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Abstract: In order to perform topological queries on geographic data, it is necessary to first develop
a topological access method (TOAM). Using the fact that any (incidence or other binary) relation
produces a topology which includes the common usage of topology for spatial or spatiotemporal
data, here, such a TOAM is developed on the basis of the previously applied concept of Property
Graph used in order to manage topological information in data of any dimension, whether time
dependent or not. As a matter of fact, it is necessary to have a TOAM in order to query such a graph,
and also to have data which are topologically consistent in a certain sense. While the rendering of
topological consistency was the concern of previous work, here, the aim is to develop a methodology
which builds on this concept. In the end, an experimental test of this approach on a small city model
is performed. It turned out that the Euler characteristic, a well-known topological invariant, can be
helpful for the initial data validation. Practically, this present theoretical work is seen to be necessary
in view of future innovative applications, e.g., in the context of city model simulations, including
distributed geo-processing.

Keywords: geometrically induced topology; simplicial complexes; topological algorithms; watertight
volumetric model; topological access method

1. Introduction

In [1], the desire for a topological access method was expressed in the context of
CityGML data. If the topology and the geometry of a spatial or spatiotemporal data
model are treated separately, then one can rely on topological queries for the underlying
topological model only. The existence of a special access method that can be used to perform
the search within the topological model would facilitate this task. However, the access
methods available so far, such as Octree or R-tree, are geometry related and necessitate the
embedding of the model in Euclidean space. The desired access method would solely use
the topological boundary structure of the model in order to find objects which are nearby
in the sense of this incidence relation. Other objects, even if geometrically nearby, could be
ignored without any harm. This approach exploits the assumption that the topological and
geometric model are topologically consistent, i.e., no two atomic objects overlap.

This idea is reflected in our previous definition of topological consistency, reviewed
below. In order to understand the importance of our notion of topological consistency, we
now first illustrate its definition, as well as how it is related to the notion of topology of
geographic data, and in general. A situation such as the one in Figure 1 (left) is topologically
inconsistent (in our sense), because the topological model sees only two disjointed segments
x ← `1 → y and a ← `2 → b, whereas the geometrical model also sees the intersection
of the vertical line `1 and the horizontal line `2. The overlay space in Figure 1 (right) is
topologically consistent through the introduction of the extra object ◦ in the boundary of `1
and `2. The incidence graph of the overlay space is shown in Figure 2.
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Figure 1. Topologically inconsistent situation (left) and overlay space (right).
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Figure 2. The incidence graph of the overlay space of Figure 1.

This space is topologically connected, and we can see e.g., that the lines `1 and `2 are
nearby with respect to the incidence relation, whereas in the original topological model,
they are not. Observe that in this example, the overlay space is a hyper-graph whose
hyper-edges `1 and `2 have boundary vertices x, y, ◦ and a, b, ◦, respectively.

The most general form of a finite topological model is a finite topological space X. The
topology of these spaces is generated by the reflexive and transitive closure of a binary
relation [2]. An important special case is given when the relation is antisymmetric. In that
case, the finite topological space is called a T0-space, and the topology is generated by a
partial order ≤. A convenient interpretation of ≤ is that of an incidence relation. But other
interpretations are also used. In any case, a ≤ b means that a is in the closure of b [2].

For example, in Figure 3, the boundary of A consists of the outer rectangle, the inner
triangle and the puncture P. This could be e.g., a cartographic situation in which a region
consists of a large metropolitan area (the triangle), a smaller centre (P) and the remainder
(A).

• •
A •

•P

• •
• •

Figure 3. A rectangle with a triangular hole and a puncture.

Assume that some spatio-temporal data are modelled as a finite T0-space X using an
incidence relation ≤. The Hasse-diagram H(X) is nothing but the incidence graph: Its vertex
set is X, and an edge (x, y) is given precisely when x < y, and furthermore x < z ≤ y
implies z = y. The purpose of the Hasse diagram is to have a minimal model for the
topology, as an edge indicates a direct relationship. Alexandrov’s result [2] states that
any partial ordering comes from a topology, even if it is not always intuitively visible at
a first glance. Since the relationships used in this article are directed and acyclic, they
can often be interpreted as bordered-by, i.e., having a semantic indicating an underlying
topology from the user’s viewpoint. Later, we will apply Alexandrov’s observation also to
relationships not usually deemed topological by users in order to have their convenient
encoding in Hasse diagrams. Notice that any acyclic directed graph can be extended to
a partial ordering inducing the same T0-topology, and the Hasse diagram is the unique
minimal representation of this topology, cf. [3]. And in the case of this article, the topology
(or, in other words, the Hasse diagram) in turn represents certain relationships between
geo-objects of any dimension.

Figure 1. Topologically inconsistent situation (left) and overlay space (right).
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This space is topologically connected, and we can see, e.g., that the lines `1 and `2 are
nearby with respect to the incidence relation, whereas in the original topological model,
they are not. Observe that in this example, the overlay space is a hyper-graph whose
hyper-edges `1 and `2 have boundary vertices x, y, ◦ and a, b, ◦, respectively.

The most general form of a finite topological model is a finite topological space X. The
topology of these spaces is generated by the reflexive and transitive closure of a binary
relation [2]. An important special case is given when the relation is antisymmetric. In that
case, the finite topological space is called a T0-space, and the topology is generated by a
partial order ≤. A convenient interpretation of ≤ is that of an incidence relation. However,
other interpretations are also used. In any case, a ≤ b means that a is in the closure of b [2].

For example, in Figure 3, the boundary of A consists of the outer rectangle, the inner
triangle and the puncture P. This could be, e.g., a cartographic situation in which a
region consists of a large metropolitan area (the triangle), a smaller centre (P) and the
remainder (A).
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Assume that some spatio-temporal data are modelled as a finite T0-space X using an
incidence relation ≤. The Hasse-diagram H(X) is nothing but the incidence graph: Its vertex
set is X, and an edge (x, y) is given precisely when x < y, and furthermore x < z ≤ y
implies z = y. The purpose of the Hasse diagram is to have a minimal model for the
topology, as an edge indicates a direct relationship. Alexandrov’s result [2] states that
any partial ordering comes from a topology, even if it is not always intuitively visible at
a first glance. Since the relationships used in this article are directed and acyclic, they
can often be interpreted as bordered-by, i.e., having a semantic indicating an underlying
topology from the user’s viewpoint. Later, we will apply Alexandrov’s observation also to
relationships not usually deemed topological by users in order to have their convenient
encoding in Hasse diagrams. Notice that any acyclic directed graph can be extended to
a partial ordering inducing the same T0-topology, and the Hasse diagram is the unique
minimal representation of this topology, cf. [3]. And in the case of this article, the topology
(or, in other words, the Hasse diagram) in turn represents certain relationships between
geo-objects of any dimension.
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Assume that some spatiotemporal data are modeled as a finite T0-space X using an
incidence relation ≤. The Hasse diagram H(X) is nothing but the incidence graph: its vertex
set is X, and an edge (x, y) is given precisely when x < y. Furthermore, x < z ≤ y implies
z = y. The purpose of the Hasse diagram is to have a minimal model for the topology, as an
edge indicates a direct relationship. Alexandrov’s result [2] states that any partial ordering
comes from a topology, even if it is not always intuitively visible at first glance. Since the
relationships used in this article are directed and acyclic, they can often be interpreted as
bordered by, i.e., they have a semantic indicating an underlying topology from the user’s
viewpoint. Later, we will apply Alexandrov’s observation to relationships not usually
deemed topological by users in order to have their convenient encoding in Hasse diagrams.
Notice that any acyclic-directed graph can be extended to a partial ordering inducing the
same T0 topology, and the Hasse diagram is the unique minimal representation of this
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topology, cf. [3]. In the case of this article, the topology (or, in other words, the Hasse
diagram) in turn represents certain relationships between geo-objects of any dimension.

If a data model explicitly models the underlying topology, then care has to be taken
that there is no contradiction with the underlying geometry. This means that there are in
fact two models: the abstract topological model X with partial order ≤, and the geometric
model. Now, the geometric model has a derived topological model, and topological
consistency is given if and only if those two topological models coincide. Otherwise, there
will be a topological inconsistency, such as that in the situation of Figure 1 discussed above.

In order to obtain topological consistency, an overlay can be derived by calculating all
intersections of atomic objects, as in [4].

It is clear that if a search is to be performed on a topological model, then the correctness
of the result is guaranteed if and only if the model is topologically consistent (provided the
geometry is correct). Hence, the topological access method (TOAM) assumes the topological
consistency of a data model. In reality, the issues of computational geometry pose limits
on the possibility of finding and correctly repairing all topological inconsistencies before
invoking the TOAM.

Assume two not necessarily convex solids, modeled as polyhedra in 3D with many
boundary triangles as spatial boundary representations (BREP) of the solids, touching each
other in a few points. The topological query is to find these points. Any spatial access
method (SAM) such as the Octree [5], the R-tree [6] or the R*-tree [7] can be used to solve
this query.

The SAM method would go through the following steps:

1. Create a SAM for each BREP point of solid A.
2. For each boundary triangle b of solid B, use the SAM to retrieve all BREP points C of

A which intersect the bounding box of b.
3. For each BREP point c of C, check if b contains c (true: add to the result set).
4. Repeat the last steps to find all BREP points of solid B, respectively.

To calculate the complexity of this method, we assume that the first step is a pre-
processing step and does not count towards the complexity. As an example, the search
efficiency of the R-tree method depends on the segmentation of the R tree, which lies on
average at O(logM na), where M denotes the maximal number of entries per R tree node
and na denotes the number of BREP points of solid A. The worst case reaches to O(na) for
one search. Since every boundary triangle of the solid B has to be checked, the complexity
extends to O(nb logM na), where nb denotes the number of boundary triangles.

Now, assume two not necessarily convex moving and morphing solids, modeled as
polyhedra by a snapshot model for some time steps in spatiotemporal space with many
triangles as spatial boundary representations of the solids at each time step, touching each
other in a few BREP points at certain unknown time steps. The topological query is to find
these BREP points.

Theoretically, the last pseudo algorithm needs to run for each time step of the temporal
overlapping interval of both moving and morphing solids to find every touching point.
Therefore, this method adds a factor nc to the complexity (when using the R-tree) as
O(ncnb logM na) for the number of time steps which have to be checked. It is obvious that
the precision of the data type used for the temporal coordinate has a significant impact
on the complexity. On the other hand, if the spatial change is small enough, the spatial
situation might be equal for some time steps. Further research needs to be applied to deal
more efficiently with this situation than can be achieved by iterating over each possible time.

Another method includes the tetrahedralizations of the moving and morphing bound-
ary faces of both solids. The tetrahedralizations are the spatiotemporal boundary repre-
sentations of the solids in spatiotemporal space. The previously described steps can be
applied by checking the intersections for each boundary tetrahedron of one solid with the
moving points of the other boundary representation. This method has the same complexity
as the SAM method with O(nb logM na), where na denotes the number of moving BREP
points of solid A which are spatiotemporal curves, and nb denotes the number of boundary
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tetrahedra of solid B. However, the SAM turns to a spatiotemporal access method STAM
and the complexity of calculating the intersections of spatiotemporal curves and tetrahedra
differs from the complexity of calculating the intersections of spatial points and triangles.
However, the example yields only two intersection types, since the two solids only touch
each other sometimes. If the intersection is a point, then the solids touch each other at
one point at one time step. If the intersection is a curve, then the touching point moves
through time and maybe through space too. However, all possible intersections of both
spatiotemporal boundary representations do not need to be calculated in this example.

The last two examples illustrate how geometrically induced topology is queried. Using
spatial access methods (SAM) or spatiotemporal access methods (STAM) only implies an
implicit topology model. The downside of an implicit topological model is recalculation
of intersections, etc., which may also lead to different results if the used geometries are
transformed in some ways due to the problems of computational geometry, data precision
and arithmetic (floating point or integer).

Another way is to define an explicit topological model for any geometry type used
in geographic sciences. Geometrically induced topology is only a small part of topology,
since any relation between some entities already defines a topology [2]. Therefore, it is
necessary to ask how a general topology model for geo-objects may be designed and how
topological access methods can be modeled in order to access the general topological model
for geo-objects and to answer topological queries efficiently. The first question has been
addressed in [4,8] with a suitable application of Property Graphs, whereas the second
question is dealt with in this article.

The main contribution of this article builds on the Property Graphs which manage the
possible topologies on geo-objects. These graphs are obtained with the methods of [4,8].
The contribution can be summarized as follows:

• The use of topological invariants (here: Euler characteristic) in the initial data valida-
tion (pre)process.

• The development of a topological access method (TOAM) for more efficiently querying
nodes with topological properties.

• An experimental test of this approach on a small city model.

2. Related Work

Topology now has a long history in geographic and building information. After
reviewing some important contributions to the issue of obtaining topological information
from data models in general, we will explain in more detail the aspects of topology most
relevant to our previous and present work.

Since [9], the topology of city models can be captured in an xml-type data structure
named CityGML. It is now a de facto standard in the administration of municipal databases
worldwide, and the object of attention of much research. A known issue with CityGML
is its topological and also geometric validation, most importantly since the actual models
are often rendered from point clouds. The authors of [10] proposed a two-level topological
model for 3D features in CityGML, which captures semantics and geometry with extended
topological consistency rules to guarantee the validation of CityGML primitives. A quite
limited usability of the existing topology mechanism of CityGML in order to extract
topological information was found in [11].

The models developed in [12,13] provide geometric information based on CityGML,
and the topological relationships of indoor-adjacent spaces in this model are represented
by CityGML XLinks. These XLinks form an explicit way of modeling connectivities which
can conflict with possible underlying connectivities between polygons in the model. The
latter connectivities are revealed through computational geometry calculations.

In the BIM world, there is recent research on information retrieval in the context of
smart cities, as well as that which focuses on enabling simulation models. All of this
exploits the underlying topology, cf., e.g., [14–17] in order to name a few articles in this
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domain. As the two worlds of BIM and GIS have already begun to interact, the issue of
topological consistency becomes more and more relevant in both domains.

According to our observation, the potential of the mathematical discipline of topology
for an efficient information retrieval using existing topological data structures has not been
sufficiently exploited yet, and the existing data structures do not facilitate this task, either.
For this reason, the research of our group has concentrated on finding refined methods
which enable (mathematical) topology to serve the geographic community in the task of
topological information management and retrieval. The following paragraphs review the
different concepts related to this work.

Searching through spatial or spatiotemporal data can be carried out efficiently by using
a suitable access method. For Euclidean n-space, this is e.g., the Octree [5], the R-tree [6],
or the R*-tree [7]. The reason for mentioning these is that certain existing geometrical
access methods are also used in this article. The remainder of this section deals with
topological methods.

Topology is a mathematical discipline which formalizes the concept of nearness. It
is natural to consider topological models for spatial and spatiotemporal data. An early
example of a data structure for such models is given by G-maps [18]. These are used, e.g.,
in DB4GeO [19]. However, G-maps are verbose and have exponential storage complexity
with increasing dimension [20]. Considering 3D plus time leads to a 4D model [21]. The 3D
plus scale leads to another kind of higher-dimensional model [22]. Of course, space, time,
version and scale can be combined to a unifying nD model [23]. Simplicial and polytope
complexes were suggested for 3D and 4D [19].

In [3], it was shown that finite topological spaces—which were first studied by Alexan-
drov [2]—allow the efficient modeling of any topological situation which can be stored on
a computer. Special cases are T0 spaces (also known as posets) which should be sufficiently
general models for spatiotemporal data. The topology of posets is given by the reflexive
and transitive closure of a binary relation which is acyclic, i.e., it has no directed cycles.

On the one hand, the separation of geometry and topology leads to efficient topological
queries, cf., e.g., [24], where a tree structure is used to navigate through the rooms of a
building. Additionally, in [25], efficient spatial and topological queries on large tetrahedral
meshes with arbitrary topology and complex boundaries are performed.

On the other hand, this separation also leads to a consistency issue [26]. Namely, one
has two models: an abstract topological model and a geometric model, which are obtained
by assigning coordinates to objects of the abstract topological model. The underlying
topology of the geometric model in general differs from that of the abstract topological
model. If they do not, then one can call the models topologically consistent. Observe that
the literature contains various differing notions of topological consistency [27–30]. The
present notion of topological consistency is based on the idea in [31] which is the first to
relate the geometry and the incidence graph of a topological model, at least as far as the
authors are aware.

In order to develop efficient topological access methods, which lead to efficient topolog-
ical query processing, we assume in the following that the model is topologically consistent.
That is precisely the situation when any topological query on the topological model yields
a correct answer. However, since the raw data are not topologically consistent, they first
need to be properly preprocessed, e.g., by using the overlay methods introduced in [4]. It
turned out that the Euler characteristic was helpful in this stage.

2.1. Graph Model

The implementation of the topological access method here extends the DB4GeOGraphS
core framework which had been introduced in [8,26], extended to compute watertight
volumetric models from boundary representations in [4,32], and further extended by a
p-adic Gray-Hilbert curve index for point clouds in [33] all of which (including this paper)
are parts of the dissertation [34].



ISPRS Int. J. Geo-Inf. 2022, 11, 533 6 of 20

In this section, we reintroduce the graph model used by the DB4GeOGraphS core
framework for the self-containment purpose of this paper. The predecessor of the
DB4GeOGraphS core framework is DB4GeO, developed by the working group of Martin
Breunig [19], an object-oriented research database for spatial and spatiotemporal data.
The DB4GeOGraphS core framework is written in JAVA and implements basic algorithms
to compare spatial objects and to calculate spatial intersections and differences. The
DB4GeOGraphS core framework can be seen as a research framework to test data struc-
tures, access methods and algorithms which are able to manage and process spatial and
spatiotemporal data.

The spatial data types are based on simplicial complexes. There are three different
levels of aggregations: the element level, the component level and the net level, where a d-
dimensional element is a d-dimensional simplex, a d-dimensional component is a collection
of d-dimensional simplices forming a connected d-dimensional manifold or, in other words,
a connected d-dimensional simplicial complex. A d-dimensional net is a collection of d-
dimensional components in the form of a topological sum. The class names for the different
geometry types follow the convention of A + “3D”+B, where A denotes the dimension of
the simplicial object (Point, Segment, Triangle and Tetrahedron), and B denotes the level of
aggregation (Element, Component and Net).

The spatiotemporal model is based on the Polthier and Rumpf model [35] and adds
four different aggregation levels (element, sequence, component and net). A d-dimensional
element is a d + 1-dimensional polytope in four-dimensional space, where the first three
coordinates define the spatial coordinates and the fourth coordinate defines the time
step. Each d-dimensional element is defined by two d-dimensional simplices in a fixed
3-dimensional Euclidean space two different times to model a moving and morphing d-
dimensional simplex. A d-dimensional sequence is defined by chaining those d-dimensional
elements at their d-dimensional border simplices. A d-dimensional component is a collec-
tion of d-dimensional sequences forming a connected d + 1-dimensional manifold or. in
other words, a connected d + 1-dimensional polytope complex. A d-dimensional net is
defined as a collection of d-dimensional components in the form of a topological sum. The
class names for the different geometry types follow the convention of A + “4D”+B, where
A denotes the dimension of the simplicial object (Point, Segment, Triangle and Tetrahedron)
which moves and morphs over some time interval, and B denotes the level of aggregation
(Element, Component, Sequence and Net).

The DB4GeOGraphS core framework combines the Property Graph Model with the
OGC’s Feature Model design patterns for node definitions. The Property Graph Model is
a paradigm well suited to deal with unstructured data. This is often the case when dif-
ferent kinds of geo-information need to be combined for analysis. Simplicial complexes
or the described spatiotemporal polytope complexes also belong to the class of unstruc-
tured spatial or spatiotemporal dataset types, since the topology is not regular as to be
seen in voxel or raster data. This also makes it a bit more difficult to efficiently handle
the computation and persistence of simplicial complexes, since the topology needs to be
memorized explicitly. However, for example, if neighbors of some d-dimensional sim-
plex are defined by any simplex which shares a d− 1-dimensional border simplex, then
each d-dimensional simplex has a maximal number of d-dimensional neighbors amax with
amax = d+ 1 within a d-dimensional simplicial complex. So there is some “regular” topolog-
ical structure which can be used to implement robust spatial or spatiotemporal algorithms,
even if the topology is not as regular as to be seen in voxel or raster data. The use of un-
structured data enriches the range of applications. In that sense, regular topology (meaning
that the number of direct neighbours is constant) is a special case of the more general
unstructured form, and it is due to the research on and the implementation of suitable
spatial or spatiotemporal databases to classify the data driven cases and to apply the most
efficient way of dealing with those different cases. These are technical problems and should
be hidden from the user.
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Topology in the DB4GeOGraphS core framework is understood in a wider sense than
only focusing on incidence relations. In the context of complex inter and intra-related spatial
or spatiotemporal geo-objects, common relation types of those geo-objects are incidence
relations (border-of, inner-of ), aggregation relations (part-of, composite-of ) and abstraction rela-
tions (generalisation-of, specialisation-of ). Each relation type may be included bidirectionally
or unidirectionally. Unidirectional relation types generate T0-spaces. A set of T0-spaces
can be combined to a graph, which in turn can be analysed. The Property Graph Model
replaces the former object-oriented data model of DB4GeO which enables the represen-
tation of complex geo-information by the definition of Property Graphs with spatial or
spatiotemporal attributes/properties, temporal attributes/properties and arbitrary the-
matic attributes/properties on each node and the studies of those graphs.

With all of this in mind, it is possible to model a complex graph which represents a
multi-scaled spatiotemporal model with different LoDs. As an example, we could picture
a truck driving through a city. A common question would be: “Does the truck interfere
with the city?” in the sense that it touches buildings or is blocked by too-narrow passages.
A truck could be modelled precisely as a spatiotemporal tetrahedron net or just as a
spatiotemporal segment element. The truck could also be modeled as a spatial tetrahedron
net which moves through the city by the definition of a spatiotemporal trajectory and
directions. It is easy to see that this example will produce different results for each type of
simplification. However, the main problem is still computational geometry when dealing
with different scales in one model, which will lead to incorrect results in the geometrical
computation of topologically consistent models. If the truck is modeled with relatively
small simplices and the city model uses much greater simplices, wrong intersections may
be found or mathematically true intersections may not be found. Only exact computational
geometry and its overhead may deal with this problem more accurately.

Another interesting example is the revolving door at the entrance of some shopping
malls. We then ask how to navigate into the mall. The problem is not as trivial as it
seems, since a revolving door always blocks the inner of the mall and the outer of the mall.
Using topologically consistent spatiotemporal geometries to model this example reveals a
topological space which interconnects the outer and inner of the mall, even by the selection
of only one thematic space (air).

The most complex way to model this situation is to use spatiotemporal tetrahedron
complexes (moving and morphing tetrahedron complexes), five tetrahedron complexes
for the door, which includes the definition of four disjointed moving complexes beside the
door itself as a glass complex, and two tetrahedron complexes for the inner and the outer
mall as air complexes, which are divided by two walls designed as stone complexes. The
top row of Figure 4 illustrates the example geometrically flattened to the floor at a certain
time step (left) and the spatiotemporal Property Graph for the spatiotemporal boundary
representations of the air, stone or glass complexes (right). The complexes are connected
by aggregation relations, which connect to their shared spatiotemporal geometries (the
smallest nodes). Four different spatial Property Graphs can be realized for four different
time steps by the use of spatial geometries and removing either the red and magenta nodes,
or the green and the yellow nodes, or the magenta and green nodes or the yellow and red
nodes. The geometrically flattened spatial example from the top of Figure 4 shows the case
when removing the red and magenta nodes. However, removing these nodes prevents the
possibility of moving from the outdoor complex to the indoor complex by only using air
complexes. The thematic of the spatiotemporal geometries does not necessarily need to
change temporally in this example.

A very common type of simplification is to use spatiotemporal triangle complexes
(moving and morphing triangle complexes) by transforming the 3-dimensional shapes
into representing 2-dimensional shapes used within cadastres or some other traditionally
2-dimensional geographic application, which flatten the world. This type of simplification
does not necessarily simplify the topology, and spatiotemporal geometries are also needed
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to solve this problem. However, this type of abstraction, transforming the spatial or
spatiotemporal objects into another d-dimensional space, is not of further interest here.

A less complex model of 3-dimensional shapes within the 3-dimensional space is to
reduce their dimension. The walls, doors, roofs, windows and floors may be modeled as
surfaces and not as solids. In this case, the walls, doors, roofs, windows and floors of the
mall are part of the border of the indoor complex. The middle row of Figure 4 illustrates
this type of simplification. The model may consist of only a spatial model together with a
temporal interval of existence. To model the opening and closing of the mall, the thematic
of the door may change temporally (air to glass and vice versa).

Another very common type of simplification is to reduce the number of entities of
interest. In case of the different LoDs of CityGML, the wall, door, roof, window, floor and
air complexes of the mall are aggregated to reduce the complexity of the model. The border
of the mall complex then represents the wall, door, roof, window and floor of the mall.
The bottom row of Figure 4 illustrates this simplification. As you can see, this type of
simplification blocks the indoors from the outdoors. To model the opening and closing of
the mall, the thematic of the wall may change temporally (air to stone and vice versa).
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tetrahedron complexes for each abstract entity of interest. The small nodes represent the spatio-
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mall geometries.
Bottom: Property Graph of the less complex geometry model, which reduces the mall geometries to
one spatio-temporal tetrahedron complex.
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Another very common type of simplification is to reduce the number of entities of
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The bottom row of Figure 4 illustrates this simplification. As you can see, this type of
simplification blocks the indoors from the outdoors. To model the opening and closing of
the mall, the thematic of the wall may change temporally (air to stone and vice versa).

The last three examples can be interconnected through the abstraction relations, (simpli-
fication interpreted as generalization). The three models use internally aggregation relations
and incidence relations only. The advantage is, that redundant modelling (opening and
closing of the mall) does not necessarily need to be done, and a query could be parsed to
clusters which carry the adequate LoD. And if, for performance reasons such as reducing
the data transfer within a multi database system, redundant modelling is necessary, then
automated generation of simplified models and/or cross-checking of the redundant models
may be possible.

A common way of querying Property Graphs is by the use of a graph traversal language
(e.g. Gremlin). Querying a Property Graph is done by applying step by step atomic steps
onto a Property Graph. Three different kinds of steps exists, (a) map-step (transforming the
objects in the stream), (b) filter-step (removing objects from the stream), or (c) side-effect-
step (computing statistics about the stream) [36]. The atomic steps are provided by the
used graph database. DB4GeOGraphS core framework implements atomic steps to handle
certain features which a spatial or spatio-temporal Property Graph database should not miss
in order to maintain the topology based on the described relation types. This includes
operations to build (a) the border nodes of a given node, (b) the inner of a BREP (boundary

Figure 4. Top: Property Graph of the most complex geometry model, which uses spatiotemporal tetra-
hedron complexes for each abstract entity of interest. The small nodes represent the spatiotemporal
intersections of the big nodes. Middle: Property Graph of the less complex geometry model, which
reduces the dimension of some mall geometries. Bottom: Property Graph of the less complex geometry
model, which reduces the mall geometries to one spatiotemporal tetrahedron complex.

The last three examples can be interconnected through the abstraction relations, (simpli-
fication interpreted as generalization). The three models use internally aggregation relations
and incidence relations only. The advantage is that redundant modeling (opening and clos-
ing of the mall) does not necessarily need to be performed, and a query could be parsed
to clusters which carry the adequate LoD. If, for performance reasons such as reducing
the data transfer within a multi database system, redundant modeling is necessary, then
automated generation of simplified models and/or cross-checking of the redundant models
may be possible.

A common way of querying Property Graphs is by the use of a graph traversal language
(e.g., Gremlin). Querying a Property Graph is achieved by applying step-by-step atomic steps
onto a Property Graph. Three different kinds of steps exist: (a) a map step (transforming
the objects in the stream), (b) a filter step (removing objects from the stream), or (c) a
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side-effect-step (computing statistics about the stream) [36]. The atomic steps are provided
by the used graph database. DB4GeOGraphS core framework implements atomic steps to
handle certain features which a spatial or spatiotemporal Property Graph database should
not miss in order to maintain the topology based on the described relation types. This
includes operations to build (a) the border nodes of a given node, (b) the inner of a BREP
(boundary representation) node or even the inner of a d-dimensional net if the contained d-
dimensional components bound some space, (c) the decomposition nodes of an aggregation
node, or (d) the interior overlay of a given node with a set of other nodes.

Notice that, although we usually speak of “spatial” and “spatiotemporal” Property
Graphs, its construction actually does not depend on the dimensionality of the underlying
geo-objects, which in turn are only special properties of the graph nodes.

3. Methodology

The methodology described in the following subsections consists of the development
of a topological access method (TOAM) with two parts. First, an access method for
topological queries using coordinates is built, and secondly, coordinates for any topology
in the form of a T0-space (mathematically) and Property Graph (technically) are defined,
giving an encoding of the topology. Figure 5 schematically shows the breaking up of the
TOAM into these two constituent parts.
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3.1. Access Method

As mentioned at the end of the previous section, we will speak of either “spatial” or
“spatio-temporal” Property Graphs, when the managed geo-objects either do or do not
have time-changing properties. Notice that the dimension number of these objects can
even be higher than three or four without changing the methodology presented below. In
addition to the definition of atomic steps for a spatial or spatiotemporal Property Graph
traversal language, it is also important to integrate suitable access methods which integrate
the properties of spatial or spatiotemporal data in order to support big geo-scientific data
analysis based on those spatial or spatiotemporal Property Graphs efficiently. It is not a
problem to apply a spatial access method such as the R*-Tree on a set of spatial nodes. This
is similar to applying a R*-Tree on the spatial column of an object-relational database such
as PostGreSQL with PostGIS extension. However, topological access methods refer to the
topology of spatial or spatiotemporal objects, to the T0-spaces they are part of or span, not to
the geometrical spaces they live in. In fact, the geometrical space may be of any dimension,
and the geo-objects are endowed with a well-defined topology for each relation type, as
introduced in the previous sections generally, and also for the spatial and spatiotemporal
case. So, the geometrical space is spanned by the spatial or spatiotemporal metric space and
some other metric thematic attributes. The geo-objects are related by n basic relation types
to describe n topologies managed by the Property Graph. In the following, the concepts are
illustrated with spatial examples only to ease the understanding. Spatiotemporal or even
higher-dimensional examples (e.g., as in Figure 4) can be treated as described similarly
because the relation types do not change.

DB4GeOGraphS core framework indizes.api package contains a TOAM interface for
topological access methods (TOAM), now. Our prototype, the first implementation of a
topological access method within DB4GeOGraphS core framework, is based on a discrete R*-
Tree which manages multidimensional discrete points. Any other implementation of access
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methods which are able to manage multidimensional discrete point clouds are conceivable
for our approach. As a matter of fact, some other implementations (e.g., a space-filling
curve index) or even combinations of access methods (e.g., one one-dimensional access
method per coordinate) may work more efficiently. This is a work in progress.

3.2. Topology Encoding

We have tested a few different ways of defining each coordinate. One of the simplest
definitions is to count the number of relations of each node. As described previously, three
different kinds of bidirectional relation types exist, which are only usable as six different
unidirectional relation types within DB4GeOGraphS core framework. So the definition can
be extended to define a multidimensional key by counting per relation type. The main
argument for this particular definition is that it is possible to retrieve geo-objects with
certain local topological properties (e.g., retrieve all geo-objects which are part-of 2 to 4
other geo-objects). It is also possible to take other node properties into account e.g., some
thematic attributes, its spatial dimension or its aggregation level or even the spatial or
spatiotemporal property itself, which would lead to a hybrid spatial or spatiotemporal
topological access method.

If we concentrate on access methods which organize the structure of the Property
Graph in certain ways, another definition for the coordinates of a multidimensional key to
identify a node is given by the number of steps taken along the shortest path to a pivot
node within the Property Graph using a Dijkstra algorithm. Trivially, the pivot node needs to
be reachable, which implies that the Property Graph is a coherent component. An argument
to take this definition could rely on the importance of a pivot element (e.g., retrieve all geo-
objects which are in a certain topological range to some pivot geo-object). This definition is
extendable by analyzing the shortest path to the pivot node. A multidimensional version
is to count the steps of the shortest path per relation type separately. The sum over each
coordinate is equal to the number of steps of the shortest path to reach the pivot node.
A practical use is the ability to query for nodes which connect to the pivot node within
a topological range of certain relation types (e.g., retrieve all nodes which connect to a
pivot node of interest by at least one border-of relation step and 2 to 4 part-of relation steps).
The relation type may also be used to add different weights to the steps of a Dijkstra
algorithm. The practical use of the last idea is to have more control over the Dijkstra
algorithm. However, the complexity to calculate the coordinates by those definitions as a
preprocessing step depends on the graph structure.

Another interesting definition which leads to a rather complex preprocessing step to
calculate each coordinate of some node within the Property Graph is the sum of the shortest
path lengths of a node to every other node. For example, if every node is without detours
connected with every other node within the Property Graph, each node has the same shortest
path length to each other node which is equal to one. The coordinate would be equal to
n− 1 for every of the n nodes. If we picture a p-adic tree as a second example, the root
node would be in the centre and gets the lowest sum of shortest path lengths and the leaf
nodes get the highest sum of shortest path lengths since the paths over some parent node
to another leaf node will always add some extra steps instead of going directly to each of
the leaf nodes from the parent node. So this definition of a coordinate is a measure for how
close to the centre of the Property Graph the location of the node actually is. This definition
can also be extended by the use of the different relation types.

Some Examples of the previously described definitions are given in Figures 6 and 7.
The previously described definitions are given in the form of three vectors below each
example graph. Each example graph depicts only the relations on the shortest path when
starting at the node with value 0. The first vector on the left shows the number of relations
per relation type of the node with value 0. The ordering of the vector entries is part-of,
composite-of, border-of and inner-of. The second vector shows the number of steps taken to
reach the pivot node (red bounded node) where the first coordinate ignores the relation type
followed by the number of steps per relation type in the same order as shown previously.



ISPRS Int. J. Geo-Inf. 2022, 11, 533 11 of 20

The third vector shows the sum of each shortest path lengths from the node with value 0 to
each of the other nodes, where the first coordinate ignores the relation type and the other
coordinates sum the steps taken by certain relation types along the shortest paths in the
same order as shown previously.
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Dijkstra algorithm when starting at the node with value 0. The values of the other nodes represent
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Figure 7. The figures show the relation types which the Dijkstra algorithm had chosen when starting
at the node with the value 0 from the example given in Figure 6 (top right). The values of the other
nodes are the shortest distances to the node with value 0. The vectors below represent the topological
properties of the node with value 0 (see last paragraph of Section 3).

4. Experiments

In the previous section, we introduced a topological access method (TOAM) for general
spatiotemporal data with possibly further metric attributes together with encoded directed
relationships between geo-objects. At the moment, the implemented topological access
method of DB4GeOGraphS can only handle spatial geometries, but an extension to higher-
dimensional geometries is a work in progress.

The topological access method is exemplarily calculated for a tetrahedralized city
model of a historical part of Salvador (Brazil) which had been modeled by the working
group of Arivaldo Leão de Amorim. The data were produced by the Laboratory of ad-
vanced studies on City Architecture and Digital technologies (LCAD) at Federal University
of Bahia (UFBA) during the research project “Establishing requirements for City Informa-
tion Modelling”, supported by the Brazilian federal government agency Coordination for
the Improvement of Higher Education Personnel (CAPES) and the German Academic Exchange
Service (DAAD). The city model used for this work is not a final version. It was used within
a workshop in Salvador in the year 2019 as part of the exchange program. The key data are
summarized as follows:

1. Zero: 462.851043701172 376.195983886719 71.6225051879883.
2. CityGML tree nodes: 22386.
3. Number of groups: 56.
4. Polygons: 925.
5. Distinct polygons: 924.
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6. Decimal places: 15.
7. Min. point distance [m]: 6.216820473225959E-6.
8. Segments: 4446.
9. Min. length [m]: 3.0517578125E-5.
10. Average length [m]: 5.0552051851945565.
11. Max. length [m]: 32.06260853268529.

As can be seen, the geometric scale varies considerably, which will produce some
numerical issues in the intersection calculations with the effect that the topology is not
well defined, as the focus is not on the intricacies of computational geometry, but on the
calculated overlay space. We ignore this issue here, even if the graph does not reflect the
true topology. The main point here is to have topologically consistent data (as far as the
computational geometry algorithms allow) to work with.

The city model shows an accuracy with maximal 15 decimal places. The sensitivity
analysis as described in [32] or [34] showed promising results with positional precision
value ε = 10−2 and angular precision value ζ = 10−14, even if some corner points of some
polygons were ignored during import. This means that the calculated overlay space may
also lack consistency with the geometric model. Significant topological inconsistencies are
possible, as further analysis might reveal. However, this is not the focus of this article. In
total, 50 out of 56 buildings could be tetrahedralized with one tetrahedron complex per
building and a overall volume of 68916 m3 (see top of Figure 8).

In the preprocessing step, we analyzed the distribution of the Euler characteristic
which here needed to be given in its combinatorial form, as the data are initially topologi-
cally inconsistent. The distributions of the combinatorial Euler characteristics show that
the choice of the precision parameters could be in order in view of the expected topologies.
The combinatorial Euler characteristics are a quick way to analyze the topological quality
of geo-objects. Therefore, if the combinatorial Euler characteristics are plausible, the calcu-
lated interior overlays and the resulting Property Graph (overlay space) where each interior
overlay node is well integrated will likely be nearly correct as far as the used computational
geometry algorithms find all correct intersections. In the present case, there are three tetra-
hedron complex created by the interior overlay with a Euler characteristic of one. There are
52 triangle complexes found by the border interior overlay, one of which shows a combi-
natorial Euler characteristic equal to zero, the others equal to one (see Table 1 left). There
seems to be no 2-dimensional sphere involved, since a combinatorial Euler characteristic
equal to two is not contained. This means that the dataset does not seem to contain closed
shells. Seven Triangle3DNet objects consist of a minimum of two triangle complexes and
three Triangle3DNet objects consist of a minimum of three triangle complexes (see Table 1
right). Those Triangle3DNet objects need to be observed for further investigations. The
border interior overlays resulting in one and zero dimensional intersections are provided
in Tables 2 and 3. As can be seen in Table 3, there is one point cloud of 19 points found as
the intersection between two buildings. This is unlikely to be found in reality. Therefore,
the intersection calculations showing higher Euler characteristic values should be manually
checked for plausibility or topological errors.

Figure 8 (top) shows the tetrahedralized CityGML file and their interior overlays.
Figure 8 (bottom) shows the corresponding graph, which includes the CityGML tree with
the nodes which carry the “planar” polygons, their aggregations (grouped by building),
the triangulation and the tetrahedralization of each building, the border of each building,
and finally the interior intersections of each building and the border to create an overlay
space for the buildings. Each Triangle3DNet object (building) is tetrahedralized by the
buildCores-Algorithm (see [4,32] or [34]) separately. This figure also illustrates the border
Triangle3DComponent objects of the Tetrahedron3DComponent objects. The whole graph has
been created by using only the node operations mentioned in Section 2.1 and a CityGML
importer, which is able to group CityGML polygons by some XML-Tag.
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Table 1. Distributions of combinatorial Euler characteristics of triangle complexes (left) and Trian-
gle3DNet objects (right) from interior overlay.

Euler 0 1 2 3
Count 1 51 7 3

Table 2. Distributions of combinatorial Euler characteristics of segment complexes (left) and Seg-
ment3DNet objects (right) from border interior overlay.

Euler 1 2
Count 21 4

Table 3. Distribution of combinatorial Euler characteristics of point complexes from border inte-
rior overlay.

Euler 3 4 6 7 8 12 15 19
Count 1 1 2 2 2 2 1 1

We tested a combination of 23 different attributes, including not only coordinates
derived from the topological setting of each node, but also those derived from the geometric
properties (dimension and aggregation level). This has the benefit of querying geometric
properties together with the topological setting (e.g., return every surface which is part of
at least two geometries). The coordinate definitions are as follows:

1. TONode ID.
2. TONode dimension.
3. TONode aggregation level.
4. Relation count.
5. Relation count of SPECIALISATION_OF.
6. Relation count of GENERALISATION_OF.
7. Relation count of PART_OF.
8. Relation count of COMPOSITE_OF.
9. Relation count of BORDER_OF.
10. Relation count of INNER_OF.
11. Distance to root.
12. Distance to root by SPECIALISATION_OF.
13. Distance to root by GENERALISATION_OF.
14. Distance to root by PART_OF.
15. Distance to root by COMPOSITE_OF.
16. Distance to root by BORDER_OF.
17. Distance to root by INNER_OF.
18. Accumulated distances.
19. Accumulated distances by SPECIALISATION_OF.
20. Accumulated distances by GENERALISATION_OF.
21. Accumulated distances by PART_OF.
22. Accumulated distances by COMPOSITE_OF.
23. Accumulated distances by BORDER_OF.
24. Accumulated distances by INNER_OF.

We used a discrete R*-Tree to create the TOAM which manages this 23-dimensional set
of points (excluding the TONode ID). As mentioned in Section 3, any other access method
based on metric attributes would work. The R*-Tree consists of seven hyper-cuboid levels
to be able to manage all the 23570 nodes (from the CityGML tree, the surface triangulations,
the solid tetrahedralizations and the new nodes resulting from the inner overlays). Figure 9
illustrates 3-dimensional projections of the R*-Tree. The top row focuses on topological
coordinates only, where the X-Axis explains the COMPOSITE_OF relation, the Y-Axis the
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PART_OF relation and the Z-Axis ignores the relation type. The bottom row focuses on
the two geometric properties, the aggregation level on the X-Axis and the dimension on
Y-Axis. The Z-Axis on the left column shows the overall relation counts, the Z-Axis on the
middle column shows the distances to the root node, and the Z-Axis on the right column
shows the accumulated distances.

Figure 8. TOP: Salvador’s historical city center overlays of tetrahedron complexes colored by
aggregation level. BOTTOM: Salvador’s historical city center inner overlays (colored by aggregation
level and dimension) of the Tetrahedron3DComponent objects (green head and cyan body) and their
borders as closed (without boundary) Triangle3DComponent objects (green head and green body).
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Figure 9. TOP LEFT X: composite-of count; TOP LEFT Y: part-of count; TOP MIDDLE X: composite-of distance to root; TOP MIDDLE Y: part-of distance to root; TOP
RIGHT X: composite-of accumulated distances; TOP RIGHT Y: part-of accumulated distances; BOTTOM X: aggregation level; BOTTOM Y: dimension; LEFT Z: relation
count; MIDDLE Z: distance to root; RIGHT Z: accumulated distances.
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5. Discussion

The task of finding topological properties of geographical data is fairly complex. The
Property Graph is able to manage any kind of topology. The structure of those graphs can
be analyzed by using the encoded relationships between geo-objects. The previous work
enabled us to generate such graphs from topologically inconsistent data (up to geometric
uncertainty), and in this work we extracted some topological properties suitable for efficient
access through the developed TOAM.

The time complexity to find, e.g., intersections within the geometric-based approach
depends on the used spatial or spatiotemporal access method and the complexity of the
involved corresponding objects. If the application is a simulation, then each spatial object
will repeat the intersection operation to find topological neighbors. Furthermore, to find
a connection of two objects which may be connected through other objects, e.g., a pen
on a desk with the floor, path-finding algorithms, such as the Dijkstra algorithm, need to
iteratively check a set of objects for intersections in order to find the shortest path to some
object. Those intersections need to be taken into account when solving topological queries,
such as finding a connection between two objects, and retrieve the connecting objects, e.g.,
the desk. Speaking of the sets of intersections which are connected to each object, each
object may be connected to each other object. This is also the worst-case scenario, which
yields O(n2) as time complexity for each step of the path-finding algorithm, which would
be only one step if each of the n objects were interconnected. In reality, the topological
graph of geographic objects is not that simple and the sets of intersections of each object
are relatively small (e.g., the pen on the desk is attached with a bounded number of other
objects in the database), which leads to more steps of the path-finding algorithms to find the
shortest path to any other object. Holding those sets in memory by mapping the topology
turns the time complexity of finding intersections into memory complexity (they have been
found once as a preprocessing step). The preprocessing steps to find each intersection and
to adjust the graph can be done whenever a spatial or spatiotemporal object is changed
or added to keep the graph consistent with the geometrical situation. This can turn into a
bottleneck. However, the graph itself enables more opportunities than only being used for
shortest path queries.

We consider here data which are already topologically consistent, and the topologies
are presented by a Property Graph as described, cf. [8]. This will cost additional memory,
but helps to establish an access method to query nodes by their topological properties. We
extracted 23 topological properties prototypically and tested the outcome. Efficient queries
are now possible. This result can be easily extended to an arbitrary number of topological
properties. This amounts to having the ability of arbitrarily fine topological queries on
geographic data. What remains for future work is to expand this abstract method to the
generation of specific user-related topological queries.

The presented accessing method (TOAM) makes use of the structure of the graph.
Figure 9 shows that in the example dataset, the diversity of some topological properties is
relatively low, e.g., the relation counts, which leads to the following problem of degenerate
access methods described below. This due to the fact, as mentioned before, the number of
intersections of a given object with other objects in the database is bounded. On the other
hand, some properties (e.g., distance to a root node, accumulated distances) show a more
uniform distribution which helps the TOAM to avoid the degeneracy issues described
below, and thus can perform more efficiently.

The distribution of the coordinates (of the 23-dimensional vector, in our case) is not
necessarily well suited to some access methods, since equal hash codes created by, for
example, a space filling curve, lead to overfilling of the corresponding hyper-cube [33], or
if the coordinates concentrate on some mean with a relatively low variance using an access
method such as the R-tree can lead to overlapping of its hyper-cubes, which leads to bad
access behavior, since more branches of the R-tree need to be looked up to find all objects.

The main performance problems (relatively) when importing a node into the topo-
logical access method appeared when calculating the distance to some root node and the
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accumulated distance. To calculate the distance to a root node, the shortest path to that root
needs to be found. The complexity to do so is given by the used path searching algorithm.
Calculating the accumulated distances is more complex, since every shortest path from a
query node to any other node needs to be calculated and summed up. Both definitions are
also not easy to maintain consistently if the graph changes.

6. Conclusions

In this more theoretical article, the focus is on the development of a new methodology
for enabling topological queries on geo-data of any dimension, whether time dependent
or not. The article contains the first experiments on city model data. In a later stage, this
will certainly lead to more research on a practical implementation in order to find efficient
solutions to real-world problems involving geo-data. The experiments here are conducted
on a small model, rather than on a full-fledged city model at a large scale, as the point is
more to illustrate the methods than to find optimal results.

In order to validate the graph derived from tetraheralized buildings and the interior
intersections, the Euler characteristics helped with the comparison of the graph structure
and for plausibility checks. Further topological invariants could help to refine these
auxiliary analyses. Of course, these invariants in general cannot distinguish topological
data up to isomorphism, and furthermore, invariants which can do this would lead to
computationally hard problems (e.g., a graph isomorphism problem).

Another issue is the presence of geometries in different scales. Experiments in our
previous work [32] have shown that finding reliable intersections becomes a problem
when the scales of the geometries vary too much. However, the graph model can manage
geometric data of different scales, and we can use our TOAM without problems even in
this case. It is “only” the preprocessing step of consistent rendering which relies on a good
solution of the numerical issues when the scales vary too much.

The method for topological property extraction yields versatile application. The
presented prototype of a topological access method (TOAM) has the benefit of finding
nodes which fulfil certain topological properties. We have examined only a few definitions
of topological properties. In our case, we are able to find nodes with certain local topological
properties, e.g., the relation count overall and of certain relation types, and the accumulated
minimal distances to every other node as a measure for the position in the graph, using any
relation type or some specified relation type. We are also able to find nodes with certain
global topological properties, e.g., nodes within a certain distance interval to a root node,
using all relation types or some specified relation type. However, the definition of those
topological properties is mainly due to the application.

Future research would include an extension to nD topology, as well as the definition of
useful topological properties which are calculable and accessible in a reasonable amount of
time, and further research on hybrid access methods to solve geometrical and topological
queries in one combined access method for geographic data. We did touch on this idea
by including coordinates such as the dimension of the object or the aggregation level of
the object. The combination of geometric properties of the spatial object together with
the topological setting of the spatial object extends the possible queries in a useful way.
Additionally, a comparison of our new topological access method with geometry-based
methods to solve certain topological queries in an acceptable timeframe is of interest for
future work.
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