can be used to analyze all integrated information related to the vineyard
of interest.

• Urban expansion use case: (i) We first select adapted Sentinel images and execute
NDVI calculation. (ii) These images are also used for change detection. (iii) We obtain
vector data of all the villages of the Gironde department (INSEE code: 33) from the
open administrative unit datasets. Semantic data integration is next launched using
the raster generated from the previous step and the obtained vector files. (iv) Finally,
we can perform semantic search to analyze the integrated data related to the villages
of interest.

As mentioned in Section 4.2.1, the semantic data integration is configurable by a set
of four parameters. These parameters can be provided as raster metadata or as function
parameters. Users can also provide custom thresholds for class classification since the
results of image processing and analysis can be highly scenario dependent. For example,
in the vineyard use case, custom thresholds can be set for the classification of change
indicators. The values below 0.1 could be translated as Very low change instead of below 0.2.
These types of parameters must be set explicitly at runtime.

5.4. Added Value of the Generated Datasets in Helping Decision Making

We evaluate the benefits of using integrated data to assist in tasks such as land
monitoring and data cross-checking, and we discuss them in what follows.

5.4.1. Improving Land Monitoring Thanks to Data Integration

Figure 6 shows an example of the web interface used to retrieve observations for
the vineyard use case. The application supports three filters, each corresponding to one
dimension: temporal (the user must define a period of time), semantic (the user must select
an ObservableProperty from the three-view), and spatial (the user must draw an area of
interest on the map). GeoSPARQL queries are formulated based on the input parameters
and are next sent to the endpoint. Territorial units satisfying the constraints are displayed
on the map (in this example, the displayed polygons are parcels located around the Langon
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village having vineyard as land cover in April 2017). All available observations made on a
chosen territorial unit are displayed in tabular form on the right. To simplify the view, each
line of the table only provides information about the observed property, period, value (in
percentage), a thumbnail of the original raster (or the data source), and the Sentinel images
used to generate the raster.

In this scenario, the integrated data can be exploited for territory monitoring. The knowl-
edge base provides detailed information about the territorial units (the parcels) of the given area.
An application of this type of analysis is land-cover monitoring over time. This can be done by
examining all observations made on these territorial units. Figure 6 shows that vineyard was
the main land cover (80% from CESBIO and 100% from Corine) of the selected parcel (e.g., the
parcel 331640000D0523) in 2017. The parcel had low NDVI and was slightly changed during the
frost period (having the very low change and low change levels).

Figure 6. Semantic search interface—application on the vineyard use case (available on melodi.irit.
fr/semantic-search/), accessed date: 16 February 2022.

melodi.irit.fr/semantic-search/
melodi.irit.fr/semantic-search/
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5.4.2. Data Cross-Verification Thanks to Data Integration

Another application is to check information from various sources, including the results
provided by our partners. We used the land cover annotation dataset obtained by interactive
data mining algorithms on satellite images [30], developed by DLR (German Aerospace
Center). For example, it is possible to compare the CESBIO land cover information with the
land cover annotated by DLR or to justify the change detection result based on land cover
change. From Figure 6, several remarks arise from the comparison of the two observations:

• The parcel was not correctly annotated by the user of DLR tools, as he identified it as
a ‘Mixed urban area’ (property LC_DM).

• CESBIO (property LC_CESBIO17) and Corine (property LC_Corine) correctly identify
land cover at the parcel level. In fact, the differences observed between the two land
covers come from the spatial resolution of the rasters (which has an impact on the
precision). While the best resolution for the French area is given by CESBIO, the DLR
data mining labels are given by a user with limited domain knowledge.

• The parcel was detected as having low change by TAS (property Change_Opt) using
their deep learning algorithm. In fact, there is about a 5% change in NDVI levels
(property NDVI) during this period.

5.4.3. Use Cases Analysis

We evaluate the output of the pipeline presented in Section 5.3, knowing that it highly
depends on the precision of the algorithms provided by our partners.

• Vineyard use case: Two Sentinel-2 images collected on the T30TYQ tile are used for
change detection and NDVI computation; they are respectively dated 19 April 2017
and 29 April 2017: we chose these images because they have very low cloud cover (0%
and 15%) and the interval between these observations includes the period of study.
Figure 7 represents an overview of the change levels detected and the degradation of
NDVI between two dates (the NDVI after the phenomenon is lower than before, i.e., there
is less vegetation than before). The very low change level is eliminated, since it is not very
relevant. The NDVI degradation indicator represents the total percent degradation of five
NDVI levels. We also eliminated parcels with less than 20% NDVI degradation.

Figure 7. Analysis on the vineyards during the period 19–29 April 2017. (Left): Detected change
level. (Right): NDVI degradation.

Finally, there are 858 parcels detected as having changed, 756 parcels detected as
having NDVI degradation above 20%, and 510 parcels detected in both cases.

• Urban expansion use case: For NDVI calculation and change detection, it is recom-
mended to collect images at the same period and in summer to limit the cloud cover
and the influence of vegetation growth. Thus, two Sentinel-2 images were collected
on 2 August 2017 and 6 August 2020 and have 0% of cloud cover. Figure 8 (right)
represents an overview of the detected change levels and degraded NDVI levels be-
tween these two dates, along with (left) the source Sentinel images. We can observe
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that (i) the detected levels of change correspond quite well with the degraded NDVI
due to urbanization; (ii) the closer the village reaches the city, the more it is modified.
The next analysis could compare the information on change, NDVI, and land cover at
the parcel level for specific villages.

Figure 8. Analysis on urban expansion (2017–2020) at the village level. (Left) (Sentinel images).
(Right): village INSEE code, change, and NDVI indicators.

5.5. Approach Scalability

In terms of triplestore, we initially chose Strabon (http://strabon.di.uoa.gr/, accessed
date: 23 December 2021) for its main advantages: (i) it extends the Sesame triplestore with
the ability to store spatial RDF data in the PostgreSQL DBMS enhanced with PostGIS. It has
a good overall performance due to special optimization techniques that allow spatial opera-
tions to take advantage of PostGIS functionality instead of relying on external libraries [31].
For complex applications that include both spatial joins or spatial aggregations, Strabon is
an RDF store that performs well [32]. (ii) It provides a SPARQL endpoint that allows access
to the content of the triplestore. The interface also provides additional capability to manage
the knowledge base, for instance storage and update capabilities with SPARQL Update.

While Strabon performed well when considering a small number of triples in the data
store, we faced scalability issues when the number of triples increased. Indeed, the same
conclusion is reported in [33]. Therefore, for these reasons, we looked at query federation
approaches where the data are stored in different triplestores. In our case, Strabon is
used only for spatial data and GraphDB (https://graphdb.ontotext.com/, accessed date:
23 December 2021) (a semantic graph database compliant to the W3C standards) for the
other data types. Preliminary experiments have shown two main advantages of this option:
(i) faster response time for non-spatial queries, and (ii) scalable and robust as it ensures the
result regardless of the amount of integrated data. Regarding the size of the generated RDF
datasets, we populated 0.5 M geofeatures entities (about 2.5 M triples) in Strabon and 4 M
observations (97.5 M triples) in GraphDB.

6. Conclusions

In this paper, we presented an approach for the integration of data calculated from
rasters as a way of qualifying territorial units (represented as vectors), based on their
spatio-temporal features. A first contribution is a generic semantic model that allows the
homogeneous description of spatio-temporal data to qualify predefined areas. We used
this model to semantically describe data from different use cases. A second contribution is
a configurable semantic Extract Transform and Load (ETL) process based on that generic

http://strabon.di.uoa.gr/
https://graphdb.ontotext.com/


ISPRS Int. J. Geo-Inf. 2022, 11, 149 16 of 18

vocabulary. We used this process to extract the data from rasters and to link the observa-
tions to territorial units through their spatio-temporal dimensions. Last but not least, we
produced semantic databases that can be further exploited for new purposes.

As future work, we plan to exploit big data scenarios with the management of
Natura 2000 areas (https://www.eea.europa.eu/data-and-maps/data/natura-11, accessed
date: 23 December 2021) (land cover evolution and change detection on conservation
areas). We also plan to extend the proposed approach to handle data from CSV files,
in particular, weather observations from ECAD (https://www.ecad.eu/, accessed date:
23 December 2021) or Meteo France (http://www.meteofrance.com/, accessed date:
23 December 2021). We could apply the Location Index (Loc-I) approach presented in [34]
to boost the performance of our application. Finally, considering data cubes as multidi-
mensional data arrays frequently used to manage geospatial data, including rasters, we
consider managing this type of structure in the ETL pipeline.
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