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Abstract: China-Pakistan economic corridor (CPEC), a critical part of the Belt and Road initia-
tive (BRI), is subjected to rapid infrastructure development, which may lead to potential eco-
environmental vulnerability. This study uses multi-source geo-information, and the multi-criteria
decision-making (MCDM)-based best–worst method (BWM) to quantify the baseline eco-environmental
vulnerability of one key CPEC sector—the Punjab province. The Punjab province is an important
connection between northern and southern CPEC routes in Pakistan. In this study, we have estab-
lished an indicator system consisting of twenty-two influential factors in a geospatial database to
conduct eco-environmental vulnerability analysis. The overall setup is supported by a geographic
information system (GIS) to perform spatial analysis. The resulting map was categorized into five
vulnerability levels: very low, low, medium, high, and very high. The results revealed that the overall
eco-environmental health of the Punjab province is reasonably good as 4.64% and 59.45% area of
the key sector lies in ‘very low’ and ‘low’ vulnerability categories; however, there also exist highly
vulnerable areas, particularly in the proximity of CPEC projects. Although high vulnerability areas
constitute a very small percentage, only 0.08% of the Punjab province, still, decision-makers need to
be aware of those regions and make corresponding protection strategies. Our study demonstrated
that the MCDM-BWM-based EVA model could be effectively used to quantify vulnerability in other
areas of CPEC. The findings of the study emphasize that management policies should be aligned
with research-based recommendations for ecological protection, natural resource utilization, and
sustainable development in regions participating in BRI.

Keywords: eco-environmental vulnerability; GIS; China–Pakistan economic corridor; Punjab province;
geo-information; remote sensing

1. Introduction

The China–Pakistan economic corridor (CPEC) is one of the six overland corridors
proposed under the Belt and Road Initiative (BRI) [1]. It is a flagship project of BRI,
and its successful implementation is vital for social-economic development in the region
of Pakistan [2]. It is a massive investment for connecting the southwest of Pakistan
(Gwadar) to the northwest of China (Xinjiang province) via an extensive network of
rails and roads [3]. This implies that the area of CPEC is huge, including the whole of
Pakistan and a part of China. The stakeholders from Pakistan and China are increasingly
pressured to build CPEC under the “green” concept to avoid detrimental impacts on the
regional eco-systems [4–6]. No doubt CPEC will result in the region’s prosperity and
socio-economic development [7,8]; however, there is evidence in the growing literature
that the operationalization of CPEC might deteriorate the natural eco-system conditions
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due to increased anthropogenic activities. Wolf [9] has reasoned that CPEC will deteriorate
the natural environment of Pakistan on a large scale. Abalakov et al. [10] argued about
an increase in the transformation of landscapes within economic corridors and urged for
defining the permissible level of the negative impact of anthropogenic activities. Some
authors have shown concern over frequent natural disasters, extreme weather events,
climate change impacts, and varying geology issues of the CPEC region, which challenges
the successful implementation of corridor [11–14]. Ullah et al. [15] have reported a change
in seasonal precipitation in the region of CPEC, which may lead to drought, a threat to food
security, loss of biodiversity, and shortage of hydropower [16–18]. In addition, researchers
have agreed on an increased opportunity of tourism for people of Pakistan and China, but
also emphasized sustainable and eco-friendly tourism planning [19–21]. One of the main
issues in our knowledge is that the interactions among various natural and human systems
are not well understood in the CPEC region. This makes CPEC an important study target
for eco-environmental vulnerability assessment (EVA), which allows the study of various
natural, social, and economic systems in an integrally coupled manner [22].

The concept of “eco-environmental vulnerability” (EV) is generally described as
a characteristic of eco-systems that indicates an ecosystem’s tolerance and resilience to
external disturbances within a certain region [22]. Research on EVA has remained a growing
field of interest among environmental scientists in the past two decades. Numerous
studies attempting to investigate the eco-environment conditions and their influencing
factors have been conducted in several areas around the globe, such as in China [23–27],
Vietnam [28,29], Australia [30], Argentina [31], India [32], Benin [33], and Nepal [34]. Since
the eco-environment problems are distinctly distributed in different regions, a uniform
model for EVA cannot be constructed. So, the studies have undertaken EVA for their target
system by designing an indicator system representing their target system. For instance,
Huang et al. [23] conducted EVA for Hainan Island, China, as their target system. Liou
et al. [28] established a model based on twelve variables to evaluate spatial–temporal EV
in Thua Thien—Hue Province, Vietnam. Chaudhary et al. [34] selected 18 asset-based
explanatory variables to target Dordi River Basin as their area of research. Similarly,
WANG et al. [35] established a model by combining twelve representative factors to
evaluate eco-environment vulnerability in the Yellow River Basin, China as a target system.
Furthermore, Huang et al. [36], Xu et al. [37] and Liu et al. [38] are more representative
studies that evaluate EV for a watershed, river delta, and mountainous region, respectively,
as a target system.

A couple of studies have also addressed the EVA for CPEC [39,40]; however, the results
reported in those studies suffered from generalization while attempting to investigate the
whole CPEC. More research is needed, which should incorporate local-scale datasets to
understand localized eco-environment problems in the CPEC region. Considering this
gap, our study chooses Punjab province as a study area for EV investigations. The Punjab
province is an essential link of the CPEC route between northern and southern Pakistan and
a socio-economically important sector of Pakistan. No previous study, to our knowledge,
has undertaken EVA for Punjab province. Conducting EVA of any region provides essential
data to policy-making bodies for sustainable development and ecological, environmental
management in the corresponding region [41]; therefore, investigations of the CPEC region
at a manageable scale are crucial to supplying essential data to decision-makers so that they
can make strategies to meet greening and sustainable development targets of the corridor.

Numerous techniques have been adopted in previous studies for EVA, such as spatial
principal component analysis (SPCA) [42], the grey theory and fuzzy mathematics [43],
analytical hierarchy process (AHP) [36,44–46], fuzzy AHP [47], and artificial neural net-
work [24]. The choice of method is guided by the nature of available data and the EVA
target system. For example, when a plentiful amount of historical data is available, machine
learning techniques (e.g., artificial neural network) can be used by meeting the training and
validation requirements of the algorithms [24]. Among all methods, the multiple-criteria
decision-making (MCDM) technique AHP has remained by far a commonly used method
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for performing EVA because of its ability to evaluate a large number of conflicting criteria
and alternatives through its organized hierarchy breakdown process; however, AHP is
often criticized for its rank reversal problem and complexity. Alternatively, another re-
cently developed MCDM method called the best–worst method (MCDM-BWM) by Rezaei,
2015 [48] has received recognition for its simplicity of use and efficiency [49–51]. It has
already found its applications in flood risk analysis [52], assessment of solid waste man-
agement practices [53], landslide susceptibility mapping [54], and suitable site selection
problems, etc. [55]. The advantage of using MCDM-BWM over AHP is that it is a vector-
based method and much simpler to use, whereas AHP is a matrix-based method that
requires a large number of pairwise comparisons. In addition, MCDM-BWM makes more
consistent comparisons; the final weights derived from MCDM-BWM are highly reliable
compared to AHP [56]. For this inspirational significance, our study has adopted the use
of MCDM-BWM for EVA.

With the rapid development of space and computer technology, the integration of
remote sensing (RS) and geographic information systems (GIS) with MCDM has been
well-founded and implemented by many researchers and practitioners in a wide range of
fields, including nature, society, and economy [57]. The geospatial approach combining
MCDM with RS and GIS provides the capacity to conduct investigations at varying spatial
and temporal scales. In this paper, MCDM-BWM is integrated with GIS to set up the EVA
framework. The main objectives of this work are: (1) propose a flexible EVA framework
that would be applicable to other CPEC regions; (2) investigate baseline spatial variation
of the EV of key CPEC sector Punjab province in the presence of ongoing and announced
CPEC projects [58].

2. Materials and Methods
2.1. The Study Area

Punjab province (located approximately at 30◦00 N, 70◦00 E) is a key sector of CPEC
because it is geographically and the socio-economically significant province of Pakistan
(Figure 1). It is a connection between the northern route and southern routes of CPEC.
It is Pakistan’s second-largest province in land area, covering 205,344 km2. It is also the
most populous province of Pakistan. The estimated population is 110,012,442 as of the
2017 census [59]. It can be rightly said as a central province because it borders Islamabad
and Khyber Pakhtunkhwa in the north; to the northeast is Azad Kashmir. Baluchistan and
Erstwhile Federally Administered Tribal Areas (FATA) are in the west and Sindh in the
south. It shares a border with India in the East. Lahore is the capital city of Punjab.

Agriculture is the backbone of the economy of Pakistan and Punjab accounts for 57%
of the country’s cultivated area and 69% of cropped area for agricultural production of
the country (Government of Punjab, 2013). The Indus River and its four main tributaries
Jhelum, Chenab, Ravi, and Sutlej Rivers, traverse Punjab from north to south. This is also
one of the reasons that this region has a rich agriculture system irrigated from one of the
largest canal-based irrigation systems on Earth [60,61]. During the Monsoon rainfall season,
flood is a dominant hazard in this region [62].

Even before of the ideation and launch of CPEC, Punjab already possesses an extensive
network of the road (motorways, highways) and railway that serve as the means of trade
and transportation. Further, the region is heavily industrialized and consequently under-
gone rapid urbanization. Given the province’s strategic and socio-economic significance,
this region is regarded as one of the key sectors of CPEC.
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Figure 1. Map of the study area: (a) the map shows the geographical location of the key sector of Punjab province in
Pakistan; (b) the map shows the spatial distribution of CPEC projects in the key sector of Punjab province.

2.2. Data Sources

The EVA framework adopted in this study is made up of the 22 indicators that best
represent the eco-environmental conditions of Punjab; they were chosen after extensive
consultation with the relevant literature [36,37,42,44,63–66]. Once the literature had been re-
viewed to identify how such frameworks are constructed in similar research, the indicators
were chosen per the availability of their data for Punjab province. They are grouped into
six broad categories: hydro-meteorology (G1), socio-economics (G2), land resources (G3),
topography (G4), hazards (G5), and CPEC projects (G6). These, in turn, are grouped into
three overlapping systems: natural, social, and economical. Figure 2 shows that G1, G4,
and G5 belong to the natural system, while G3 belongs to both natural and social systems,
G2 overlaps both the social and economic systems, and G6 is also multidisciplinary, being
important in both the natural and economic systems.

There GIS database consisting of twenty-two indicators established in this study is
constructed from six types of data sources:

1. Landsat 8 OLI/TIRS imagery;
2. Meteorological data;
3. Internationally accepted GIS data exchange portals;
4. Official reports of the Government of Pakistan (GOP);
5. Digital elevation model (DEM) data;
6. High-resolution imagery of Google Earth.
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Figure 2. Classification of EVA parameters into several systems.

The Landsat 8 satellite was launched in February 2013 to ensure a continued supply
of data from the Landsat mission. It carries the Operational Land Imager (OLI), which has
a spatial resolution of 30 m and a temporal resolution of 16 days [67]. The size of Punjab
province is such that 23 Landsat images are needed to cover the entire area. These images
correspond to paths 148–152 and rows 37–41 on the standard Landsat Worldwide Reference
System (WRS) path/row grid [68]. Table 1 provides a list of Landsat 8 scenes, path/row
detail, their acquisition date, and cloud cover percentage. The time for data acquisition is
between January to April 2015. In this study, data from 2015 were taken as a priority for
baseline evaluation because CPEC was officially launched in 2015. Data for a few variables
were not available for that year, so data from later years were included, although special
attention was paid while selecting them to ensure that the variables had not undergone a
rapid change; examples of these variables are dominant hazards in the region, population,
land use and land cover (LULC).

Table 1. List of Landsat 8 scenes used in the study.

No. Path/Row Date (dd/mm/yyyy) Cloud Cover (%)

1 148/037 10/02/2015 0.94%

2 148/038 10/02/2015 2.66%

3 148/039 10/02/2015 0.59%

4 149/037 16/01/2015 2.31%

5 149/038 16/01/2015 0.03%

6 149/039 21/03/2015 0.2%

7 149/040 21/03/2015 0.01%

8 149/041 05/03/2015 1.89%

9 150/036 07/01/2015 4.81%

10 150/037 08/02/2015 14.98%

11 150/038 08/02/2015 4.71%

12 150/039 08/02/2015 12.08%

13 150/040 08/02/2015 10.03%

14 150/041 08/02/2015 0.21%

15 151/036 19/03/2015 1.7%

16 151/037 30/01/2015 1.73%

17 151/038 30/01/2015 0.06%

18 151/039 14/01/2015 0%
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Table 1. Cont.

No. Path/Row Date (dd/mm/yyyy) Cloud Cover (%)

19 151/040 30/01/2015 0.38%

20 151/041 30/01/2015 14.04%

21 152/038 05/01/2015 2.84%

22 152/039 10/03/2015 1.1%

23 152/040 10/03/2015 5.75%

Meteorological data were obtained from the Pakistan Meteorological Department
(PMD) by following official procedure [69]. Upon request, PMD supplied figures for
monthly mean temperature (◦C) and monthly total rainfall (mm) for the period from
January 2015 to April 2015.

The third data source includes internationally accepted GIS data exchange portals.
They include: (i) a humanitarian data exchange website where population data for various
developing countries are hosted and distributed [70], (ii) OpenStreetMap (OSM) data
available from the Geofabrik portal [71], and (iii) the regional level railway network and
inland water (hydrological network) dataset from DIVA-GIS platform [72].

The fourth source is a credible GOP report titled Integrated Context Analysis (ICA):
On Vulnerability to Food Insecurity and Natural Hazards—Pakistan [73]. To review
hazards in the region, several other reports from the National Disaster Management
Authority (NDMA) of Pakistan are also considered. The reports are accessible at http:
//cms.ndma.gov.pk/publications (accessed on 4 January 2021).

The fifth source, the DEM, is the digital representation of the land surface elevation
with respect to any reference datum [74] and is used to extract topographical variables for
the EVA model. The National Aeronautics and Space Administration (NASA) has provided
Shuttle Radar Topography Mission (SRTM) digital elevation data for over 80% of the globe.
These data are currently distributed free of charge by the U.S. Geological Survey (USGS)
earth explorer.

The sixth and last source takes advantage of the computer-assisted GIS digitization
technique, in which basemap imagery, such as Google Earth, is used to trace features
of interest.

2.3. Data Processing

Figure 3 illustrates the technical flow for the processing of data sources. The process-
ing of the data has been carried out as follows. Google Earth Engine (GEE) (accessible at:
https://code.earthengine.google.com/ accessed on 4 January 2021) was used to compute
four indicators, namely normalized difference moisture index (NDMI), normalized differ-
ence water index (NDWI), normalized difference built-up index (NDBI), and normalized
difference vegetation index (NDVI) from Landsat 8 OLI dataset. These four indices are
well-defined and reliable in the field of RS [75–78]. GEE code editor was used to fetch the
Landsat 8 TOA collection in the GEE environment “LANDSAT/LC08/C01/T1_TOA/”.
In the next step, cloud-free (<20%) scenes from the collection were selected for the de-
fined dates, mosaicked, and clipped according to our area of study. In the later step,
selected bands according to indices formulae were processed to obtain NDMI, NDWI,
NDBI, and NDVI.

PMD provided the temperature and precipitation data on request. Kriging interpola-
tion was applied to generate raster surfaces of temperature and precipitation variables [79].
This interpolation weighs surrounding measured values to derive a prediction for an
unmeasured location. It can be presented mathematically as:

Ẑ(s0) = ∑N
i=1 λiZ(si). (1)

http://cms.ndma.gov.pk/publications
http://cms.ndma.gov.pk/publications
https://code.earthengine.google.com/
https://code.earthengine.google.com/
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where Z(si) is the measured value of the i-th location, λi is the unknown weight for the
measured value of the i-th location, s0 is the prediction location, and N is the number of
measured values.

The population indicator layer was constructed after downloading data from the
humanitarian data exchange website. The data were clipped to the extent of the study area.
Primary and secondary roads networks were extracted from OSM data after downloading
data from the Geofabrik portal. Similarly, railway network and inland water (hydrological
network) datasets were downloaded from the DIVA-GIS platform. The Euclidean distance
tool was used on the above datasets in ArcMap 10.2.2 to prepare distance from the road
network, distance from railway, and distance from hydrological network variables.

Four important indicators, including dominant land cover, flood hazard, landslide
hazard, and drought hazard maps, were digitized from the ICA report mentioned in the
data sources section. This report is prepared by NDMA and World Food Program, Pakistan
(WFP). The dominant land cover is sourced from ESA GlobeCover 2009 and analyzed by
FAO Pakistan, whereas flood hazard, landslide hazard, and drought hazard data have been
contributed by NDMA.

Furthermore, additional socio-economic variables (which depict anthropogenic and
economic activities) such as major cities and CPEC projects were created by the GIS
digitization. Google Earth imagery was used as a base visualization to trace features and
CPEC official website was used to identify the scope of projects [58]. Euclidean distance
tool was applied to convert major cities data to distance from major cities, and buffer
distance was computed for CPEC projects variables.

Topography-related variables such as elevation, slope, and aspect are derived from
SRTM DEM [80].

Figure 3. Technical flow adopted for the development of GIS database of eco-environment variables.
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Finally, we converted all datasets into a 30 m × 30 m resolution and prepared a GIS
database for EVA model implementation. The resolution of Landsat imagery is 30 m, which
is taken as reference resolution in this work. A significant amount of data was in a vector
format such as roads, railways, major cities, and CPEC projects; however, when variables
such as distance from roads, distance from railway, and distance from major cities are
developed, the output format was a raster dataset. Special attention has been paid to
restrict export data to 30 m raster datasets. This is how the 30 m × 30 m resolution GIS
database was prepared for EVA model implementation. Table 2 presents the group-wise
systematics organization of indicators, their significance in the EVA model, and reference
to the figures/maps of the indicators’ GIS data layers.

Table 2. The allocation of indicators in each group and their significance in the EVA framework.

Groups Indicators Significance in EVA Framework Maps/1234
Figures

H
yd

ro
m

et
eo

ro
lo

gy
(G

1)

Normalized
difference moisture

index (NDMI)
j1

NDMI evaluates the different contents of humidity from landscape
elements, especially for soils, rocks, and vegetation. It is one of the
important indicators adopted in EVA. The assessment of moisture

content is essential to incorporate the health of vegetation
perspective in the natural eco-environment of the region [81]. NDMI

is calculated using the equation below [78]:
NDMI = (NIR − SWIR1)/(NIR + SWIR1)

(2)

Figure A1a

Normalized
difference water
index (NDWI)

j2

NDWI is also called leaf area water-absent index, which implies the
water content within vegetation. The index is derived from the

reflectance properties of green vegetation, dry areas (lack of
vegetation), and soils by using two near-IR bands. NDWI is

calculated using Equation below. ([82]):
NDWI = (G − NIR)/(G + NIR)

(3)

Figure A1b

Distance from
hydrological network j3

Surface water is an important driver of natural eco-systems.
According to experts, the areas that lack surface water are prone to
desertification, forest fire, and landfill sites; therefore, areas farther
from the hydrological network are more vulnerable and assigned

more weightage in our EVA system.

Figure A1c

Temperature j4

Temperature is a vital variable for EVA because it represents the
climate conditions of the region. As the greenhouse gases in the

atmosphere increase, the temperature will also increase. As a result,
there is an increase in the melting of glaciers, which will first lead to
extreme flooding followed by a scarcity of irrigation water [83,84].

This affects the vegetation growth of that area; therefore, the higher
temperature implies higher vulnerability, and the lower

temperature implies low vulnerability.

Figure A1d

Precipitation j5

Precipitation is a vital variable for EVA because it represents the
climate conditions of the region. Climate change is likely to involve
changes in the amount and intensity of precipitation [15]. Changes

in precipitation impact the hydrological, ecological, and
biogeochemical processes, either directly or indirectly [85]; therefore,

precipitation is incorporated in the EVA indicator system
established in this study. Areas receiving huge rainfall annually are

likely to be hit by extreme events such as floods and thus more
vulnerable to eco-system health.

Figure A1e



ISPRS Int. J. Geo-Inf. 2021, 10, 625 9 of 31

Table 2. Cont.

Groups Indicators Significance in EVA Framework Maps/1234
Figures

So
ci

oe
co

no
m

ic
s

(G
2)

Normalized
difference built-up

index (NDBI)
J6

This variable is beneficial for the identification of human settlements
and some elements of surrounding construction. It is a rapid and

accurate method of mapping urban areas [86]. It can be calculated as:
NDBI = MIR − NIR/MIR + NIR

(4)
Where NIR is the reflectance in the near-infrared band (Landsat

OLI-TIRS band5 (0.845–0.885 µm)) and MIR represents the
reflectance of the middle infrared band (OLI-TIRS band6

(1.560–1.651 µm)).

Figure A2a

Population j7

The population is an important variable for the quantification of
vulnerable populations, in particular, vulnerable eco-systems. The
high density of population reflects the pressure on natural resources

and the intensity of economic activities [87].

Figure A2b

Distance from the
road network j8

Similar to population, the distance to roads is an indicator in our
EVA system to reflect the degree of human involvement. To avoid

overestimating the influence of roads, only major roads such as
highways, motorways are incorporated in the analysis. The regions
nearest to the road network are assigned more weightage and areas

farther away are less weightage.

Figure A2c

Distance from cities j9

CPEC is primarily a corridor or connection between small and big
cities for trade and economic growth; therefore, distance from the
city center is indirect consideration of anthropogenic activity and
urbanization. In general, cities stand for increased anthropogenic
activity, industrial pollution, and fossil fuel exhaust from motor
vehicles. Hence, the areas in close vicinity of cities are assigned

more weightage in our EVA system.

Figure A2d

Distance from the
railway network j10

The construction of a new railway as well as upgrading existing
railway lines are essential aspects of CPEC. The network of rail and

road will boost trade and economic activities in the region. Thus,
considering the distance from railway lines is vital for conducting
EVA. Areas in closer proximity to railway lines will usually have

higher vulnerability.

Figure A2e

La
nd

re
so

ur
ce

s
(G

3)

Normalized
difference vegetation

index (NDVI)
j11

The normalized difference vegetation index is generated from the
red and near-infrared (NIR) bands by the following

simple expression:
NDVI= (NIR − Red)/(NIR + Red).

(5)
It is a popular indicator used in EVA frameworks for incorporating
the influence of vegetation and land use. High values of this index

are obtained for areas covered by green vegetation.

Figure A3a

Land use land cover
(LULC) j12

Land use/land cover is an important indicator of how human
activities alter the natural land. The land surface characteristics

have a direct relationship with surface energy balance, hydrological
cycle, and eco-system services [88–92]. As revealed in literature,

LULC is the essential indicator used extensively in EVA
research [29]. Our EVA model also uses the dominant LULC layer

as one of the inputs in the model.

Figure A3b
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Table 2. Cont.

Groups Indicators Significance in EVA Framework Maps/1234
Figures

To
po

gr
ap

hy
(G

4)

Elevation j13

The elevation indicator in the EVA model represents the relief and
terrain properties of the region. The elevation is a most important

topographic characteristic that cannot be neglected in
modeling-based research [93].

Figure A4a

Slope j14

Slope direction and degree is a basic factor for eco-environmental
vulnerability assessment because it impacts on climate conditions of

the region. The slope influences hazards such as floods.
Figure A4b

Aspect j15

The aspect is a popular indicator used in EVA research by various
scientists. It plays a significant role in depicting surface

characteristics in environmental research.
Figure A4c

H
az

ar
ds

(G
5)

Drought hazard j16

Drought is a cycling recurring natural event that affects
environmental, economic, and social conditions [94]. It has been

widely incorporated in vulnerability modeling research. In our EVA
framework, more weightage is assigned to an area where drought

hazard is “very high”.

Figure A5a

Flood hazard j17

Flood is the most prevalent and devastating natural disaster among
all-natural disasters that adversely impact human health and
natural and artificial environments [95,96]. It has been widely
incorporated in vulnerability modeling research. In our EVA

framework, more weightage is assigned to the area where flood
hazard is “very high”.

Figure A5b

Landslide hazard j18

Landslides are the downslope movements of debris, rocks, or earth
material under the influence of the force of gravity. The areas where
landslides occur frequently are highly vulnerable in terms of deaths,
infrastructure damages, and environmental losses [97]; therefore, it

is a widely used indicator in vulnerability modeling research in
literature. In our EVA framework, more weightage is assigned to the

area where landslide hazard is “very high”.

Figure A5c

C
PE

C
pr

oj
ec

ts
(G

6)

Distance from
polygon CPEC

projects
j19

The group of CPEC projects represents a truly multidisciplinary
system that signifies environmental concerns and economic growth.
A total of eight projects are included in the study. Five out of eight
can be represented as polygons. These projects include coal power
plants, special economic zones, etc. Buffer distance is used to assign

more weightage to the area very close to the project.

Figure A6a

Distance from linear
CPEC projects j20–22

Three out of eight projects can be represented as line features in the
GIS environment, such as transmission line, railway, and orange line

in-city mass-transit project. Their influence in the EVA model is
different from those that can be represented as polygons; therefore,

the polygon and linear projects are separated in our EVA model.

Figure A6b–d

2.4. Methodology

As illustrated in Figure 4, the data gathering and processing in eco-environment
research are followed by the determination of the evaluation unit to allow all indicators for
fair participation in the EVA model. It is imperative to consider that all the indicators had
their own dimension and distribution, making it difficult to compare and operate directly.
To overcome this, each data layer of indicators was divided into several classes using
manual-interval classification [98] and reclassified by assigning a rating value on a numeral
scale from 1, 2, 3, . . . , 8; where one refers to a positive relationship with eco-environment
and eight corresponds to a negative effect on eco-environment. In other words, one can be
termed as best and eight can be thought of as worst. For example: in the ‘distance from
surface water’ variable, according to experts, the lower vulnerability should be located
near a river/water body, and higher vulnerability should be found in the area farther away.
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Similarly, for the population data layer, as the vulnerability directly relates to anthropogenic
activity, the lower vulnerability should be located in the least populous areas, and the
higher vulnerability should be located in densely populated areas. Table A1 summarizes
the division of classes and rating assigned.

When all the sub-indicators, their groups, and target problem of EVA are organized
in a structural order, it forms a three-level hierarchy (Table 3). The top-grade layer in the
hierarchy is EVA itself as a final target; the second-grade layers consist of groups (G1 to
G6), while the third-grade layers consist of sub-indicators that belong to each group. In
the next step, the MCDM-BWM was used to determine the weights of all variables in each
group at the third level of the hierarchy. In this step, each group is taken as a separate case
for MCDM-BWM. The weights are given as ‘weights-i’ in the table. Similarly, in the next
step, comparative weights were determined for all six groups at the second level of the
hierarchy using MCDM-BWM. They are given as ‘weights-G’ in the table.

Explanation of Best–Worst Method (BWM)

The computation steps of the BWM are presented below:
Step 1: Identify a relevant list of criteria. In our study, twenty-two relevant indicators

and six main groups were identified to constitute EVA.
Step 2: Choose best (B) and worst (W) criteria for groups and indicators. Indicators

belonging to each group are treated as separate cases in BWM. For instance, the first
five indicators belonging to G1 are subject to identifying best and worst and weighting
exercises. Similarly, the set of indicators belonging to G2 are subject to BWM weighting
exercise separately.

Step 3: Using a scale of 1 to 9, conduct a pairwise comparison between best criteria B
over all the other criteria. This will result in vector AB = aB1, aB2, . . . . . . aBn.

Step 4: Similar to the above, the next step is to conduct pairwise comparison rat-
ings of all the other criteria with the worst criterion (W). This will also result in vector
Aw = (a1w, a2w, . . . . . . anw)

T .
Step 5: Next is to obtain the optimized weights

(
w∗

1 , w∗
2 , . . . . . . , w∗

n
)

for all the criteria.
That is, we obtain the weights of criteria so that the highest absolute variations for all

j can be minimized for
{∣∣wB − aBjwj

∣∣, ∣∣wj − ajwww
∣∣}. The following minimax model will

be determined:
min max

{∣∣wB − aBjwj
∣∣, ∣∣wj − ajwww

∣∣}. (2)

s.t. ∑j wj = 1, wj ≥ 0, for each criterion. (3)

Model (3) is transformed to a linear model and shown as ξL,
Subject to: { ∣∣wB − aBjwj

∣∣ ≤ ξL∗, all j∣∣wj − ajwww
∣∣ ≤ ξL∗, all j

. (4)

∑j wj = 1, wj ≥ 0, for all j. (5)

Model (5) can be solved to obtain optimal weights
(
w∗

1 , w∗
2 , . . . . . . , w∗

n
)

and optimal
value ξL* Consistency (ξL*) of attribute comparisons close to “0” is desired [48].

The rest of the methodology includes the following steps:
1. Firstly, the weights of third-grade layers (weights-i) are multiplied with their

respective data layers to produce one layer for each group. Mathematically, it is presented
as below:

Gi = ∑n
j=1 wj ∗ j. (6)

where Gi represent the groups from 1 to 6, whereas wj represent the weight (weights-i)
assigned to each sub-indicator in the group. j = 1 and j = n represent first and last
indicators in the group, respectively.
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2. In the second step, the linear transformation was applied to the result of Equation (6)
as a method of standardization before further processing.

Xs =

(
Xi − Xmin

Xmax − Xmin

)
∗ 100. (7)

where Xs is a standardized value, Xi is the original value, Xmin and Xmax are lowest and
highest original values, respectively. The transformed data were magnified 100 times for
ease of processing.

3. Third, the standardized layers were again multiplied with their second-grade
respective weights (weights-G) to synthesize the EVA layer. The below equation represents
the process mathematically.

EVA = αG1 + ßG2 + γG3 + δG4 + ηG5 + θG6. (8)

where α, ß, γ, δ, η and θ are weights assigned for groups 1 to 6, respectively. The weights
for indicators and weights for groups are presented in Table 3.

We used ArcMap 10.2.2. software for the above model implementation and algebraic
computations. The final EVA map was again subject to linear transformation for ease of
interpretation of results.

Figure 4. The adopted methodology for eco-environmental vulnerability assessment of CPEC region.
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Table 3. Weights of six groups variables and twenty-two indicators used for EVA of Punjab province.

First Grade
(EVA)

Second Grade
(G) No. Weights-G Third Grade (ji) No. Weights-i

EVA

Hydrometeorology G1 0.138

Normalized difference moisture index
(NDMI) j1 0.068

Normalized difference water index (NDWI) j2 0.052

Distance from hydrological network j3 0.454

Temperature j4 0.245

Precipitation j5 0.181

Socio-economics G2 0.197

Normalized difference built-up index
(NDBI) j6 0.063

Population j7 0.591

Distance from Road Network j8 0.097

Distance from Major Cities j9 0.113

Distance from Railway Network j10 0.136

Land Resources G3 0.09

Normalized difference vegetation index
(NDVI) j11 0.643

Land use and land cover j12 0.357

Topography G4 0.176

Elevation j13 0.597

Slope j14 0.182

Aspect j15 0.091

Hazards G5 0.137

Drought hazard j16 0.236

Flood hazard j17 0.451

Landslide hazard j18 0.313

CPEC Projects G6 0.262

Dist. from Polygon CPEC Proj j19 0.347

Dist. from Transmission CPEC Proj j20 0.193

Dist. from Railway CPEC Proj j21 0.284

Dist. from Orangeline CPEC Proj j22 0.176

3. Results
3.1. Overall Interpretation of EVA Results

Based on the technical flow adopted, six group variables were combined computation-
ally, and a resultant map of eco-environmental vulnerability was produced. The final map
(Figure 5) is categorized into five levels representing very low, low, medium, high, and
very high eco-environmental vulnerability regions based on the equal interval classification
method [99]. The results show that the overall baseline eco-environment health of Punjab
province is good, with 4.64% and 59.45% of the total area is in ‘very low’ and ‘low’ EVA
zones, respectively. The very low and low vulnerability zones mostly extend along rivers
and green croplands. The rest of Punjab comprises 33.32% medium, 2.51% high, and 0.08%
very high vulnerability zones (Figure 6). The medium-level vulnerability primarily extends
in the region between major cities, while areas close to major cities bore high vulnerability.
Finally, the very high vulnerability zone is very small, covering only 166.90 km2 of the
total area, and that is mostly the areas in very close proximity of CPEC projects. Given that
influence of eight big CPEC projects was incorporated in the analysis, the overall results
favor the fast progress of CPEC and negate the false criticism on the life-changing project
for the people of Pakistan and China.
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Figure 5. The map of eco-environmental vulnerability in the Punjab province.

Figure 6. Percentage of each EVA zone in the Punjab province.

3.2. District Wise Comparison of EVA Results

The interpretation of EVA results based on its district-wise distribution in Punjab
reveals that Rawalpindi, Multan, Sahiwal, and Lahore are prominent districts that contain
large values of ‘very high’ vulnerability zone (Figure 7). One of the reasons is that these
districts are an economic hub and connected directly via a route of CPEC; however, neither
of these regions are spatially connected, nor exist in similar climatic conditions, so the
reasons for high vulnerability are complex. For instance, Rashid et al. [100] reported
unchecked urbanized expansion in Rawalpindi, where ecological footprints are higher than
national standard values. Further, Shabbir and Ahmad, 2016 [101] found water resources in
the Rawalpindi region vulnerable to climatic and socio-economic factors. Similarly, studies
for Multan, Sahiwal, and Lahore have reported their problems (e.g., crops productivity,
floods, CO2 discharge, land-use change, and pollution) [102–107]. The rest of the 32 districts
have zero or negligible values in the ‘very high’ vulnerability zone.

Similarly, Rawalpindi, Dera Ghazi Khan, Multan, and Lahore districts are among
those who present large areas of ‘high’ vulnerability zone. Moreover, Dera Ghazi Khan and
Rahim Yar Khan are two districts with peak values from the ‘medium’ vulnerability zone. In
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contrast, Mandi Bahauddin is the district with the least value from ‘medium’ vulnerability,
constituting only 0.26% of its total area (Figure 8). The ecological problems in Dera Ghazi
Khan, such as rangeland degradation, groundwater pollution, and drastic land use patterns
change, are already reported by individuals in literature [108–110]. Similarly, floods and
droughts are reported problems of Rahim Yar Khan [62]; therefore, our EVA result is similar
to a superset containing an essence of all eco-environmental influencing factors.
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Figure 8. Percentage-wise EVA results for districts of Punjab province: (a) 1–18 districts; (b) 19–36 districts.

Bahawalpur region shows a peak under the ‘low’ vulnerability zone, with ‘low’ vulner-
ability covering 91.27% of its total area. The reason for this result is that the Bahawalpur re-
gion has the largest desert in Pakistan, most of the area being barren and uncultivated [111];
therefore, all the chosen indicators collectively did not contribute significantly, and the
region yields low values.
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Finally, Okara, Hafizabad, and Kasur regions show dominance of ‘very low’ vulner-
ability zones, covering 26.11%, 42.38%, and 26.30% of their total areas respectively. The
reason is that these districts are located far from the main CPEC. Further, the economic
activity is not on the same scale as Lahore and Rawalpindi.

To summarize, the overall results show that the eastern part of Punjab province mostly
has ‘low’ and ‘very low’ vulnerability zones with very few footprints of ‘high’ and ‘very
high’ vulnerabilities. The northern part has portrayed a dominantly ‘medium’ vulnerability
zone. Moreover, the northwest and western regions predominately have ‘medium’ level
eco-environment severity. The ‘high’ and ‘very high’ vulnerability extends from northwest
to north–south, and then along the province’s center to the southern region in a uniform
pattern, following the distribution of CPEC projects closely. The result now provides
evidence to local district governments to formulate specific strategies to protect and restore
the eco-environment in their districts.

4. Discussion
4.1. Significance of the Study and EVA Framework

The eco-system provides the service functions in the form of natural resources and
living environments for human beings. The scientific and logical evaluation of the EV
offers a theoretical basis for the sustainable development of resourced pressure eco-system.
The CPEC aims for regional connectivity through massive infrastructural developments;
however, climate change and ecological problems represent potential threats to the smooth
progress of CPEC. Few studies concerning the EVA of CPEC are conducted. This research
uses twenty-two indicators to construct the EVA model with the support of MCDM-BWM
and GIS for analyzing the EV situation in the Punjab region of CPEC. Our study is an
addition to scientific literature concerning EVA for CPEC, such as Li et al. [39] and Wu
et al. [40]; however, their studies do have some downsides. The paper from Li et al. [39]
might have been more convincing if ground truth data had been combined with RS data
for better accuracy. Currently, the study has solely relied on RS data. The latter study
by Wu et al. [40] mainly focused on indexes relevant to natural systems and failed to
incorporate data related to socio-economic systems. Only one index named as human
disturbance index used in the EV model is insufficient to extract a representation of socio-
economics results. Compared with these studies, our study is superior in terms of adopting
a balanced approach of combining indicators from natural, social, and economic systems.
Furthermore, limiting our study area to Punjab helped us to derive more targeted results
instead of generalizing it for whole CPEC area.

The successful implementation of the framework in this study will reduce the dom-
inance of commonly adopted methods such as AHP and PCA. In addition, our work
encourages researchers to consider more sophisticated weighting mechanisms for multi-
criteria decision problems. More importantly, the devised framework can be applied to
other regions of CPEC, and even other regions of BRI so that decisions and policies can be
based on sound information. The results from EVA research provide useful information for
policymakers to formulate effective eco-environment protection strategies.

4.2. Validation

Validation of the EVA map of Punjab province is necessary to promote the usefulness
of the framework adopted in this study. The detailed validation of the results requires
tremendous ground survey efforts, which is beyond the scope of this paper. Alternatively,
we have attempted a visual validation scheme using very high spatial resolution Google
Earth satellite imagery following the recommendation of Tolche et al. [112] (Figure 9). Two
randomly selected sites in each EVA zone are used for validation. When analyzed carefully,
Figure 9(i,ii) shows that area designated by our EVA model as very low is abundant in
natural resources and lacks anthropogenic disturbance. Figure 9(iii,iv) corresponds to low
vulnerability areas. It is visible that natural vegetation is less dense as compared to the very
low zone. Further, Figure 9(v,vi) shows medium vulnerability areas. It is visible in satellite
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imagery that the medium vulnerability zone characterizes areas with bare soil combined
with greenery and human settlement. Next, the high vulnerability zone generated by our
EVA model has pollution from industries and dense population (Figure 9vii,viii). Finally,
the sample area from a very high vulnerability zone (Figure 9ix,x) exhibits the scarcity
of natural resources and is subject to urban heat island effect or heatwave due to the
high density of impervious surface [113]. The confirmation of EVA results through very
high-resolution satellite imagery supports the reliability of our results.

Figure 9. Validation of selected areas in each EVA zone by visual interpretation. In each pair, the left side picture represents
the output by our EVA model, and the right-side immediate picture shows a satellite view of the same area.
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4.3. Proposed Actions for Protecting the Eco-Environment of the Region

The results show a large ‘medium’ eco-environmental vulnerability zone that might
be transferred to ‘high’ or ‘very high’ zone amid poor management practices and policies;
therefore, favorable ecological protection policies should be practiced in the region to pre-
vent the eco-environment from further degradation. China already changed BRI to Green
BRI and established ‘Green Belt and Road Initiative center’ to develop research-based
policies, advisory, and actions to build ecologically friendly and green BRI corridors [114].
Similarly, recognizing that overlooking the sustainability of eco-system services, the goals
of CPEC investment cannot be met in isolation. Pakistan–China governments have de-
cided to turn CPEC into a green model BRI to protect and conserve the region’s natural
environment [6]. Accordingly, the GOP has launched the “Clean Green Pakistan” project
to ramp up efforts to combat climate change and restore natural habitats. In the first phase,
13 cities from Punjab are also included in the project. There is a need for strengthening
the knowledge and practices among the communities about eco-environmental protection.
There should be more effective green policies such as promoting the use of electric vehicles
and planting forests whenever trees in a region are cut due to economic development such
as road construction. Eco-environment preservation rules must be defined for industries,
and authorities should ensure the stringent implementation of policies.

4.4. Prospects of the Study

Although our research has strong policy implications, there are still some limitations
in the current study, and some suggestions on future related research are proposed. The
indicator system developed for EV evaluation can be improved by considering more
suitable indicators. For example, more types of socio-economic data, as suggested by
Batar et al. [115], can be included in the study. Their suggested parameters are GDP, per
capita income, employment ratio, sex ratio, electric power usage, employability, human
development index, and funds for science and technology. Similarly, other datasets such
as net primary productivity (NPP), detailed LULC, and updated facts and figures about
CPEC should be part of future studies to achieve more actionable results in the region;
however, these types of datasets are either not produced on scale or are closed source, so
their inclusion is subject to accessibility of these datasets. In future studies, the indexes
can be further screened and applied via a multicollinearity test [116]. Further, this study
will be expanded to other parts of the CPEC project. We also plan to extend our study to
different years to investigate the spatial and temporal variation of the EV. The participating
governments should encourage data-sharing initiatives such as Digital Belt and Road
(DBAR) program and the Big Earth Data Science Engineering Project (CASEarth) for
facilitating the research and development in the region [117,118].

5. Conclusions

This research concentrates on the EVA of Punjab province, one of the important regions
in CPEC. By fully considering the eco-environmental conditions and availability of datasets
in Punjab, the present study chose twenty-two indicators that are broadly categorized
into six groups to construct its EVA model. The model is supported by GIS for spatial
analysis and MCDM-BWM for calculating weights of relative importance for indicators.
The indicators are constructed from RS data, meteorological data, published reports, DEM,
and CPEC projects data. The indicators and their weights are computationally combined
to synthesize the EV map of Punjab province. The resultant map of EV in Punjab is
classified into five levels, namely very low, low, medium, high, and very high vulnerability
levels. The results reveal 4.64%, 59.45%, 33.32%, 2.51%, and 0.08% of the total area in each
vulnerability level, respectively. Furthermore, there are 10 districts where the ‘medium’
vulnerability zone is dominant and 26 districts where ‘low’ vulnerability zone is dominant.
Similarly, there are 12 districts where ‘very low’ vulnerability zone portrays high values
in parallel with other vulnerability zones values. The EVA of Punjab province reflects
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the comprehensive effect of natural factors and anthropogenic activities booming due to
CPEC realization.

This study gives an opportunity to researchers by providing ideas and a basic frame-
work to research EVA in BRI countries while looking at a wide range of scales from local,
regional, and country levels. The potential future extension of this study is to update
eco-environmental vulnerability status after every five years and integrate more detailed
information on CPEC projects in the EVA framework.

The countries participating in BRI in general and countries advancing CPEC (Pakistan
and China) in particular should devise a mechanism to publicly share datasets such as high-
resolution satellite RS data for construction and validation of indicators; socio-economic
datasets such as financial self-sufficiency rate, human development index, per capita
income, scientific research funds, etc.; climate data such as temperature, precipitation,
etc. to allow scientists to expand the EVA framework by incorporating more indicators.
Naboureh et al. [119] already reported the challenges due to the non-availability of detailed
reference LULC data in the BRI region. The timely availability of the dataset will not
only ensure progress in EVA research, but other fronts such as hydrological, geological,
agriculture, and the political regime will also benefit. This way, the funds allocated for
research can be utilized fully, and more actionable insights can be sought from research
activities. The continuous monitoring of the eco-environment status of all the regions of
BRI will ensure that the success of the BRI continues to be sustainable and that the world
can benefit from this massive investment.

Author Contributions: Conceptualization, Muhammad Kamran and Ainong Li; methodology,
Muhammad Kamran; software, Muhammad Kamran and Yuan Jin; validation, Jinhu Bian, Guang-
bin Lei, and Xi Nan; formal analysis, Muhammad Kamran, Guangbin Lei, Xi Nan; data curation,
Muhammad Kamran; writing—original draft preparation, Muhammad Kamran; writing—review
and edit-ing, Ainong Li and Jinhu Bian; visualization, Muhammad Kamran, and Yuan Jin; supervi-
sion, Ainong Li; funding acquisition, Ainong Li and Jinhu Bian. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was jointly funded by the Strategic Priority Research Program of the Chi-
nese Academy of Sciences (CAS) (XDA19030303), the National Natural Science Foundation of
China (41631180, 41701432), the National Key Research and Development Program of China (No.
2020YFA0608702), the 135 Strategic Program of the Institute of Mountain Hazards and Environment,
CAS (SDS-135-1708), and the Youth Innovation Promotion Association CAS (Grant 2019365).

Data Availability Statement: We extend our thanks to all the data providers. The datasets used in
this study are available from their parent sources listed in “Section 2.2 data sources” of this article.

Acknowledgments: Authors associated with the University of Chinese Academy of Sciences (UCAS)
gratefully acknowledge their institution. Muhammad Kamran acknowledges the sponsorship of CAS,
the “Belt and Road” Master Fellowship program. We are also thankful to the Pakistan Meteorological
Department (PMD) for sharing the temperature and precipitation data under their “promote academic
research” policy.

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. J. Geo-Inf. 2021, 10, 625 21 of 31

Appendix A

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 23 of 35 
 

 

 
Figure A1. Maps of indicators belonging to hydrometeorology group (G1): (a) normalized difference moisture index; (b) 
normalized difference water index; (c) distance from hydrological network; (d) temperature; (e) precipitation. 

Figure A1. Maps of indicators belonging to hydrometeorology group (G1): (a) normalized difference moisture index;
(b) normalized difference water index; (c) distance from hydrological network; (d) temperature; (e) precipitation.



ISPRS Int. J. Geo-Inf. 2021, 10, 625 22 of 31
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 24 of 35 
 

 

 
Figure A2. Maps of indicators belonging to socio-economics group (G2): (a) normalized difference built-up index; (b) 
population; (c) distance from road network; (d) distance from cities; (e) distance from the railway network. 

Figure A2. Maps of indicators belonging to socio-economics group (G2): (a) normalized difference built-up index; (b)
population; (c) distance from road network; (d) distance from cities; (e) distance from the railway network.



ISPRS Int. J. Geo-Inf. 2021, 10, 625 23 of 31

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 25 of 35 
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Figure A5. Maps of indicators belonging to hazards group (G5): (a) landslide hazard risk; (b) drought
hazard risk; (c) flood hazard risk.
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Figure A6. Maps of indicators belonging to CPEC projects group (G6): (a) distance from polygon
CPEC projects; (b) distance from transmission CPEC project; (c) distance from railway CPEC projects;
(d) distance from Orangeline CPEC project.
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Table A1. Classification and index value assigned to twenty-two indicators of six groups.

Hydrometeorology (G1) Socio-economics (G2) Land Resources (G3) Topography (G4) Hazards (G5) CPEC Projects (G6)
j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20 j21 j22 Index

value value meter ◦C mm value people.sqkm meter meter meter value description ◦ angle meter degree description description description meter meter meter meter no units

No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data No Data 4000.01–
261,643.781

1000.01–
312,381.25

3000.01–
215,535.672 500.01–215,535 0

0.6–0.942 −0.768–
0.024 0–400 14.95–

16.906 14.5–26.896 −0.98–
(−0.52) 0.006–2.743 30,000.01–

97,583.297
130,000.01–

140,910
17,000.01–

138,078 0.466–0.811

Irrigated
croplands

and built-up
areas

0–1.61 0–1.61 Flat (−1–0) Very low Very low Very low 3500.01–4000 500.01–1000 2500.01–3000 400.01–500 1

0.332–0.6 0.024–
0.209 400.01–1200 16.906–

18.091
26.896–
37.676 −0.52–0.378 2.743–9.131 18,000.01–

30,000
100,000.01–
1,300,000

10,000.01–
17,000 0.329–0.466

Rainfed
croplands

and irrigated
croplands

1.62–5.79 1.62–5.79 North
(0–22.5) - - - 3000.01–3500 - 2000.01–2500 300.01–400 2

- - 1200.01–2500 18.091–
19.082

37.676–
52.767 - 9.131–20.08 14,000.01–

18,000
70,000.01–

100,000
7000.01–
10,000 -

Irrigated
croplands
and bare

areas

5.8–12.22 5.8–12.22 Northeast
(22.5–67.5) Low Low Low 2500.01–3000 - 1500.01–2000 200.01–300 3

- 0.209–
0.301 2500.01–4000 - 52.767–

70.554 −0.378–0 20.08–36.505 10,000.01–
14,000

20,000.01–
70,000 5000.01–7000 0.18–0.329

Irrigated
croplands

and
vegetation

12.23–21.51 12.23–21.51 East
(67.5–112.5) - - - 2000.01–2500 - 1000.01–1500 100.01–200 4

0.107–
0.332 - 4000.01–8000 - 70.554–

86.723 - 36.505–60.229 6000.01–
10,000

15,000.01–
20,000 3000.01–5000 −0.01–0.18

Rainfed
croplands

and
vegetation

21.55–32.15 21.55–32.15 Southeast
(112.5–157.5) Medium Medium Medium 1500.01–2000 - - - 5

- 0.301–
0.393

8000.01–
10,000

19.082–
19.909

86.723–
101.275 0–0.4 60.229–90.34 4000.01–6000 10,000.01–

15,000 1500.01–3000 -
Bare areas &

cropland
vegetation

32.16–43.08 32.16–43.08 South
(157.5–202.5) - - - 1000.01–1500 - - - 6

−0.017–
(0.107) - 10,000.01–

130,000 - 101.275–
119.6 - 90.34–136.876 2500.01–4000 5000.01–

10,000 500.01–1500 −0.706–0.01
Bare areas
and sparse
vegetation

43.09–54.97 43.09–54.97
Southwest

(202.5–247.5)
West

(247.5–292.5)
High High High 500.01–1000 - 500.01–1000 - 7

−0.568–
(−0.017) 0.393–0.7 13,000.01–

153,633.078
19.909–
21.975

119.6–
151.939 0.4–0.824 136.876–

232.685 0–2500 0–5000 0–500 - - 54.98–81.98 54.98–81.98
Northwest

(292.5–337.5)
North

(337.5–360)
Very High Very High Very High 0–500 0–500 0–500 0–100 8
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