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Abstract: Throughout history, pandemics have forced societies to think beyond typical management
and control protocols. The main goals of this study were to simulate and understand the spatial
dynamics of COVID-19 spread and assess the efficacy of two policy measures in Montreal, Canada,
to mitigate the COVID-19 outbreak. We simulated the COVID-19 outbreak using a Geographical
Information System (GIS)-based agent-based model (ABM) and two management scenarios as follows:
(1) human mobility reduction; and (2) observation of self-isolation. The ABM description followed
the ODD (Overview, Design concepts, Details) protocol. Our simulation experiments indicated that
the mainstream of COVID-19 transmissions (i.e., approximately 90.34%) occurred in public places.
Besides, the results indicated that the rules aiming to reduce population mobility, led to a reduction of
about 63 infected people each week, on average. Furthermore, our scenarios revealed that if instead of
42% (i.e., the adjusted value in the calibration), 10%, 20%, and 30% of infectious people had followed
the self-isolation measure, the number of infected people would have risen by approximately 259,
207, and 83 more each week, on average, respectively. The map of critical locations of COVID-19
spreading resulted from our modeling and the evaluated effectiveness of two control measures on
the COVID-19 outbreak could assist health policymakers to navigate through the pandemic.

Keywords: COVID-19; geographical information system (GIS); complex system (CS); agent-based
modeling (ABM) approach; epidemic dynamics; epidemic outbreaks; Canada

1. Introduction

The emergence and initial outbreak of the novel Coronavirus (i.e., COVID-19) from
Wuhan, China, in 2019 has become a global health concern [1]. Among the pandemic
diseases that humans have faced in the twenty-first century (e.g., H1N1, Polio, Zika, Ebola,
etc.), none have had a global public health burden as COVID-19 [2].

Combating the COVID-19 pandemic and offering insightful information for health pol-
icymakers can be aided by monitoring the dynamic spread of the disease, the concentration
of disease cases, and identifying potential hotspots of infections [3–5]. Numerous studies
have pointed out the Geographical Information System (GIS) as an essential tool to analyze
the spatial distribution of infectious diseases, identify the pandemic path, and determine
the hotspots of the disease spread [3,4,6]. However, relying just on spatial data and GIS
analyses is insufficient to account for the dynamics and complexity of disease spread.

The rising impacts of the COVID-19 epidemic have made urgent COVID-19 research
necessary, while at the same time, the inevitability of framing human systems as complex
systems has attracted the interest and attention of researchers [7,8]. Many natural and
artificial systems exhibit seemingly complex behaviors because of dense nonlinear spa-
tiotemporal interactions among many autonomous component systems at various levels of
an organization. Complex Systems is a term coined to describe these systems and are at the
heart of many of today’s issues [9]. One of the most remarkable features of complex systems
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is considering the local interactions between self-organizing components that give rise to
the emergence of novel global patterns [10]. This hallmark of complex systems is over-
looked in traditional epidemiological models, particularly mathematical models [11,12].
Cellular automata (CA) and agent-based modeling (ABM) are two main complex systems
modeling approaches. The CA modeling approach consists of a grid of cells, each of which
is in one of a finite number of statuses so that statuses vary based on a set of rules passing
among adjacent cells [13,14]. The ABM, as another robust complex systems modeling
approach, is composed of autonomous interacting individuals (i.e., agents) with attributes
and behaviors [15,16]. This modeling approach considers various behaviors for agents and
attempts to model dynamic and complex phenomena by considering interactions between
agents as well as agents and the environment [15,16].

In the simulation of epidemiologic disease spread, both ABM and CA modeling
approaches have been extensively suggested and employed [17–20]. The capability of
ABM in taking into account (1) the heterogeneous individuals and the environment;
(2) the dynamic movements of individuals; (3) the interactions between individuals as well
as individuals and the environment; (4) the characteristics of individuals, the environment,
as well as the biological and epidemiological characteristics of the disease; and (5) a range
of possible “what if” scenarios make the ABM approach much flexible, useful, and realistic
in simulating epidemiologic disease outbreaks [20,21].

As of the emergence of COVID-19, simulation of the COVID-19 outbreaks, and the
significant adeptness of COVID-19 control measures using the ABM approach have been
highlighted in earlier studies [7,22–29]. The only study that employed the ABM approach to
simulate the COVID-19 spread in Montreal was the study by Manout and Ciari (2021) [30].
In their study, the relationship between everyday activities, their spatial and temporal
distribution, the attributes of the individuals, and the infection spread were evaluated. The
findings of their study highlighted the substantial contribution that activities associated to
the home, workplace, and schools have in the spread of disease.

The main purposes of this study were to develop a spatially explicit agent-based
model to simulate the dynamics of COVID-19 spread and assess the effectiveness of two
control interventions in containing the COVID-19 outbreak in the city of Montreal, QC,
Canada. Besides these purposes, the motivations of this study were investigated to address
the following research concerns: (1) how could the epidemiological modeling approach
take into account the dynamics of the disease spread in relation to the spatial data?; (2) how
is the infection spread through a population?; (3) which age groups are most frequently
exposed to the infection transmission?, and finally; (4) which areas of Montreal are the
main spots for COVID-19 transmission? The specific highlight of the presented study that
differentiated it from preceding ones was its ability to address these concerns by developing
a spatially explicit agent-based model.

2. Materials and Methods
2.1. Overview of the Area under Study

As of the start of COVID-19 outbreak in Canada (i.e., 25 January 2020), various control
interventions (e.g., educational places closures, restriction in people movements, heeding
physical distancing, self-isolation on symptoms, etc.) were employed to contain the spread
of the virus. Nevertheless, the epidemic continued to hit the country on 21 January 2021.
Among the Canadian provinces, Quebec had the highest number of confirmed cases, and
Montreal with 39.1% of total confirmed cases, was the city with the highest number of
confirmed cases in the province of Quebec; consequently, this study was carried out in the
city of Montreal.

2.2. Data and Preprocessing of the Input Data

Having reviewed studies to identify the data required in simulating the COVID-19
outbreak, the essential data were collected and processed. These data included land-use,
demographic information of Montreal (e.g., population (Table A1), number of total house-
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holds, and household size (Table A2)), labor statistics (Table A3), information about the
control interventions employed in Montreal since the COVID-19 pandemic, and finally
daily confirmed cases of COVID-19 in Montreal during the simulation period. The prepa-
ration process of data was performed once all the required data were collected. In doing
so, land use data were stratified into four major groups: residential places, workplaces,
educational places, and the rest of the places labeled “public places” (e.g., parks, agriculture
places, religious places, etc.) (Figure 1A). Besides, the population density map (Figure 1B)
was used in the distribution of human agents.
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2.3. The Proposed Agent-Based Model

The simulation of the COVID-19 outbreak in this study was implemented in Mesa
framework (i.e., an ABM framework in Python) [31,32]. The flowchart of code implementa-
tion on the Mesa framework was clearly illustrated in Figure A1. To describe the proposed
agent-based model in a way more understandable and comprehensive, the ODD (Overview,
Design concepts, Details) protocol was used [33,34]. The remainder of this section contains
a detailed explanation of each ODD protocol component for this study.

2.3.1. Model Overview

This element of the ODD protocol lies in three sub-elements including (i) a summary
but much detailed description of a model’s purpose (see Section Purpose); (ii) the model’s
entities, their state variables (possibly including behavioral attributes and model parame-
ters), and the model’s spatial and temporal scales (see Section State Variables and Scales);
and (iii) a detailed and precise description of the model’s schedule in sequential order (see
Section Process Overview and Scheduling).

Purpose

The main purposes of the proposed model were to simulate the COVID-19 outbreak
and assess the effectiveness of control strategies. The essential causes of the COVID-
19 outbreak are the movement of humans and their interactions with each other [22].
Accordingly, developing a realistic dynamic model that considers the interactions and
movements of people is critical for assessing the COVID-19 epidemic, and we included
them in our model.

State Variables and Scales

The constructing components of our model involved human agents and the geographic
environment which abstractly represented the study area. To represent the components,
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a unified modeling language (UML) class diagram was used (Figure 2). Regarding the
UML class diagram, the environment of the model was constructed according to several
spatial data. Various attributes were assigned to the cells whose attributes were correspond-
ingly initialized based on the spatial data. Besides, several attributes and behaviors were
taken into consideration for the human agents. All explained details were schematically
illustrated in Figure 2.
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The framework included the landscape of Montreal on which human agents interact
and move. The landscape of Montreal was divided into a 320 × 284 grid with a cell size of
113.5 m due to the spatial resolution of data. Besides, the simulation step was set to one
hour and the model was run for 5 weeks.

Process Overview and Scheduling

An outline of sequences of the processes that are carried out during the simulation is
given in this element of the ODD protocol. In the first step, all spatial data were loaded.
Next, for each spatial data, an attribute was defined for the cells and their values were
correspondingly initialized regarding the spatial data. In the third step, human agents
were created in the number of the population and concerning the demographic conditions
of the city. Human agents randomly but based on the population density map were
distributed as groups (i.e., households) in the residential cells of the environment. Moreover,
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a vast number of attributes were born in mind for human agents and their attributes were
initialized based on information such as the biological and epidemiological characteristics
of COVID-19 disease, demographic conditions of Montreal, etc. These steps were done only
once and at the beginning of the model. The dynamic and iterative processes of the model
began performing once the first three major steps were completed. The main dynamic
processes of the proposed agent-based model involved: (1) the hourly location of human
agents; (2) the interaction level of human agents based on their current locations; (3) the
dynamics of the control interventions employed along with their various influences on
human agents’ movement as well as their interactions in the environment; and (4) the
epidemic process and transition of human agents from different health statuses.

2.3.2. Design Concepts

In this element of the ODD protocol, the way that simple fundamental principles
addressed in the design of a more realistic and complex model is explained. In this
element of the ODD protocol, some necessary design concepts of the proposed agent-based
model including sensing (see Section Sensing), interactions (see Section Interactions), and
stochasticity (see Section Stochasticity) are described.

Sensing

In the model, the human agents had the sense to identify the cells for moving in
the environment. Human agents were able to identify their workplace, public place, and
residential cells. They were also capable of sensing other human agents in the same cell
as themselves. Furthermore, human agents began or stopped doing certain of the tasks
depending on whether a control measure was employed.

Interactions

The COVID-19 disease spreads because of human agents interacting with one another.
Accordingly, the proposed model included the interactions between human agents as well
as between human agents and the environment. Human agents by interacting with the
environment were choosing the cells to move over time steps. Besides, an increase in the
number of infection transmission in cells was happening when the infection transmission
was being taken place in the cells. Furthermore, human agents interacted with each other,
and their interaction level varied based on their current location.

Stochasticity

Several stochastic processes were considered within our model to present natural
processes. For instance, choosing the workplace cell for human agents included stochas-
ticity. Although selecting a residential cell for human agents was performed regarding
the population density and the Roulette wheel selection method, it was probabilistic. Ran-
domly assigning human agents to the households, choosing public places by human agents
to move, and initializing some of the human agents’ attributes all were other stochastic
processes considered in our model.

2.3.3. Details

In this element, the further details of the model and the implementation of the model
are explicitly and comprehensively described. Regarding this element of the ODD protocol,
model details and the implementation process of the model are performed in several
sections: initialization (see Section Initialization), input data (see Section Input Data), and
submodels (see Section Submodels).

Initialization

In this section, the values of the state variables at the beginning of the model were
initialized. Besides, change or no change in values of the variables were clarified and
provided in accordance with reliable references. In the beginning, the data related to the
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landscape information of the study area were uploaded and initial values of the cells’
attributes were set. Besides, a specific number of agents regarding the population data
were created and their attributes were initialized regarding the reliable official data sources
and the previous studies. All the parameters were summarized in Table 1.

Table 1. Summary of the input parameters.

Parameters Symbol Value/Range of Value Mean (µ) Standard
Deviation (σ) Resources

Time from infection
to onset of
symptoms

τsym
Gamma (k, θ);

k = µ 2/σ 2, θ = σ 2/µ 5.42 days 2.7 days McAloon et al.,
2020 [35]

Time to recover in
case of not needing

hospitalization
τrec

Gamma (k, θ);
k = µ 2/σ 2, θ = σ 2/µ 12 days 5 days

Hinch et al.,
2021 [36]

Time from
hospitalization to
being recovered

τhosp, rec
Gamma (k, θ);

k = µ 2/σ 2, θ = σ 2/µ 8.75 days 8.75 days

Time to death after
hospitalization τdeath

Gamma (k, θ);
k = µ 2/σ 2, θ = σ 2/µ 11.74 days 8.79 days

Time from infection
to recovery (for
asymptomatic
individuals)

τa,rec
Gamma (k, θ);

k = µ 2/σ 2, θ = σ 2/µ 15 days 5 days

Time from
symptom onset to

hospitalization
τhosp

Gamma (k, θ);
k = µ 2/σ 2, θ = σ 2/µ 5.14 days 4.2 days Pellis et al.,

2020 [37]

Mean number of
people infected by

each infectious
person

R0 (3.66–5.58) 4.5 people (4.5/8) people Ke et al., 2021
[38]

The fraction of
asymptomatic

infected
individuals

Φasym(age)

Age Value

- -

Riccardo et al.,
2020 [39]

0–9 0.456

10–19 0.412

20–29 0.370

30–39 0.332

40–49 0.296

50–59 0.265

60–69 0.238

70+ 0.214

centering The
fraction of infected
individuals with
mild symptoms

centering
Φmild(age)

0–9 0.533

- -

10–19 0.569

20–29 0.597

30–39 0.614

40–49 0.616

50–59 0.602

60–69 0.571

70+ 0.523
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Table 1. Cont.

Parameters Symbol Value/Range of Value Mean (µ) Standard
Deviation (σ) Resources

The fraction of
infected

individuals with
severe symptoms

who are
hospitalized

Φhosp(age)

0–9 0.001

- -

10–19 0.006

20–29 0.015

30–39 0.069

40–49 0.219

50–59 0.279

60–69 0.370

70+ 0.391

The fraction of
fatalities amongst
individuals with
severe symptoms

who are
hospitalized

Φdeath(age)

0–9 0.33

- -
Hinch et al.,

2021 [36]; Yang
et al., 2020 [40]

10–19 0.25

20–29 0.5

30–39 0.5

40–49 0.5

50–59 0.69

60–69 0.65

70+ 0.88

Input Data

All the input data and the preparing processes of input data were explicitly described
in Section 2.2. Having performed the preprocessing of the input data and converted them
to ASCII format, they were imported into the Mesa framework [31,32]. Table 2 listed all the
model’s input data along with their sources.

Table 2. Summary of the input data.

Data Source

Spatial data
(Vector) Polygon

The boundary of Montreal city These data were obtained from this web page:
https://donnees.montreal.ca/ (accessed on 23 March 2022).Land use

Montreal city-dwelling counts
by dissemination area

Canadian Population & Dwelling Counts by Dissemination Area,
2016; the data were obtained from this web page:

https://resources-covid19canada.hub.arcgis.com/datasets/
esrica-tsg::canadian-population-dwelling-counts-by-
dissemination-area-2016 (accessed on 23 March 2022).

Demographic information of Montreal city

Statistics Canada, Census of Population 2016; the data were
obtained from this web page: https://www12.statcan.gc.ca/

census-recensement/2016/dp-pd/index-fra.cfm (accessed on 23
March 2022).

Human mobility reduction due to the COVID-19
The data were obtained from this web page:

https://www.google.com/covid19/mobility/ (accessed on 24
April 2022).

Weekly confirmed cases of COVID-19 in Montreal

The data were obtained from this web page:
https://santemontreal.qc.ca/en/public/coronavirus-covid-19
/situation-of-the-coronavirus-covid-19-in-montreal/#c46934

(accessed on 24 April 2022).

https://donnees.montreal.ca/
https://resources-covid19canada.hub.arcgis.com/datasets/esrica-tsg::canadian-population-dwelling-counts-by-dissemination-area-2016
https://resources-covid19canada.hub.arcgis.com/datasets/esrica-tsg::canadian-population-dwelling-counts-by-dissemination-area-2016
https://resources-covid19canada.hub.arcgis.com/datasets/esrica-tsg::canadian-population-dwelling-counts-by-dissemination-area-2016
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-fra.cfm
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-fra.cfm
https://www.google.com/covid19/mobility/
https://santemontreal.qc.ca/en/public/coronavirus-covid-19/situation-of-the-coronavirus-covid-19-in-montreal/#c46934
https://santemontreal.qc.ca/en/public/coronavirus-covid-19/situation-of-the-coronavirus-covid-19-in-montreal/#c46934
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Submodels

There are some detailed aspects of the proposed model that were explicitly explained
in the remainder of this section.

The Spatially Xplicit Environment

Concerning the uneven distribution of population and the unequal spread of COVID-
19 over a region, it is evident that geography and space have a significant impact on the
COVID-19 epidemic [7,23,41,42]. Furthermore, COVID-19 is a dynamic phenomenon that
is highly dependent on people’s interactions and mobility [43]. People’s interactions and
mobility are both geographically related and change from place to place [22]. Accordingly,
the environment of the model was designed with all the spatial data relevant to the COVID-
19 outbreak.

Agents

In this study, each human agent was considered as a representative of 100 people in
the real world. Each human agent was assigned to a specific household and the households
were formed according to the household’s size. Rather than being distributed individually,
human agents were distributed in the context of the household. The distribution of house-
holds was done regarding the population density map and the Roulette Wheel method.
Besides, human agents, in terms of occupation, were stratified into three main groups
including student, employed, and unemployed in response to Montreal labor statistics
(Table A3).

After that human agents were created and distributed in the environment, the move-
ment of human agents and their interactions with each other were implemented. The
locations of human agents were considered variant on an hourly basis. In this study, an
hourly activity was allocated to human agents such that they were intended to move
throughout the environment according to these hourly tasks (Figure 3). It is worth men-
tioning that the hourly activity of human agents was simulated in consideration of both,
the land use characteristic of the environment and the attributes of human agents (such as
age and occupation).
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Depending on where human agents were, their interactions fluctuated on two different
levels: (1) when they were at residential places; and (2) when they were at workplaces or
public places. Human agents have the highest level of interaction when they are at their
residential places so that based on their interaction level, the transmission of the disease
was considered variable.

The Epidemiological Submodel

Concerning people’s status progressing in COVID-19 disease, human agents at any
moment in the model were only in one of the statuses of susceptible, exposed, infectious,
recovered, hospitalized, or dead, and based on the events that were happening during the
simulation, their statuses continuously changed over time. The vaccinated status was not
considered for the human agents in the model because the vaccination procedure began in
Montreal on 1 March 2021. Figure 4 explicitly elucidated numerous human agent statuses,
the transition of human agents from one status to another, the period of transition (Txxx),
and the probability of being placed in a specific status based on their age (Φxxx(age)).

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 9 of 23 
 

 

The Epidemiological Submodel 

Concerning people’s status progressing in COVID-19 disease, human agents at any 

moment in the model were only in one of the statuses of susceptible, exposed, infectious, 

recovered, hospitalized, or dead, and based on the events that were happening during the 

simulation, their statuses continuously changed over time. The vaccinated status was not 

considered for the human agents in the model because the vaccination procedure began 

in Montreal on 1 March 2021. Figure 4 explicitly elucidated numerous human agent sta-

tuses, the transition of human agents from one status to another, the period of transition 

( 𝛵𝑥𝑥𝑥 ), and the probability of being placed in a specific status based on their age 

(Ф𝑥𝑥𝑥(𝑎𝑔𝑒)).  

 

Figure 4. The probability and time distribution of transitions, and the health status of human agents. 

The infection was assumed to transmit from those who were infectious (i.e., source) 

to ones who were susceptible to infection (i.e., recipient) in case of interaction with each 

other. The rate of infection transmission was considered dependent on three factors: (1) 

the recipient’s susceptibility depending on age; (2) the source’s infectiousness severity; 

and (3) the interaction level between source and recipient agents. 

To calculate the infection transmission probability (P), first, the hazard rate per inter-

action (𝜆) was calculated according to Equation (1). After calculating the hazard rate, the 

probability of infection transmission was calculated regarding Equation (2) [36]. 

𝜆(𝑡, 𝑣, 𝑎, 𝑛) =  
𝑅0𝑆𝑎𝑛𝐴𝑑

𝐼 ̅
∫ 𝑓Γ(𝑢; 𝜇𝑖 , 𝜎𝑖

2)𝑑𝑢
𝑣

𝑡

 (1) 

𝑃 = 1 − 𝑒−𝜆 (2) 

Here, t and v are the beginning and the current time of infection, respectively; a is the 

age of the recipient; n is the type of interaction; 𝑅0 is the mean number of people infected 

by each infectious person; 𝑆𝑎 is the relative susceptibility of the recipient; 𝐴𝑑 is the rela-

tive infectiousness of the source; I is the mean number of daily interactions; 𝑓Γ  is the 

Figure 4. The probability and time distribution of transitions, and the health status of human agents.

The infection was assumed to transmit from those who were infectious (i.e., source)
to ones who were susceptible to infection (i.e., recipient) in case of interaction with each
other. The rate of infection transmission was considered dependent on three factors: (1) the
recipient’s susceptibility depending on age; (2) the source’s infectiousness severity; and
(3) the interaction level between source and recipient agents.

To calculate the infection transmission probability (P), first, the hazard rate per inter-
action (λ) was calculated according to Equation (1). After calculating the hazard rate, the
probability of infection transmission was calculated regarding Equation (2) [36].

λ(t, v, a, n) =
R0SanAd

I

∫ v

t
fΓ

(
u; µi, σ2

i

)
du (1)
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P = 1 − e−λ (2)

Here, t and v are the beginning and the current time of infection, respectively; a is the
age of the recipient; n is the type of interaction; R0 is the mean number of people infected
by each infectious person; Sa is the relative susceptibility of the recipient; Ad is the relative
infectiousness of the source; I is the mean number of daily interactions; fΓ is the probability
density function of a gamma distribution; and finally, µi and σi, respectively, are the mean
and standard deviation of the infectiousness curve. The parameters along with their values
were summarized in Table A4.

Due to the closeness of interactions in the household compared to the other two types,
the parameter n was given the value of two for those occurring within the household,
while its value for the other two types was given the value of one [36]. Owing to the
strong age structure of the COVID-19 progression, the susceptibility of the recipient was
considered dependent on age. Besides, the infectiousness of infected individuals with no
symptoms and mild symptoms was 0.33 and 0.72 times that of those with severe symptoms,
respectively [36]. Additionally, following Mossong et al., 2008 [44], the value for the number
of daily interactions was derived using a normal distribution and assigned to human agents
with regard to their age (Table A5).

Control Interventions

Given that the closure of educational centers intervention had been employed in Mon-
treal as of the COVID-19 outbreak, this intervention was assumed in our model at the outset.
Besides, two other crucial yet underappreciated control interventions were considered, and
their efficacy was investigated. The functionality of the control interventions was explicitly
described in this section.

Reduction in human movements: the outbreak of COVID-19 desists in the unmitigated
absence of people’s movements; so, one of the factors playing a significant role in the
COVID-19 outbreak is people mobility. To consider this intervention in the model, the
fraction of human agents’ movement to the specific places was reduced regarding the land
use of the places as well as the occupation of the human agents.

Self-isolation upon symptoms: self-isolation refers to the separation of infectious
people from the rest of the people to protect non-infected people (i.e., the infectious people
get quarantined). Following this intervention, infectious people stop moving as well as
interacting with others; accordingly, this intervention might end up greatly reducing the
number of infected people. To apply the self-isolation intervention in the model, the
movements and interactions of infectious human agents were completely restricted in the
model.

2.3.4. Verification Process

The first step prior to interpreting the results of the model is making sure of its
consistency with its design concepts (i.e., verification process) [45]. To do so, two arbitrary
scenarios were designed, and the verification of the model was evaluated in each scenario
by maintaining all parameters constant and changing only one parameter. The number of
infectious human agents at the beginning of the simulation and the reduction in human
agents’ movement to the public places were altered in the first and second scenarios,
respectively, while the other parameters were left unchanged.

2.3.5. Calibration and Validation

Calibration and validation are ongoing challenges in the ABM approach. Calibration
entails running the model with various parameters and comparing the output to empirical
data to find parameter settings that minimize the model’s error. There are two main
quantitative calibration approaches for ABMs: (1) point estimation; and (2) categorical
or distributional estimation [46]. While the point estimation approach seeks out a single
parameter combination that provides the best fit to data, the categorical estimation approach
assigns a probability to numerous parameter possibilities across a range of reasonable
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values [47]. Besides, the categorical calibration approach has the benefit of providing
supplementary information on parameter uncertainty as well as the uncertainty of the
model’s results. Amongst various categorical calibration methods, we used the history
matching (HM) method to calibrate our model due to its ability in considering uncertainties
of the model and observations [48]. The methodology of the HM method was presented in
Figure 5.
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The unknown parameters in our model were: the number of exposed and infectious
cases at the beginning of the simulation (i.e., the date 5 January 2021, was considered
as the beginning of the simulation) as well as the unknown percentage of people who
isolated themselves (i.e., get quarantined) upon transition to infectious status. The number
of newly infected human agents on a weekly basis was considered as the output of the
model. Since the model’s unknown parameters were either percentages or positive integers,
the potential ranges for each parameter (i.e., the parameter space) were determined to
be between 0 and 1 for percentages and larger than zero for the remaining parameters.
Since the unknown parameters’ spaces were large and continuous, the Latin-Hypercube
Sampling (LHS) method was used to pick samples to run the HM method on the parameter
space [48].

The uncertainties in our model were estimated by exploring the parameter space of a
model by picking a subset of the samples from different clusters. Having run the model
once for each sample, the variance of the errors across samples was determined according
to Equation (3). Besides, the observations’ uncertainty was set to zero since there were no
direct means to measure them several times and calculate the variance.

Vr
m =

1
N − 1

N

∑
n=1

(d(zr, f r(xn))− Er(x))2 (3)

Here, N is the total number of samples used, d is the error between the rth expected
output (zr) and rth model output f r (xn) for the parameters xn, and Er (x) is the average
model error for each parameter set in x.

To determine the ensemble variance (i.e., the uncertainty in models due to the stochas-
tic processes), the model was run K times on a subset of N samples, and the variance was
estimated between the K runs, as well as the average variance over the N samples, using
Equation (4) and auxiliary Equation (5).

Vr
s =

1
N

N

∑
n=1

[
1

K − 1

K

∑
k=1

(d(zr, f r(xn))− Er
K(xn))

2

]
(4)

Er
K(xn) =

1
K

K

∑
k=1

d(zr, f r(xn)) (5)
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Here, Vr
s is the ensemble variance, K is the total number of runs in an ensemble, f r (xn)

is the rth output from the kth run of the model with parameters xn, and Er (xn) is the
average model error across the ensembles.

To calculate the implausibility of a set of inputs and investigate their eligibility, the
model output was compared to the expected output assuming observations’ uncertainty
equals zero Equation (6).

Ir(x) =
(zr − f r(xn))

2

Vr
s + Vr

m
(6)

Regarding the implausibility value (i.e., Ir(x)), we considered a constant threshold,
indicated c, to assess whether x is implausible. If Ir(x) ≥ c, the difference between
predicted and expected output was regarded as too large. Otherwise, x was included in
the non-implausible space. Pukelsheim’s 3σ rule was used to determine the threshold of
c [49]. This means that with a chance of at least 0.95, the proper selection of parameters
x will result in Ir(x) < 3. The HM procedure was kept carrying out until the stopping
conditions were reached. In our situation, the stopping criteria were fulfilled when either
all the parameters were found to be non-implausible, or the non-implausible space did not
diminish.

To evaluate the closeness of two sets of predicted and actual observed values (i.e.,
validation process), the Chi-square test was utilized. Deciding to either reject or accept the
null hypothesis (i.e., the predicted values are close enough to the actual observed values) is
performed regarding the Chi-square statistic (Equation (7)).

χ2 =
m

∑
q=1

(Pk − Ok)
2

Ok
(7)

Here, Pk and Ok are the averages of newly infected human agents on a weekly basis
in 30 runs and associated weekly confirmed cases, respectively; the suffix q runs over
weeks, and m is the number of weeks (i.e., m = 5). To determine statistical significance, we
compared the values at the 5% significance level.

3. Results
3.1. Model Verification

In the first scenario, we evaluated 10, 20, and 40 infectious human agents and compared
the average number of newly infected human agents derived after 30 runs. After 30 runs,
the average number of newly infected human agents rose as expected by increasing the
number of infectious human agents at the beginning of the simulation while maintaining
the remaining parameters constant, as follows: 126.63, 181.47, and 344.13 for 10, 20, and 40
infectious human agents, respectively. It is worth mentioning that the number of exposed
human agents, the value of the self-isolation parameter, and the percentage of reduction
in humans’ movement to public places and workplaces were 10, 10%, 33%, and 18%,
respectively.

In the second scenario, we considered three different reductions in human mobility
to public places: 10%, 30%, and 50%. For each of these three settings, the model was
run 30 times, and the average numbers of newly infected human agents were compared.
Reducing humans’ movement, as expected, would result in a reduction in the number of
infected human agents in the model. The average number of newly infected human agents
was 180.73, 106.27, and 76.83 for 10%, 30%, and 50%, respectively. It is worth noting that
the number of exposed human agents, the number of infectious human agents, the value
of the self-isolation parameter, and the percentage of reduction in humans’ movement
to workplaces were 10, 10, 10%, and 18%, respectively. Regarding two scenarios, it was
confirmed that the proposed agent-based model accurately represented the conceptual
description and specifications.
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3.2. Model Calibration and Validation

Adjusting values for unknown parameters at the initial condition of the model was
performed using the HM method. The proposed model was calibrated when the value
of 1, 3, and 42% were assigned to the number of exposed human agents, the number of
infectious human agents, and the percentage of people isolating themselves upon transition
to infectious status, respectively.

Irrespective of assuming the observations’ uncertainty equals zero due to the lack of
direct means to measure them several times, disease statistics contain various sources of
error [50]. Accordingly, to reduce the impact of observations’ uncertainty on the model, the
model’s outputs were evaluated based on the weekly cases.

Having adjusted the values found for the unknown parameters in the calibration
procedure, the proposed model was validated using the Chi-square test. χ2 yielded the
value of 9.2879, which in comparison to the critical value (i.e., X2

0.05(4) = 9.488) was lower
and demonstrated the acceptance of the null hypothesis. In other words, the Chi-square
test indicated that the results of our model were close enough to actual observed values.

3.3. Model Outputs

In addition to tracking the weekly averages of newly infected human agents, to
trace the disease outbreak over time as well as achieve additional information on disease
outbreak, the momentum number of human agents in each status over the simulation
was depicted in Figure 6. Besides, infected human agents were tracked regarding their
age (Figure 7); and finally, the places in which the COVID-19 transmission occurred were
ascertained and elucidated in Figure 8. It is worth mentioning that having obtained the
outputs of the agent-based model (i.e., the frequency and locations of weekly infection
transmission) in thirty runs, they were imported into the ArcGIS software and the Raster
Calculator tool was used to calculate the average of thirty outputs of the agent-based model
(i.e., the average frequency of weekly infection transmission). Following these outputs, the
spatial and temporal patterns of the COVID-19 outbreak can be traced.

Concerning Figure 7, the majority of infected human agents were beyond the age of 20.
Furthermore, given the comparison of the model’s results (Figure 8) and the land use map
(Figure 1A), it was inferred that the majority of COVID-19 transmission (i.e., approximately
90.34%) occurred in public places. Besides, about 6.76% and 2.9% of COVID-19 transmission
took place in residential places and workplaces, respectively.
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3.4. Investigating the Number of Infected Human Agents in Case of Employing COVID-19 Control
Interventions

In this study, the efficacy of two control interventions of reduction in human mobility
and self-isolation was evaluated. To do so, the control intervention parameters were made
configurable in the models so that users could change them dynamically in the simulation.
Dynamically defining parameters enabled us to change the configuration and evaluate the
efficacy of interventions. In the remainder of this section, the efficacy of two interventions
was evaluated.
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3.4.1. Reduction in Human-Mobility

To evaluate the impacts of reduction in human mobility on the COVID-19 outbreak,
the disease outbreak was assumed in two ways: as it was before the outbreak (i.e., people’s
ordinary movement) and as it was during the COVID-19 outbreak (i.e., reduction in people’s
movement). Following the COVID-19 community mobility reports (https://www.google.
com/covid19/mobility/ (accessed on 24 April 2022), the movement of people in the study
area to public places and workplaces, respectively, decreased by 33% and 18%, on average,
from January to February 2021. The number of newly infected human agents was depicted
in Figure 9 in both modes of considering ordinary movement and movement reduction.
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Figure 9. The number of newly infected human agents in two modes of considering people’s ordinary
movement as well as a reduction in people’s movement; each agent is a representative of 100 people.

Concerning Figure 9, when individuals follow the rule of reducing people’s mobility,
the number of infected people decreases by about 63 a week, on average. In other words, if
people had kept following their normal ordinary movement from 5 January to 9 February,
the number of infected cases would have risen by around 63 a week, on average.

3.4.2. Self-Isolation Intervention

To assess the self-isolation intervention impact, three distinct values of 10%, 20%, and
30% in addition to the adjusted value (i.e., 42%) were considered as the percentage of
infectious people who follow the self-isolation intervention. It is important to mention that
these values were defined subjectively and without any specific literature to support it. In
Figure 10, the number of newly infected human agents obtained from the model for three
values were compared to the results obtained regarding the adjusted value (i.e., 42%) for
the self-isolation parameter after the calibration.
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Figure 10. The number of newly infected human agents regarding four distinct values for the
percentage of infectious people observing the self-isolation intervention; each agent is a representative
of 100 people.

As shown in Figure 10, if instead of 42%, 10%, 20%, and 30% of infectious people had
isolated themselves from 5 January to 9 February, the number of infected people would
have increased by about 259, 207, and 83 more a week, on average, respectively.
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4. Discussion

Disasters like the COVID-19 epidemic might have less ramifications in case of grasping
appropriate understandings of issues such as how humans and social systems operate
under diverse situations, how individuals and societies adapt to disrupted complex social
systems, and what feasible procedures can be performed [51]. Modeling the dynamic out-
break of COVID-19 allow researchers and decision makers to understand these processes.
A variety of spatial epidemiological modeling approaches have been developed during the
last several decades [52]. The mathematical modeling approach, as one of the epidemiolog-
ical modeling approaches, has been used in many earlier studies to explain and anticipate
epidemics, as well as predict the consequences of public health measures [11,53–57]. When
comparing two epidemiological modeling approaches of mathematical and ABM, math-
ematical models are essentially aggregate-based since they represent overall transition
rates in a population among disease states. In addition to homogenous consideration of
population in mathematical models, fundamental spatial dynamics such as population
mobility and interactions which are crucial for the spread of any infectious disease, par-
ticularly COVID-19, have been also largely ignored. In contrast, the ABM approach is
individual-based and considers the heterogeneity in modeling. Furthermore, the ABM
approach simulates epidemics by considering individuals’ movements and interactions
given the space. The capabilities of the ABM approach were the driving force behind our
decision to apply it in the COVID-19 pandemic simulation.

To curb the COVID-19 outbreak, stringent control measures have been implemented
around the world [58]. One of these measures is restrictions on people’s mobility and
travel [7,22,59]. Even though any movement has the potential to spread disease, internal
mobility appears to be more essential than cross-provincial mobility [60]. To assess the
efficacy of people’s mobility inside of Montreal city, we used spatial data and simulated
the movements of people in accordance with the spatial data as well as some attributes
of human agents such as age and occupation. Following the reduction in the number
of infected people concerning the reduction in humans’ mobility, it was concluded that
people’s movement was a crucial role in the COVID-19 outbreak. Our findings were
consistent with the results of several earlier research [22,59–61].

Even though people’s willingness to self-isolate is influenced by their socioeconomic
status [62], self-isolation could be another important intervention against contagious dis-
eases, particularly COVID-19 [63]. Accordingly, the impact of the self-isolation intervention
was explored in addition to the effectiveness of reducing human mobility in this study.
Regarding the results of our model, the self-isolation of the infectious population leads to a
remarkable drop in the number of infected people. Following our findings and those of
other studies [12,64,65], self-isolation of infectious people could lead to drastically reducing
the COVID-19 outbreak.

Strengths and limitations
The strengths of our ABM included: (i) providing a comprehensive description of the

COVID-19 transmission cycle among a population; (ii) integrating the ABM approach with
GIS and using spatial data to model movements and interactions of human agents and con-
struct a spatial epidemic model; (iii) considering multiple places for human agents to move
during the day to create a more dynamic model; (iv) defining a various interaction levels
approach and exerting it in the computation of COVID19-transmission probability instead
of identical considering of human agents’ interactions with one another; (v) taking into
account various number of daily interactions and employing it in calculating the probability
of COVID-19 transmission; (vi) doing model calibration process using the HM method;
(vii) validating the model using the Chi-square test; (viii) providing a map depicting the
hotspots of COVID-19 as the only spatial data on COVID-19 occurrences available in the
study area; and (ix) investigating the efficacy of two hitherto underappreciated control
interventions.

Notwithstanding these strengths, this study had certain limitations in terms of model
validation. The model was validated regarding the temporal pattern of COVID-19 and
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the validation of the model from a spatial perspective was not feasible due to the lack of
spatial COVID-19 occurrences data at the city scale. Besides, owing to the computationally
intensive nature of agent-based models and the limited memory capacity of computers,
not all the population and activities could be considered. Accordingly, each agent was
considered as the representative of 100 individuals in the real world. As a result, this
widened the gap between the results of the model and reality and consequently affects the
validation of the model. This is also another limitation in the validation of agent-based
models.

5. Conclusions

COVID-19 has caused high mortality and unprecedented restrictions on social and
economic activities throughout the world. This study concentrated on the development of
a GIS-based ABM in which the COVID-19 outbreak was assumed among heterogeneous
populations so that their exclusive interactions and movements were considered in a
spatial-based environment. The principal focus of this research was to: (1) simulate the
COVID-19 outbreak progression in the city of Montreal, QC, Canada, by considering the
geospatial context of the outbreak; (2) assess the effectiveness of two control interventions
on containing the COVID-19 outbreak; (3) provide a map illustrating the spreading hotspots
of the COVID-19 in the study area; (4) provide a flexible decision-making platform by
designing various user-defined parameters; and (5) track the number of people in various
health statuses over time. The ODD protocol was used to explain the model. The calibration
of the model was performed using the HM method. In addition, the proposed model was
validated regarding the temporal pattern of the COVID-19 outbreak using the Chi-square
test. Two crucial control interventions of reduction in human mobility and self-isolation
were implemented in the model to provide information about their efficacy in curbing
the COVID-19 outbreak in the study area. Our simulation experiments indicated that the
mainstream of COVID-19 transmissions (i.e., approximately 90.34%) occurred in public
places. Besides, following the derived number of newly infected cases from 5 January to
9 February 2021, it can be inferred that the rules aiming to reduce population mobility,
led to a reduction of about 63 infected people each week, on average. Furthermore, our
scenarios revealed that if instead of 42% (i.e., the adjusted value in the calibration), 10%,
20%, and 30% of infectious people had followed the self-isolation measure, the number
of infected people would have risen by approximately 259, 207, and 83 more each week,
on average, respectively. Regarding the findings of this research, it was inferred that both
control interventions could remarkably contain the COVID-19 outbreak. In conclusion,
the specifics and findings of our GIS-based ABM could pave the way for the government
in advising on pandemic decision-making. This research can be the basis for deploying
forward-looking controlling interventions in the study area.
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Appendix A

Demographic information of Montreal city as well as its labor statistics.

Table A1. The population of Montreal city based on age (the year 2016).

Age Range Agent Number (Each Agent Represents
10 People in the Real World) Population (in 2016) Percentage (%)

0 to 4 Years 10,991 109,910 5.8%

5 to 9 Years 10,044 100,435 5.3%

10 to 14 Years 8528 85,275 4.5%

15 to 19 Years 9096 90,960 4.8%

20 to 29 Years 29,751 297,515 15.7%

30 to 39 Years 30,699 306,990 16.2%

40 to 49 Years 24,824 248,245 13.1%

50 to 59 Years 24,824 248,245 13.1%

60 to 69 Years 19,329 193,290 10.2%

70 Years and over 21,414 214,135 11.3%

Total 189,500 1,895,000 100%

Table A2. The number of households based on household size (the year 2016).

Household’s Size Number of
Households Population Population (Based

on Agents)
Number of Households

(Based on Agent)

1 person 342,510 (39.12%) 342,510 34,251 34,251

2 persons 259,295 (29.62%) 518,590 51,860 25,930

3 persons 118,645 (13.55%) 355,935 35,592 11,864

4 persons 97,490 (11.13%) 389,960 38,996 9749

5 persons and more 57,601(6.58%) 288,005 28,800 5760

Total 875,541 1,895,000 189,499 87,554

Table A3. Labor statistics of people 15 years of age and over in the year 2016 [66].

People Number (Real World) Agent Number Percentage

Employed
Employee 810,955 81,096 50.71%

Self-employed 231,580 23,158 14.48%

Unemployed 91,645 9164 5.73%

Students (70% of people with 15–29 years of age) 271,932 27,193 17%

Not determined 193,268 19,327 12.08%

Total population of 15 years and over 1,599,380 159,938 100%

Appendix B

The implementation flowchart of the proposed agent-based model on the Mesa frame-
work.
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Appendix C

All parameters used in calculation of infection-transmission probability.

Table A4. The values of parameters considered in the calculation of the infection-transmission
probability.

Parameters Symbol Value Resources

Mean of the infectious period µ 5.5 days Ferretti et al., 2020 [67]; Hinch
et al., 2021 [36]The standard deviation of the infectious period σ 2.14 days

Mean number of people infected by each infected person R0 4.5 Ke et al., 2021 [38]

Infectious rate of asymptomatic individuals relative to
severely symptomatic individuals Aasym 0.33 Hinch et al., 2021 [36]

Infectious rate of mildly symptomatic individuals relative to
severely symptomatic individuals Amild 0.72 Hinch et al., 2021 [36]

Relative susceptibility of recipient to infection based on age

S0–9 0.35

Zhang et al., 2020 [68]

S10–19 0.69

S20–29 1.03

S30–39 1.03

S40–49 1.03

S50–59 1.03

S60–69 1.27

S70 and 70+ 1.52

Appendix D

Daily number of people’s interactions.

Table A5. The daily number of interactions of people based on age [44].

Age Range Daily Number of Interactions, Normal Distribution
with Mean (Standard Deviation)

0–4 10.21 (7.65)

5–9 14.81 (10.09)

10–14 18.22 (12.27)

15–19 17.58 (12.03)

20–29 13.57 (10.6)

30–39 14.14 (10.15)

40–49 13.83 (10.86)

50–59 12.30 (10.23)

60–69 9.21 (7.96)

70+ 6.89 (5.83)
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