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Abstract: Generating differentially private synthetic human mobility trajectories from real trajecto-
ries is a commonly used approach for privacy-preserving trajectory publishing. However, existing
synthetic trajectory generation methods suffer from the drawbacks of poor scalability and suboptimal
privacy–utility trade-off, due to continuous spatial space, high dimentionality of trajectory data and
the suboptimal noise addition mechanism. To overcome the drawbacks, we propose DP-CSM, a novel
differentially private trajectory generation method using coreset clustering and the staircase mecha-
nism, to generate differentially private synthetic trajectories in two main steps. Firstly, it generates
generalized locations for each timestamp, and utilizes coreset-based clustering to improve scalability.
Secondly, it reconstructs synthetic trajectories with the generalized locations, and uses the staircase
mechanism to avoid the over-perturbation of noises and maintain utility of synthetic trajectories. We
choose three state-of-the-art clustering-based generation methods as the comparative baselines, and
conduct comprehensive experiments on three real-world datasets to evaluate the performance of
DP-CSM. Experimental results show that DP-CSM achieves better privacy–utility trade-off than the
three baselines, and significantly outperforms the three baselines in terms of efficiency.

Keywords: differential privacy; trajectory publication; coresets; staircase mechanism; trajectory privacy

1. Introduction

With the prevalence of positioning-enabled mobile devices, such as smart phones and
watches, huge amounts of moving trajectories of individuals in the geospatial space have
been collected. These trajectories are valuable for various applications, such as intelligent
transportation [1] and urban planning [2,3]. However, as trajectories contain sensitive
information, directly releasing or sharing them might pose serious privacy threats to
individuals. Adversaries can identify individuals, and further infer their home addresses,
health status and hobbies [4–6] from their trajectories. Therefore, it is crucial to designing
effective privacy protection methods to sanitize trajectories before publishing or sharing.

Many efforts have been devoted to privacy preserving trajectory data publishing. Early
work adopts partition-based privacy models [7,8], such as k-anonymity [9], l-diversity [10]
and t-closeness [11], to sanitize trajectories. However, the above-mentioned privacy models
suffer drawbacks of depending on background knowledge of adversaries, being vulnerable
to various attacks [12,13] and insufficient theoretical privacy guarantee. Consequently, dif-
ferential privacy emerged as a strict privacy model independent of background knowledge,
and is widely applied in privacy-preserving trajectory data publishing [14–20].

However, directly applying differential privacy on trajectory data is challenging. Due
to the intrinsic high dimensionality and continuous infinite spatial (location) space of trajec-
tory data, it requires extensive noise to ensure differential privacy, resulting in poor utility
of released synthetic trajectory. To overcome the challenges, existing research concentrates
on generating synthetic trajectories with high utility under the differentially private con-
straint. From the perspective of spatial space discretization, existing differentially private
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trajectory generation methods can be categorized into two classes, i.e., grid-partition-based
and location-generalization-based methods.

Grid-partition-based methods could be further divided into two subclasses, i.e., prefix-
tree-based and Markov-model-based methods. The prefix tree is the most commonly used
index structure in differentially private trajectory sanitizing mechanisms for answering
various counting queries and generating synthetic trajectories. Chen et al. [15] first intro-
duced the noisy prefix tree to sanitize trajectory data. To improve efficiency and data utility,
He et al. [17] proposed the DPT framework, which adopts a hierarchical reference system
to discrete GPS trajectory data, and utilizes a direction-weighted sampling mechanism
to further improve the data utility of synthetic trajectories. SafePath [21] also models
trajectories in a prefix tree. Recently, Cai et al. [22] proposed a new method to construct
the noisy prefix tree to save privacy budget. The above mechanisms compactly encode the
sequential and count information of the raw trajectories into a noisy prefix tree, and then
reconstruct and release sanitized trajectories according to the tree. It is expected that the
sanitized trajectories preserve high utility for count queries and frequent pattern mining
tasks. However, the node count decreases drastically with the growth of the prefix tree.
Consequently, the added noise is relatively large compared to the count, resulting in high
utility loss of the released trajectory data.

To remedy the deficiencies of the grid-partition-based methods and improve the utility
of synthetic trajectories, several Markov-model-based methods have been proposed. Gur-
sory et al. [23] proposed the DP-Star (differentially private synthetic trajectory publisher)
framework. DP-Star discretizes location space with adaptive grids, and generates synthetic
trajectories using differentially private statistics, including trip distribution, route length
distribution, state transition matrix. Ghane et al. [19] designed a graphical generative
model, TGM, to generate differentially private synthetic trajectories with stay informa-
tion preserved.

The above-mentioned methods discretize or compress location space with data-
independent grid partition, which makes it hard to preserve the spatial density distri-
bution of trajectories. To overcome this shortcoming, several location-generalization-based
methods are proposed. Hua et al. [24] proposed the first differentially private generaliza-
tion algorithm for releasing trajectories, which clustered trajectories close to each other
using the exponential mechanism. To overcome the shortcomings of [24], Li et al. [25]
proposed a bounded Laplace noise-based differentially private trajectory data publish-
ing mechanism to improve the utility of reconstructed trajectories. The advantage of the
generalization-based method lies in its data-dependent density-aware location universe
compression. However, the differentially private clustering subprocedure of the above
methods is computationally expensive.

Although there have been previous works on differentially private trajectory data
publishing, these works suffer from suboptimal data utility and weak scalability. Moti-
vated by high efficiency of coresets in clustering big data [26] and the lower noise cost
of the staircase mechanism [27], we propose a novel generalization-based differentially
private trajectory publishing mechanism using coreset-based clustering and the staircase
noise-adding mechanism, named DP-CSM, to provide high scalability and utility while
guaranteeing ε-differential privacy. The DP-CSM consists of two stages: location general-
ization and trajectory reconstruction. In the location generalization stage, we construct a
coreset for locations of original trajectories at each timestamp. Compared with the existing
location generalization methods, the coresets can greatly improve the efficiency of k-means
clustering [28,29]. In the stage of trajectory reconstruction, the staircase mechanism is cho-
sen as the noise-adding mechanism instead of the Laplace mechanism. This is because the
staircase mechanism adds less noise than the Laplace mechanism under the same privacy
budget [27], thereby maintaining high data utility.

In particular, the contributions of this paper are as follows.

• We introduce coreset-based clustering into the location generalization stage to improve
the efficiency and scalability of synthetic trajectory generation. Coresets, instead of the
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original dataset, are used for clustering, as they achieve similar utility and the same
privacy level with the original dataset.

• We utilize the staircase mechanism, instead of the traditional Laplace mechanism, to
perturb the counts of trajectories in the trajectory reconstruction stage to avoid adding
excessive noise, thereby preserving high data utility under the same privacy budget
and achieving better privacy and utility trade-off than existing methods.

• We provide theoretical proof that the proposed DP-CSM satisfies ε-differential privacy.
Since trajectory reconstruction satisfies differential privacy, the DP-CSM also satisfies
differential privacy (See Section 4.4 for detailed analysis).

• We conduct comprehensive experiments on three real-world trajectory datasets to eval-
uate the performance of the proposed method in terms of data utility and efficiency.

2. Related Work

Many efforts have been devoted to differentially private data publishing. In this
section, we summarize two kinds of closely related work—differentially private trajectory
data publishing and differentially private sequential data publishing.

2.1. Differentially Private Trajectory Data Publishing

Existing work on differentially private trajectory data publishing can be divided into
three categories according to the materials used for generating trajectories.

2.1.1. Noisy Prefix Tree

Noisy prefix tree is the most commonly used data structure to capture sequential and
counts information of trajectories. Chen [15] et al. proposed the first trajectory publishing
mechanism with differential privacy. They make use of the noisy prefix tree to put the
trajectory sequence with the same prefix into the same branch, so as to reduce the output
field and ensure the high time efficiency of the trajectory publishing process. They use
two sets of inherent constraints of prefix trees for constraint inferences, which improves
the data utility. However, the number of sequences that belong to a same branch decreases
quickly as the prefix tree grows. Thus, the data utility will be reduced. Chen et al. [16] then
used the variable-length n-gram model to extract the basic information of the trajectory
database and process the general trajectory data. They used a Markov-based search tree to
reduce noise and improve the utility of the data. Recently, there have been some works on
synthesis trajectory publishing. DPT [17] discretizes the trajectories at multiple resolutions
using hierarchical reference systems to capture individual movements at differing speeds,
and constructs one prefix tree for each resolution.

2.1.2. Private Statistics

To overcome the deficiency of the noisy prefix tree-based methods, there are recent
works which generally generate synthetic trajectories using private statistics extracted from
the original trajectories. Typical examples are the AdaTrace [18], DP-star [23] and TGM [19].
DP-Star uses the minimum description length metric to summarize raw trajectories using
their representative points, thereby achieving a desirable trade-off between the preciseness
and conciseness of their information content. AdaTrace is a scalable location trajectory
synthesizer consists of three novel features: deterministic attack, provable statistical privacy
and strong utility preservation. AdaTrace generates a generative model through four steps:
feature extraction, synopsis learning, utility and privacy preserving noise injection, and
generation of synthetic location trajectory with differential privacy. The output trajectories
preserve critical utility information in original trajectories, and are robust against existing
trajectory attacks. DP-Star is a framework for differentially private trajectory publication.
DP-Star relies on several components such as Minimum Description Length metric, density-
aware grid, trip distribution and median length estimation. TGM first encodes the data as
a graphical generative model and privately generates synthetic trajectories, which achieves
substantially high computational efficiency and utility.
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2.1.3. Cluster Centers

To take full advantage of bias distribution of locations in trajectories for efficient
location universe compression, Hua et al. [24] proposed a generalization-based approach
for differentially private trajectory publishing. It first generalizes the trajectories by merging
the locations at the same time, and then releases trajectories after generalization in a
differentially private manner. To improve the efficiency of private location cluster and data
utility, Li et al. [25] proposed a bounded Laplace noise-based trajectory data publication
mechanism with differential privacy. The design of this noise generation mechanism
enables the noise added to the real trajectory count to be sampled in a legal range to
enhance differential privacy. In addition, they remove the partition strategy that removes
the original trajectory, which improves the utility of data and efficiency of publication.
Generalization-based approaches are scalable to large trajectory datasets.

2.2. Differentially Private Sequential Data Publishing

Research on differentially private sequential data publishing is currently considered
in two settings: centralized setting and multi-party setting. Most works focused on the
centralized setting. Chen et al. [30] proposed an algorithm that releases a prefix tree of
sequences to support count queries and frequent string mining. Chen et al. [16] proposed
a variable-length n-gram model to balance the privacy–utility trade-off. However, the
privacy budget consumption of the above method closely depends on the height of the
noisy prefix tree. To disentangle the privacy budget from the height of the constructed
tree, Zhang et al. [31] proposed the PrivTree model, which used only a constant amount
of noise in constructing the prediction suffix tree. Most recently, Tang et al. [32] explored
differentially private multi-party sequential data publishing, and proposed a distributed
prediction suffix tree to solve the problem. However, the above approaches for sequential
data publishing cannot be directly applied on trajectory data due to their ignorance of
temporal information and spatial–temporal correlation.

3. Preliminaries

In this section, we introduce some basic definitions.

Definition 1 (Trajectory [24]). A trajectory of an individual is a chronologically ordered sequence
of time–location pairs, which can be formally represented as T = (t1, l1) → (t2, l2) → · · · →
(t|T|, l|T|), where ti is the i-th sampled timestamp, li is the location (represented by the latitude
and longitude coordinates) of the individual at ti, where 1 ≤ i ≤ |T|, and |T| is the length of
the trajectory.

A trajectory dataset D refers to a set of trajectories collected from different individ-
uals. For simplicity, we assume that all trajectories in the dataset D are sampled at the
same sequence of timestamps, i.e., trajectories are synchronously recorded and have the
same length. The sampled timestamps of each trajectory in D could be represented as
Time(D) = {t1, t2, · · · , t|T|}, where |T| is the number of sampled timestamps. Locations at
each timestamp ti ∈ Time(D) can be represented as a location set Di.

Definition 2 (ε-differential privacy [33]). Given a randomized algorithm Ag, OAg is the set
of all possible outputs of the Ag. For any two adjacent datasets D and D′ (differing on at most
one record) and any subset O ⊆ OAg, if and only if the algorithm Ag satisfies

Pr[Ag(D) ∈ O] ≤ exp(ε)× Pr[Ag(D′) ∈ O], (1)

then the algorithm Ag provides ε-differential privacy, where ε is the privacy budget, and a smaller ε
indicates a higher privacy level.
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Differential privacy is guaranteed by an optimal noise-adding mechanism. The Laplace
mechanism, the exponential mechanism and the staircase mechanism are the commonly
adopted noise-adding mechanisms in existing works. In this paper, we choose the staircase
mechanism as the noise-adding mechanism, as it retains higher data utility than others.

Definition 3 (Query sensitivity [27]). Given a query function f : D → Rd which returns
D-dimensional numerical vectors as outputs, the sensitivity of f is defined as

∆ f = max
D,D′
|| f (D)− f (D′)||1, (2)

where D and D′ are neighboring datasets, and || · ||1 is the `1-norm.

Definition 4 (Staircase mechanism [27]). Given a query function f : D → Rd, its sensitivity
∆ f and the privacy budget ε, the staircase mechanism is to add noise to the query result, i.e.,

K(D) = f (D) + g(∆ f , ε), (3)

where g(∆ f , ε) is the noise generator sampling noise from an D-dimensional staircase-shaped
probability distribution.

The probability density function of the staircase-shaped probability distribution is
defined as follows:

hγ(X; ∆ f , ε) =

{
e−jεα(γ) ||X||1 ∈ [j∆ f , (j + γ)∆ f ]
e−(j+1)εα(γ) ||X||1 ∈ [(j + γ)∆ f , (j + 1)∆ f ]

, (4)

where j ∈ N, and γ ∈ [0, 1]. α(γ) is the normalization factor to make∫ ∫
· · ·

∫
Rd hγ(x)dx1dx2 . . . dxd = 1,

α(γ) =
d!

2d(∆ f )d ∑d
j=1

d!
j!(d−j)! cd−j(b + (1− b)γj)

, (5)

where b = e−ε, cj = ∑+∞
i=0 ijbj and γ = 1

1+eε/2 .

4. DP-CSM
4.1. The Framework

Given a trajectory dataset D, our goal is to sanitize it into a differentially private
trajectory dataset D̃ while retaining its data utility as high as possible. To achieve the goal,
we propose a new method with the combination of a coreset-based location generalization
and staircase mechanism called DP-CSM. The architecture of the DP-CSM is shown in
Figure 1, and it consists of two stages. The first stage is timestamp-wise location generaliza-
tion, which inputs the location datasets of all timestamps and outputs their corresponding
generalized location datasets. The second stage is to reconstruct trajectories according
to the resulting sets of generalized locations while guaranteeing that the reconstruction
process satisfies differential privacy.
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Figure 1. Framework of the DP-CSM. (The location generalization module utilizes coresets-based clus-
tering to improve efficiency. The trajectory reconstruction module reconstructs synthetic trajectories
with the generalized locations and uses the staircase mechanism to realize differential privacy.)

4.2. Coreset-Based Location Generalization

As a result of the quadratic complexity of the existing clustering-based location gener-
alization algorithms [20,24,25], location generalization for each timestamp is a bottleneck
of the existing methods. To improve the efficiency, we propose the coreset-based algorithm.
Coresets are small, weighted summaries of a large dataset such that solutions found on the
coresets are competitive with solutions found on the full dataset [26]. We formally describe
the coreset-based location generalization algorithm in Algorithm 1. In the following, we
will elaborate on the coreset-based location generalization algorithm.

Algorithm 1: coresets based location generalization algorithm
Input : D, k, m
Output : L = {L1, . . . , L|Time(D)|}

1 for location dataset Di of each timestamp in D do
2 for each location l in Di do
3 compute s(l); // Compute sensitivity of l according to [28,29]
4 end
5 for each l ∈ Di do
6 p(l)← s(l)/ ∑l′∈Di s(l′); // Nomalization
7 end
8 Ci ← Sample m weighted points from Di where each point x has weight

1
m·p(l) and is sampled with probability p(l);

9 Li ← Perform k-means on the coresets Ci to obtain k cluster centers as
generalized locations;

10 end
11 return L;

For Algorithm 1, the input parameters are the original trajectory datasetD, the number
of cluster centers k, and the size of coresets m. For each location set Di of timestamp ti in D,
the coreset-based location generalization algorithm efficiently outputs k cluster centers as
generalized locations. Steps 2–6 of Algorithm 1 represent the coreset construction procedure
following the algorithm proposed in [28,29]. Specifically, we first compute the sensitivity
s(l) of each point l ∈ Di (the sensitivity s(l) mentioned here is different from the sensitivity
in differential privacy). After computing the s(l), we need to perform importance sampling
and each point l is sampled with probability p(l). This process is repeated until Ci consists
of m points and each sampled point has a weight 1

m·p(l) . Then, we perform k-means on the

coresets Ci to obtain k centers and output. Finally, we repeat the above process |T|-1 times.
To illustrate the rationale of Algorithm 1, we give a toy example. Suppose that we

have a location set containing 7 locations, as shown in Figure 2. In Figure 2, we can see that
Algorithm 1 samples m locations to represent the original set. For example, we sample the
location l12 to represent locations l11, l12, l13, l14, thus, the weight of l12 after sampling is 4
(because we use one location to represent four locations). Finally, we add the location l12
and its weight 4 into the coreset. The other situations are shown in Table 1.
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Figure 2. Construction of coresets. An original set of locations (circles and triangles on the left
rectangle) and its coreset (bold circle and triangles on the right rectangle) are shown in Figure 2.
The elements l12 and l15 in the coreset are the corresponding representations of the original set: l12

represents the locations l11, l12, l13, l14, and l15 represents the locations l15, l16, l17.

Table 1. Construction of coresets in Figure 2.

Locations in
Coresets

Locations in
Original Set

Weight before
Sampling

Weight after
Sampling

l12 l11, l12, l13, l14 1 4
l15 l15, l16, l17 1 3

4.3. Trajectory Reconstruction

The trajectory reconstruction stage is to differential-privately reconstruct trajectories
from the resulting generalized locations of Algorithm 1. We formally describe the procedure
in Algorithm 2. The algorithm takes the original trajectory dataset D, generalized location
sets L and the privacy budget ε as inputs, and outputs the final reconstructed trajectories
with the ε-differential privacy guarantee. Specifically, the reconstruction algorithm consists
of three major steps, i.e., candidate trajectory generation, differentially private trajectory
selection, and trajectory supplementation.

Algorithm 2: Trajectory reconstruction algorithm

Input : D, L = {L1, . . . , L|Time(D)|}, ε.
Output : D̃: reconstructed trajectories and their noisy counts.

1 D̃ ← ∅; // Initialize an empty trajectory set
2 T = L1 × L2 × · · · × L|Time(D)|; //Construct all possible candidate trajectories
3 for each candidate reconstructed trajectory T̃ in T do
4 OT̃ ← Query(T̃,D);
5 if |OT̃ | > 0 then
6 nT̃ = |OT̃ |+ g(∆ f , ε); // add staircase noise to the counts
7 D̃ = D̃ ∪ {T̃ × nT̃}; // add nT̃ reconstructed trajectories T̃ into D̃
8 end
9 end

10 if |D̃| < |D| then
11 //Supplement trajectories
12 randomly sample |D| − |D̃| trajectories from T − D̃;
13 end
14 return D̃; // Output reconstructed trajectories and their noisy counts

Candidate trajectories are generated according to the generalized location sets via the
set Cartesian product alike operation, as shown in step 2 of Algorithm 2, i.e., T = L1× L2×
· · · × L|Time(D)|. Then, we choose reconstructed trajectories from T in a differentially private
manner, as shown in Steps 3–9 of Algorithm 2. If a candidate trajectory covers at least one
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original trajectory in the trajectory dataset D, then it is selected as a reconstructed trajectory.
By covering an original trajectory we means that the location of each timestamp is covered in
the generalization location. Specifically, given an candidate trajectory T̃ = {l̃1, l̃2, . . . , l̃|T|},
and an original trajectory T = {l1, l2, . . . , l|T|}, we call T̃ covers T, if ∀i ∈ {1, 2, . . . , |T|},
li ∈ l̃i. To facilitate description, we define Query(T,D) as a query function to search
covered trajectories for the reconstructed trajectory T̃ from D. To guarantee differential
privacy, we add a staircase noise to the true number of covered trajectories, and construct
the corresponding amount of reconstructed trajectories. In particular, the noisy count is
calculated as follows.

nT̃ = |Query(T̃,D)|+ g(∆ f , ε), (6)

where nT̃ is the noisy count of the reconstructed trajectory.
As the noise addition during the reconstructed trajectory selection procedure, the

number of reconstructed trajectories would be less than that of the original trajectory
dataset. Thus, Steps 10–13 of the algorithm are designed to generate supplement trajectories
to make the reconstructed trajectory dataset have the same number of trajectories as the
original dataset.

In particular, suppose we use D̃ = {T̃1, T̃2, · · · , T̃j} to represent the reconstructed
trajectories passed by the original trajectories, and it is sorted according to its noisy count,
that is, Cnt1 > Cnt2 > · · · > Cntj, where Cnti represents the noisy count of the recon-
structed trajectory T̃i. Next, starting from the interval (Cnt2, Cnt1], we calculate the Numi
of the trajectory in the set T − D̃ with the noisy count in the interval (Cnti+1, Cnti], the
calculation method is as follows:

Numi = |T − D̃| ·
∫ Cnti

Cnti+1

hγ(X; ∆ f , ε)dx. (7)

where ∆ f is the global sensitivity, ε is the privacy budget, and hγ(X; ∆ f , ε) represents
the probability density function of the staircase mechanism. The count of reconstructed
trajectory in the set T − D̃ is 0 (because no original trajectory has passed through). After
adding noise that satisfies the staircase mechanism, the probability that the trajectory in
T − D̃ is counted in the interval (Cnti+1, Cnti] is

∫ Cnti
Cnti+1

hγ(X; ∆ f , ε)dx.
To reconstruct sufficient trajectories, we finally randomly sample Numi trajectories

from T − D̃, and add those trajectories to the final published trajectory dataset. Their noisy
counts are random values in the corresponding interval (Cnti+1, Cnti]. When the total
count of the trajectory dataset to be published reaches the total count of the original dataset,
Algorithm 2 stops.

In the following, we will illustrate the procedure of Algorithm 2 by giving a simple ex-
ample. We consider a trajectory dataset containing eight trajectories, as shown in Figure 3a.
From Figure 3b, we can see that our proposed location generalization algorithm based
on coresets partitions the original location set at each timestamp into two clusters, and
each cluster is replaced by a cluster center. Then, Algorithm 2 connects the k centers at
different timestamps in chronological order to reconstruct the trajectory and output its
noisy count. For example, we connect the centers l11, l21, l31 to obtain the reconstructed
trajectory l11 → l21 → l31. The reconstructed trajectory l11 → l21 → l31 has been passed
through by T1, T2, thus, the true count of l11 → l21 → l31 is 2. Then, we add noise satisfying
the staircase mechanism to the true count 2. Finally, we output the reconstructed trajectory
l11 → l21 → l31 and its noisy count 1. The other situations are shown in Table 2.



ISPRS Int. J. Geo-Inf. 2022, 11, 607 9 of 22

(a) An example dataset with 8 trajectories. (b) Location Generalization.

Figure 3. An illustration of the trajectory reconstruction algorithm.

Table 2. Differentially private publication of the sample data in Figure 3.

Generalized
Trajectories Raw Trajectories Real Counts Noisy Counts

l11 → l21 → l31 T1, T2 2 1
l11 → l21 → l32 Null 0 2
l11 → l22 → l31 T3 1 0
l11 → l22 → l32 T4 1 1
l12 → l21 → l31 T7 1 0
l12 → l21 → l32 Null 0 0
l12 → l22 → l31 T8 1 3
l12 → l22 → l32 T5, T6 2 1

4.4. Privacy Analysis

We now analyze the privacy guarantee of DP-CSM from a theoretical perspective.
DP-CSM consists of two main stages. The first stage is a coreset-based k-means clustering,
which can be regarded as a no-privacy algorithm Ag1. The second algorithm Ag2 utilizes
the staircase mechanism to add noise to the counts of trajectories. We first prove the
following theorem.

Theorem 1. Given a trajectory dataset D and its generalized location sets L, let NCT (D,L)
denote the output of the Algorithm 2, and PNCT be the set of all possible outputs of the NCT (D,L).
For any two adjacent datasets D and D′ (differing on at most one record), two generalized location
sets L and L′ (L generated from D and L′ generated from D′), any output r ⊆ PNCT , the
Algorithm 2 satisfies ε-differential privacy if and only if:

Pr[NCT (D,L) = r] ≤ Pr[NCT (D′,L′) = r] · eε. (8)

Proof of Theorem 1. Assuming that dataset D and dataset D′ are adjacent datasets, that
is, D and D′ have only one different trajectory Tx, we use T̃x to represent the gener-
alized trajectory of trajectory Tx, and NCi

T (D,L) represents the noisy count of gener-
alized trajectory T̃i ∈ T , then the probability that the noisy count NCi

T (D,L) equals
r = {cnt1, cnt2, · · · , cnt|D|} is

Pr[NCT (D,L) = r] = Pr[NCT (D,L) = {cnt1, cnt2, · · · , cnt|D|}]
= Pr[NC1

T (D,L) = cnt1]× Pr[NC2
T (D,L) = cnt2]× · · · ×

Pr[NC|D|T (D,L) = cnt|D|]

= ∏
|D|
i=1 Pr[NCi

T (D,L) = cnti].

(9)

We discuss the following three cases.

Case 1: For any generalized trajectory T̃i 6= T̃x, we can derive that

Pr[NCi
T (D,L) = cnti] = Pr[NCi

T (D′,L′) = cnti], (10)
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Case 2: For any generalized trajectory T̃i = T̃x ∧ T̃x ∈ D̃ , the count of the generalized
trajectory T̃x is obtained by adding noise that satisfies the staircase mechanism on the
basis of the real count. According to staircase mechanism [27], we can derive that

Pr[NCx
T (D,L) = cntx] ≤ Pr[NCx

T (D′,L′) = cntx] · eε, (11)

Case 3: For an arbitrary generalized trajectory T̃i = T̃x ∧ T̃x /∈ D̃, it can be divided into two
sub-cases cntx ∈ (Cntmin, Cnt1) and cntx /∈ (Cntmin, Cnt1).

(a) cntx ∈ (Cntmin, Cnt1)

Assuming cntx ∈ (Cnti+1, Cnti), from the analysis of Section 4.3 and the proba-
bility density function of the staircase mechanism, we can derive that:

Pr[NCx
T (D′,L′) = cntx] = 1

Cnti−Cnti+1
·
∫ Cnti−1

Cnti+1−1 hγ(X; ∆ f , ε)dx
= 1

Cnti−Cnti+1
· [(j + y)∆ f − (Cnti+1 − 1)] · a(γ)e−jε+

[(Cnti − 1)− (j + y)∆ f ] · a(γ)e−(j+1)ε

= 1
Cnti−Cnti+1

· [(j + y)∆ f − Cnti+1 + 1] · a(γ)e−jε+

[Cnti − 1− (j + y)∆ f ] · a(γ)e−(j+1)ε

= 1
Cnti−Cnti+1

· [(j + y)∆ f − Cnti+1] · a(γ)e−jε+

[Cnti − (j + y)∆ f ] · a(γ)e−(j+1)ε+

a(γ)e−jε − a(γ)e−(j+1)ε

≥ 1
Cnti−Cnti+1

· [(j + y)∆ f − Cnti+1] · a(γ)e−jε+

[Cnti − (j + y)∆ f ] · a(γ)e−(j+1)ε+

a(γ)e−jεe−ε − a(γ)e−(j+1)ε

= 1
Cnti−Cnti+1

· [(j + y)∆ f − Cnti+1] · a(γ)e−jε+

[Cnti − (j + y)∆ f ] · a(γ)e−(j+1)ε

= Pr[NCx
T (D,L) = cntx].

(12)

That is:
Pr[NCx

T (D′,L′) = cntx] ≥ Pr[NCx
T (D,L) = cntx], (13)

where hγ(X; ∆ f , ε) represents the probability density function of the staircase
mechanism.

(b) cntx /∈ (Cntmin, Cnt1)

We use Cntmin to represent the minimum noisy count of the trajectory in the
output trajectory dataset, then:

Pr[NCx
T (D′,L′) = cntx] = 1−

∫ Cnt1−1
Cntmin−1 hγ(X; ∆ f , ε)dx

= 1− {[(j + y)∆ f − (Cntmin − 1)]a(γ)e−jε+

[(Cnt1 − 1)− (j + y)∆ f ]a(γ)e−(j+1)ε}
= 1− {[(j + y)∆ f − Cntmin + 1]a(γ)e−jε+

[Cnt1 − 1− (j + y)∆ f ]a(γ)e−(j+1)ε}
= 1− [(j + y)∆ f − Cntmin]a(γ)e−jε−

[Cnt1 − (j + y)∆ f ]a(γ)e−(j+1)ε−
a(γ)e−jε + a(γ)e−(j+1)ε

≤ 1− [(j + y)∆ f − Cntmin]a(γ)e−jε−
[Cnt1 − (j + y)∆ f ]a(γ)e−(j+1)ε − a(γ)e−jεe−ε+

a(γ)e−(j+1)ε

= 1− [(j + y)∆ f − Cntmin]a(γ)e−jε−
[Cnt1 − (j + y)∆ f ]a(γ)e−(j+1)ε

= Pr[NCx
T (D,L) = ∅].

(14)

That is:
Pr[NCx

T (D′,L′) = cntx] ≤ Pr[NCx
T (D,L) = cntx]. (15)
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Thus we can derive that Pr[NCx
T (D′,L′) = cntx] = Pr[NCx

T (D,L) = cntx].

Combining the three cases, we can derive Pr[NCT (D,L) = r] ≤ Pr[NCT (D′,L′) = r] · eε,
thus, Algorithm 2 satisfies ε-differential privacy according to Definition 2.

Theorem 2. We denote DP-CSM as Ag and assume PAg is the set of all possible outputs of the
Ag. For any two adjacent datasets D and D′ and any output O ⊆ PAg, the DP-CSM satisfies
ε-differential privacy if and only if:

Pr[Ag(D) = O] ≤ Pr[Ag(D′) = O] · eε. (16)

Proof of Theorem 2. Assuming that D and D′ are two adjacent datasets, we use Ag1 to
represent our proposed location-generalized algorithm and O1 to represent its output; We
use Ag2 to represent the trajectory reconstruction algorithm, and O2 to represent its output.
Ag represents the entire model, and O represents its output. We can derive that:

Pr[Ag(D) = O] = Pr[Ag1(D) = O1] · Pr[Ag2(D) = O2]. (17)

According to Definition 2 and Theorem 1, we have:

Pr[Ag1(D) = O1] · Pr[Ag2(D) = O2] ≤ Pr[Ag1(D′) = O1] · (Pr[Ag2(D′) = O2] · eε)
= Pr[Ag(D′) = O] · eε.

(18)
Combining Equations (17) and (18), we have:

Pr[Ag(D) = O] ≤ Pr[Ag(D′) = O] · eε. (19)

Finally, we prove that the DP-CSM satisfies ε-differential privacy according to the definition
of ε-differential privacy.

4.5. Complexity Analysis

The computational cost of DP-CSM mainly relates to the location generalization and
reconstruction of trajectories.

Firstly, we analyze the computational complexity of the location generalization, which
is mainly composed of coreset construction and k-means clustering. The coreset construc-
tion is performed at each timestamp, and its computational complexity is O(k|D||T|),
where |D| is the number of trajectories, |T| is the length of trajectory, k is the number of
clusters. The complexity of performing k-means is O(nkm|T|), where n is the number of
iterations of k-means. The time complexity of Algorithm 1 is O(nkm|T|). Additionally, the
time complexity of traditional k-means is O(nk|D||T|), which means Algorithm 1 is faster
than traditional k-means (m ≤ |D|).

Secondly, we connect the center of each cluster at each timestamp. Since the number
of centers is |D||T|, the computational complexity of connecting the centers is O(|D||T|).
The complexity of adding noise and supplementing trajectories is less than |D|, thus, the
computational complexity of trajectory reconstruction algorithm is O(|D||T|).

Therefore, the total computational complexity of DP-CSM is O(nkm|T|).

5. Experiment

In this section, we empirically evaluate the performance of our method DP-CSM in
terms of the data utility of sanitized trajectory datasets and the scalablity for coping with
large trajectory datasets.
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5.1. Experiment Setup

We compare DP-CSM with three representative works (INFOCOM15 [24], IS17 [25]
and PCG [20]). We implemented all methods in Python, and all experiments were run on a
computer with an Intel Core i7-9700 CPU, 16G RAM.

5.1.1. Datasets

We used three publicly available real-life trajectory databases: T-drive (https://www.
microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/, accessed on
5 December 2022) [34,35], Geolife https://www.microsoft.com/en-us/download/details.
aspx?id=52367, accessed on 5 December 2022) [36–38] and Roma (http://crawdad.org/
roma/taxi/20140717/taxicabs/index.html, accessed on 5 December 2022) [39], in our ex-
periments.

T-Drive. A dataset contains the GPS trajectories of 10,357 taxis in Beijing from 2
February to 8 February. We chose the trajectory from 8:30 to 14:30 as our experimental
data, and each trajectory contains 32 locations. The time interval between any two adjacent
locations in a trajectory is 10 min. After preprocessing, we finally selected 12,000 trajectories
as our experimental data.

Geolife. A dataset was collected through different GPS loggers and GPS phones in
the Geolife project by 182 users in a period of over five years (from April 2007 to August
2012). The Geolife trajectory dataset contains 17,621 trajectories with a total distance of
1,292,951 km and a total duration of 50,176 h. After preprocessing, we finally selected
12,000 trajectories as our experimental data, and each trajectory contains 32 locations. The
time interval between any two adjacent locations in one trajectory is 10 s.

Roma taxi. A dataset contains mobility traces of taxi cabs in Rome, Italy. It contains
GPS trajectories of 320 taxis collected over 30 days (from 1 February 2014 to 2 March 2014).
After preprocessing, we finally select 12,000 trajectories as our experimental data, and each
trajectory contains 32 locations. The time interval between any two adjacent locations in
one trajectory is approximately 15 s.

5.1.2. Data Utility Metrics

In the experiments, we utilize three commonly-used metrics (i.e., spatial distribution
similarity, Hausdorff distance and range query distortion), and three entropies introduced
in [40] to comprehensively evaluate the data utility preservation capability of our proposed
method from different aspects.

Spatial distribution similarity. The spatial distribution similarity between the raw
trajectory database and the sanitized trajectory database is demonstrated with heatmaps.
We divide the spatial space into 40 × 40 grids and count the number of locations falling
in each grid cell. As each heatmap can be represented as an 1600-dimensional vector
(x1, x2, · · · , x1600), where xi is the number of locations in the i-th grid cell, we further
quantify the similarity with the cosine similarities between heatmaps of raw trajectory
database and its corresponding sanitized trajectory databases. A sanitized trajectory
database which has higher spatial distribution similarity with the raw trajectory database
retains higher data utility.

Hausdorff distance. Hausdorff distance is a commonly used metric to measure data
utility of sanitized trajectory database. The definition of Hausdorff distance is:

H(|D|, ˜|D|) = max(h(|D|, ˜|D|), h( ˜|D|, |D|)), (20)

where h( ˜|D|, |D|) = maxT∈ ˜|D|{minT′∈|D|{Distance(T, T′)}}. Distance(T, T′) is calculated
by the sum of the Euclidean distance of each timestamp between T and T′. It reflects the
trajectory distance between the original dataset D and the published dataset ˜|D|, and lower
distance implies higher data utility.

https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/download/details.aspx?id=52367
https://www.microsoft.com/en-us/download/details.aspx?id=52367
http://crawdad.org/roma/taxi/20140717/taxicabs/index.html
http://crawdad.org/roma/taxi/20140717/taxicabs/index.html
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Range query distortion (RQ). Range query distortion is another commonly used
metric of the utility of published trajectory data [20,24,41]. It is calculated as follows

RQ =
|Q(D)−Q(D̃)|

max(|Q(D)|, |Q(D̃)|)
, (21)

where Q(D) is the query result on the raw trajectories, Q(D̃) is the query result on the
reconstructed trajectories, Q(D)− Q(D̃) is the set difference which returns locations in
Q(D) while not in Q(D̃), and | · | returns the cardinality of a set. Larger-range query
distortion reflects lower data utility.

The random entropy. The random entropy can capture the predictability degree of the
user’s whereabouts if each location is visited with the same probability [42]. The definition
of the random entropy is:

Srand
i ≡ log2 Ni, (22)

where Ni is the number of locations which are visited by user i.
The temporal-uncorrelated entropy. The temporal-uncorrelated entropy can char-

acterize the heterogeneity of visitation patterns [42]. The definition of the temporal-
uncorrelated entropy is:

Sunc
i ≡ −

Ni

∑
j=1

pi(j) log2 pi(j), (23)

where pi(j) is the historical probability that location j was visited by the user i.
The actual entropy. The actual entropy depends not only on the frequency of visita-

tion, but also on the order in which the nodes were visited and the time cost at each location,
thus capturing the full spatio-temporal order present in a person’s mobility pattern [42].
The definition of the actual entropy is:

Si ≡ − ∑
T′i⊂Ti

P(T′i ) log2 [P(T
′
i )], (24)

where P(T′i ) is the probability of finding a particular time-ordered subsequence T′i in the
trajectory Ti.

5.2. Comparison of Data Utility

In this subsection, we first evaluate the utility of the published trajectories with cosine
similarity, Hausdorff distance and range query distortion. Then, we evaluate the utility
with three entropies introduced in [40]. Finally, we evaluate the trade-off between utility
and privacy.

5.2.1. Spatial Distribution Similarity

Figure 4 shows the heatmaps of three real-world trajectory datasets and sanitized
trajectory datasets generated by the four models. For each heatmap of a sanitized trajectory
dataset, we also calculate its cosine similarity with the corresponding heatmap of raw
trajectory dataset. Higher cosine similarity implies better spatial distribution preservation.
From Figure 4, we can see that, sanitized trajectory datasets resulting from the proposed DP-
CSM have higher cosine similarity scores than those of INFOCOM15 and IS17. Although
the cosine similarity scores of DP-CSM are lower than those of the PCG, their gaps are
smaller than those of INFOCOM15 and IS17. The reason for the similarity degradation
of the proposed DP-CSM is that it adopts location coresets for clustering instead of the
original location sets, and coresets are a kind of loss compression of original location sets.
This implies that the DP-CSM sacrifices acceptable data utility for the efficiency. The reason
for DP-CSM outperforming INFOCOM15 and IS17 is that DP-CSM utilize the staircase



ISPRS Int. J. Geo-Inf. 2022, 11, 607 14 of 22

mechanism instead of the Laplacian mechanism, and the staircase mechanism can maintain
higher utility by avoiding adding excessive noise to the counts of trajectories.

(a) Original (T-drive) (b) IF15, CS=0.744 (c) IS17, CS=0.753 (d) PCG, CS=0.925 (e) DP-CSM, CS=0.846

(f) Original (Geolife) (g) IF15, CS=0.694 (h) IS17, CS=0.696 (i) PCG, CS=0.927 (j) DP-CSM, CS=0.916

(k) Original (Roma) (l) IF15, CS=0.863 (m) IS17, CS=0.878 (n) PCG, CS=0.971 (o) DP-CSM, CS=0.955

Figure 4. Heatmap of raw trajectory databases and sanitized trajectory datasets resulting from the
four methods. All the sanitized trajectory datasets were generated under the following parameters
setting: ε = 0.4, k = 80, |D| = 12,000. (a–e) are results on T-drive, (f–j) are results on Geolife and
(k–o) are results on Roma. For each figure, the x-axis represents the longitude, the y-axis represents
the latitude. The CS in captions of sub-figures stands for the cosine similarity between the heatmap
per se and its corresponding raw dataset’s heatmap.

5.2.2. Hausdorff Distance

Figure 5 shows Hausdorff distance comparisons between the four models under
different settings. Hausdorff distance measures the difference between the raw trajectory
dataset and a sanitized trajectory dataset, and a smaller distance implies better utility
preservation of a sanitized trajectory dataset. From Figure 5, we can see that our DP-
CSM has smaller distances than INFOCOM15 and IS17 models have in most cases, which
implies better data utility than that of INFOCOM15 and IS17 models. Similar to the trend
shown in Figure 4, DP-CSM has larger distances than PCG. This is reasonable since (1) the
counts of trajectories have no impact on Hausdorff distance, which means the staircase
noise on counts will be useless; (2) the construction of coresets distorts the reconstructed
trajectory datasets.

5.2.3. Range Query Distortion

Figure 6 presents the comparison results of the four models on range query distortion.
Smaller range query distortion implies better utility preservation of a sanitized trajectory
dataset. As shown in Figure 6, our DP-CSM has smaller range query distortion than
the three baselines do under the same settings. These results demonstrate that although
our DP-CSM sacrifices data utility for efficiency, it would not distort the raw dataset too
much. In addition, we can also see that the range query distortion decreases with the
increasing of the size of datasets. This means that larger trajectory datasets are beneficial
for privacy preservation.
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(a) T-drive, ε=0.4 (b) Geolife, ε=0.4 (c) Roma, ε=0.4

(d) T-drive, ε=0.5 (e) Geolife, ε=0.5 (f) Roma, ε=0.5

Figure 5. Hausdorff distance comparison of the four models under different settings. In particular,
we fix k = 80 and vary the privacy budget ε and the size of trajectory datasets. For the privacy budget,
we choose two kinds of values, i.e., ε = 0.4 and ε = 0.5, respectively. Under each privacy budget, we
vary the sizes of trajectory datasets.

(a) T-drive, ε=0.4 (b) Geolife, ε=0.4 (c) Roma, ε=0.4

(d) T-drive, ε=0.5 (e) Geolife, ε=0.5 (f) Roma, ε=0.5

Figure 6. Range query distortion comparison of the four models under different settings. In particular,
we fix k = 80 and vary the privacy budget ε and the size of trajectory datasets. For the privacy budget,
we choose two kinds of values, i.e., ε = 0.4 and ε = 0.5, respectively. Under each privacy budget, we
vary the sizes of trajectory datasets.

5.2.4. Random Entropy

Figure 7 shows the random entropy comparison results of the four methods with that
of the raw trajectory dataset. From Figure 7, we can see that DP-CSM, INFOCOM15 and
IS17 could achieve similar random entropy which is larger than the one PCG achieves on
the T-drive dataset. Whereas, on the Geolife and Roma datasets, the DP-CSM demonstrates
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higher random entropy than others. (The effect on predictability is different on different
datasets due to different sampling time intervals. The predictability of trajectories with
smaller sampling time intervals may be more susceptible.) This means that the predictability
preservation capability of DP-CSM falls behind that of the other methods. It it worth noting
that, as the three datasets used in our experiments have finer-grained GPS trajectories
compared with the CDR (Call Detailed Record) trajectories used in [42], their predictability
might be lower than that of CDR trajectories.

(a) T-drive, ε=0.4 (b) Geolife, ε=0.4 (c) Roma, ε=0.4

(d) T-drive, ε=0.5 (e) Geolife, ε=0.5 (f) Roma, ε=0.5

Figure 7. Random entropy comparison of the four models under different settings. In particular, we
fix k = 80 and vary the privacy budget ε and the size of trajectory datasets. For the privacy budget,
we choose two kinds of values, i.e., ε = 0.4 and ε = 0.5, respectively. Under each privacy budget, we
vary the sizes of trajectory datasets.

5.2.5. Temporal-Uncorrelated Entropy

Figure 8 shows the temporal-uncorrelated entropy comparison results of the four meth-
ods with that of the raw trajectory dataset. From Figure 8, we can see similar trends as that
present in Figure 7. It also demonstrates that DP-CSM has higher temporal-uncorrelated
entropy than other methods. Thus, DP-CSM loses more predictability than the other meth-
ods from the data utility perspective, but it could preserve higher privacy as predictability
might cause privacy disclosure in some situations.

5.2.6. Actual Entropy

Figure 9 demonstrates the actual entropy comparison results of the four methods with
that of the raw trajectory dataset. As shown in Figure 9, the four methods have similar
actual entropy under different settings, which means they have a similar predictability
preservation capability. In addition, gaps between the raw dataset’s entropy and sanitized
datasets’ entropies on Geolife and Roma datasets are larger than those of T-drive. The
reason might be the difference of sampling intervals, and the T-drive dataset has a larger
sampling interval than the Geolife and Roma datasets.
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(a) T-drive, ε=0.4 (b) Geolife, ε=0.4 (c) Roma, ε=0.4

(d) T-drive, ε=0.5 (e) Geolife, ε=0.5 (f) Roma, ε=0.5

Figure 8. The temporal-uncorrelated entropy comparison of the four models under different settings.
In particular, we fix k = 80, and varies privacy budget ε and the size of trajectory datasets. For the
privacy budget, we choose two kinds of values, i.e., ε = 0.4 and ε = 0.5, respectively. Under each
privacy budget, we vary the sizes of trajectory datasets.

(a) T-drive, ε=0.4 (b) Geolife, ε=0.4 (c) Roma, ε=0.4

(d) T-drive, ε=0.5 (e) Geolife, ε=0.5 (f) Roma, ε=0.5

Figure 9. The actual entropy comparison of the four models under different settings. In particular,
we fix k = 80 and vary the privacy budget ε and the size of trajectory datasets. For the privacy budget,
we choose two kinds of values, i.e., ε = 0.4 and ε = 0.5, respectively. Under each privacy budget, we
vary the sizes of trajectory datasets.

5.2.7. Impacts of ε on Data Utility

Figure 10a–c shows the data utility of various method over three real-life trajec-
tory datasets. Figure 10a–c shows results from T-drive, Geolife and Roma, respectively.
Figure 10a–c shows that the Hausdorff distance of DP-CSM is larger than PCG’s but close
to INFOCOM15’s and IS17’s, which means there is more data utility loss than for PCG but
similar utility loss to that for INFOCOM15, IS17. This is reasonable since (1) the counts
of trajectories have no impact on Hausdorff distance, which means the staircase noise on
counts will be useless; (2) the construction of coresets will distort the trajectory data.
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As shown in Figure 10d–f, the horizontal axis represents the privacy budget ε, and
the vertical axis represents the range query distortion. Figure 10d–f shows that the utility
of reconstructed trajectories increases with the ε and DP-CSM has higher utility than the
other three works in most cases. This is reasonable because (1) the privacy budget increases
means that less noises were added, and therefore utility improves; (2) coreset-based k-
means converges with fewer iterations. Thus, when the maximum number of iterations
is fixed, coreset-based k-means have higher utility than k-means; (3) compared with the
Laplace mechanism, the staircase mechanism can improve the utility by avoiding adding
excessive noise to the counts of trajectories.

(a) Hausdorff distance (T-drive) (b) Hausdorff distance (Geolife) (c) Hausdorff distance(Roma)

(d) Range query distortion (T-drive) (e) Range query distortion(Geolife) (f) Range query distortion(Roma)

Figure 10. Impacts of privacy budget ε on data utility. We use the Hausdorff distance and range query
distortion to quantify data utility of sanitized trajectory datasets resulting from the four methods.
In these experiments, we fix k = 80, and |D| = 2000 for each dataset. We vary the privacy budget ε

from 0.5 to 1.0, and compare the variations of the two data utility metrics for the four methods.

5.3. Comparison of Scalability

We study the runtime under different dataset sizes and different number of cluster
centers. For the more comprehensive analysis of DP-CSM, we analyze the total trajectory
generation time and compare the time efficiency of DP-CSM with INFOCOM15, IS17
and PCG.

5.3.1. Impact of |D| on Scalability

Figure 11 shows the efficiency comparison between the four methods over three real-
life trajectory datasets. The time complexity of INFOCOM15, IS17 and PCG is O(nk|D||T|),
and the time complexity of DP-CSM is O(nkm|T|), where m = 0.2|D|. As shown in Figure 11,
the DP-CSM is always much faster than INFOCOM15, IS17 and PCG under the same
settings. These results demonstrate that the efficiency of DP-CSM is the highest among
compared works. This is reasonable since coreset is a small summary of original dataset
(thus m < |D|), which reduces the time of performing coreset-based k-means.
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(a) T-drive, ε=0.4 (b) Geolife, ε=0.4 (c) Roma, ε=0.4

(d) T-drive, ε=0.5 (e) Geolife, ε=0.5 (f) Roma, ε=0.5

Figure 11. Impact of dataset size on the efficiency of the four methods. In these experiments, we fix
k = 80, and choose two kinds of privacy budget, i.e., ε = 0.4, and ε = 0.5. For each privacy budget and
dataset, we vary the size |D| from 2000 to 12000, and compare the running times of the four methods.

5.3.2. Impact of k on Scalability

Figure 12 shows the efficiency of the four methods over three real-life trajectory
datasets. As shown in Figure 12, the running time increases approximately linearly with
the increasing of k. This is reasonable because the time of k-means increases linearly as
k increases, and the total running time is mainly composed of the time of k-means. In
addition, we can also see that the DP-CSM is always much faster than INFOCOM15, IS17
and PCG, which means the efficiency of DP-CSM is highest among compared works. The
reason is the same as in Section 5.3.1.

(a) T-drive, ε=0.4 (b) Geolife, ε=0.4 (c) Roma, ε=0.4

(d) T-drive, ε=0.5 (e) Geolife, ε=0.5 (f) Roma, ε=0.5

Figure 12. Impact of k on the efficiency of the four methods. k is a parameter of the k-means algorithm,
representing the number of clusters. In these experiments, we fix the size as |D| = 2000 for each
datasets, and choose two kinds of privacy budget, i.e., ε = 0.4, and ε = 0.5. For each epsilon and
dataset, we vary k from 50 to 100, and compare the running times of the four methods.
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6. Conclusions

In this paper, we present the DP-CSM, a differentially private trajectory synthesiz-
ing algorithm based on coresets and staircase mechanism for trajectory data publication.
Compared with existing cluster center-based solutions, the DP-CSM utilizes the coreset to
improve the efficiency and utilizes staircase mechanism to replace the traditional Laplace
mechanism to improve utility. The DP-CSM is mainly composed of the following two steps:
location generalization and trajectory reconstruction. In the first step, we construct the
coreset of location set at each timestamp. Then, we use the k-means clustering to obtain
the generalized location sets. In the second step, we first reconstruct trajectories and add
noise to the count of reconstructed trajectories. According to the counts of reconstructed
trajectories, we supplement trajectories and add noise. The experimental results show that
the DP-CSM has greatly improved the efficiency while preserving a similar utility and
privacy level to those of the three prevailing methods, such as INFOCOM15, IS17 and PCG.

In the future, we hope to eliminate the trajectory reconstruction step by directly con-
structing high-dimensional coresets based on the original trajectory, thus further improving
the utility of the data and time efficiency. Additionally, DP-CSM can currently only process
the trajectories with same length—we hope to overcome this insufficiency in the future.
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