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Abstract: Soil moisture is one of the critical variables in maintaining the global water cycle balance.
Moreover, it plays a vital role in climate change, crop growth, and environmental disaster event
monitoring, and it is important to monitor soil moisture continuously. Recently, Global Navigation
Satellite System interferometric reflectometry (GNSS-IR) technology has become essential for moni-
toring soil moisture. However, the sparse distribution of GNSS-IR soil moisture sites has hindered
the application of soil moisture products. In this paper, we propose a multi-data fusion soil moisture
inversion algorithm based on machine learning. The method uses the Genetic Algorithm Back-
Propagation (GA-BP) neural network model, by combining GNSS-IR site data with other surface
environmental parameters around the site. In turn, soil moisture is obtained by inversion, and
we finally obtain a soil moisture product with a high spatial and temporal resolution of 500 m per
day. The multi-surface environmental data include latitude and longitude information, rainfall, air
temperature, land cover type, normalized difference vegetation index (NDVI), and four topographic
factors (elevation, slope, slope direction, and shading). To maximize the spatial and temporal res-
olution of the GNSS-IR technique within a machine learning framework, we obtained satisfactory
results with a cross-validated R-value of 0.8660 and an ubRMSE of 0.0354. This indicates that the
machine learning approach learns the complex nonlinear relationships between soil moisture and
the input multi-surface environmental data. The soil moisture products were analyzed compared to
the contemporaneous rainfall and National Aeronautics and Space Administration (NASA)’s soil
moisture products. The results show that the spatial distribution of the GA-BP inversion soil moisture
products is more consistent with rainfall and NASA products, which verifies the feasibility of using
this experimental model to generate 500 m per day the GA-BP inversion soil moisture products.

Keywords: soil moisture; GNSS-IR technology; high spatial and temporal resolution; GA-BP neural
network

1. Introduction

Soil moisture is an essential parameter of the global surface water cycle and is also a
physical surface quantity that has long been studied with interest. Monitoring soil moisture
on a large scale is significant for agriculture, hydrology, and the geographic environment [1].
It also plays a vital role in the climate system and extreme weather such as droughts, floods,
and inundation. The persistence of extreme weather is relatively short-lived, and soil
moisture has a high memory compared to the atmosphere. In seasonal time scales, soil
moisture is of great use [2]. For this reason, it is of more practical importance to achieve
soil moisture inversion at a large scale, with high accuracy, low cost, and high spatial and
temporal resolution.
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The advent of remote sensing technology has made it possible to estimate and monitor
surface parameters significantly. Remote sensing satellites can measure soil moisture with
uniform accuracy over large spatial scales by constant revisit intervals. Commonly used
remote sensing techniques include optical remote sensing and microwave remote sensing.
Among the remote sensing techniques capable of measuring soil moisture, microwave
remote sensing is the most promising technique for measuring soil moisture with shorter
revisit times by sensing the dielectric properties of soil moisture [3,4]. Soil Moisture
and Ocean Salinity (SMOS), launched by the European Space Agency, and Soil Moisture
Active and Passive (SMAP), launched by NASA in 2015, are the predominant soil moisture
missions today [5,6]. Both enable soil moisture monitoring globally by carrying L-band
instruments to detect soil moisture in the top 5 cm. It provides soil moisture inversion
with a spatial resolution of about 40 km and a revisit time of 2–3 days, with an accuracy
requirement of 0.04 cm3cm−3 [7]. Meanwhile, the SMAP mission provides a high spatial
and temporal resolution product with 3 km spatial resolution and 2–3 days revisit time
with the help of rotating antennas until the hardware fails in mid-2015 [8,9].

However, microwave wavelengths are hundreds to millions of times longer than
visible and infrared light, resulting in a low spatial resolution of microwave soil moisture
products, which cannot represent localized soil moisture variations in detail. For this
reason, a large number of downscaling studies based on the SMOS and SMAP missions
have been carried out. It has become an ongoing research hotspot to improve the spatial
and temporal resolution of soil moisture products through algorithms. Piles et al. used a
combination of a relatively noisy 3 km radar backscatter coefficient and a more accurate
36 km radiometer based on the SMAP task, generating an optimal 10 km soil moisture
product with better performance than the reflectance radiometer alon0065 [10]. On this
basis, Piles combined the accuracy of SMOS observations with the high spatial resolution of
visible/infrared satellite data, effectively capturing soil moisture variability at spatial scales
of 10 and 1 km without a significant reduction in root mean square error [11]. With the
SMAP mission, Narendra et al. combined coarse-scale radiometry with radar observations
detectable at fine-scale spatial heterogeneity; to produce a high-resolution best soil moisture
estimate at 9 km, further improving the spatial resolution and accuracy of soil moisture [12].
Knipper et al. even combined SMOS and SMAP missions with information from a high
spatial resolution imaging spectrometer to obtain higher resolution (1 km) soil moisture
estimates [13]. However, microwave reflections from the soil surface are affected by the
state of soil moisture and by environmental factors such as surface roughness, vegetation
elements, and interactions with the atmosphere. For this reason, soil moisture inversion
using microwave remote sensing is susceptible to non-soil moisture factors and thus error,
which may lead to inaccurate soil moisture inversion [14,15]. Therefore, better methods are
needed to obtain soil moisture products with high spatial and temporal resolution.

The advent of Global Navigation Satellite Systems (GNSS) has provided us with
a new paradigm for monitoring long-time series soil moisture information. It uses the
same L-band remote sensing technology as the microwave. The difference, however, is
that this technique interferes with the direct signal emitted by GNSS with the reflected
signal reflected by the ground at the ground receiver. The interference contains changes
caused by differences in the ground surface, which monitors the physical parameters of
the Earth’s surface [16–19]. In addition, Global Navigation Satellite System-Reflection
(GNSS-R) technology and Global Navigation Satellite System-Interferometry (GNSS-IR)
technology have been gradually developed based on this technology [20,21]. Because of
its advantages, such as all-weather, all-day, and high spatial and temporal resolution, it
has been widely used in the fields of soil moisture, sea surface wind field, sea tide, snow
depth, and vegetation change [22–27]. For soil moisture research, it can be further divided
into ground-based GNSS-IR, airborne GNSS-IR, and satellite-based GNSS-R techniques,
depending on the location of its GNSS receiver. It has been shown that the effective sensing
area of ground-based GNSS-IR reaches at least 120 m2 and can reach more than 1000 m2

by combining multiple satellite tracks. It effectively monitors soil moisture from 0 to
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5 cm in depth, achieving high accuracy inversion from bare soil to vegetation cover [28,29].
However, the relatively sparse distribution of GNSS stations eventually leads to the inability
to achieve spatial continuity in soil moisture monitoring using ground-based GNSS-IR
technology. In terms of airborne GNSS-IR, Sánchez et al. measured ground soil moisture
by airborne GNSS-IR technique; it was jointly analyzed with maps with a high spatial
resolution of reflectance, surface temperature, and digital surface models, and experiments
showed that topography has an important influence on GNSS-IR signals [30]. Castellvi
et al. combined hyperspectral imagery and airborne GNSS-IR technique inversion of
soil moisture; a comparison with Airborne radiometer at L-band (ARIEL) soil moisture
estimation was performed to obtain a high-resolution soil moisture product [31]. However,
there are flight limitations and a relatively small range due to the airborne GNSS-IR
technique. For this reason, the satellite-based GNSS-R technology, which loads GNSS
receivers on a small satellite constellation for soil moisture monitoring, was developed [32].
It has become a hot topic of current research because of its advantages of high spatial
resolution and low revisit time. Kim et al. developed a relative signal-to-noise ratio
(rSNR) for deriving terrestrial soil moisture based on satellite-based GNSS-R; combining
the rSNR with soil moisture values from SMAP gives daily soil moisture estimates [33].
Clarizia et al. also used the reflectance provided by satellite-based GNSS-R, combined
with the auxiliary vegetation and roughness provided by the SMAP mission information
to give daily soil moisture estimates in a grid with a resolution of 36 km × 36 km [34].
In addition to this, a few authors have replaced traditional algorithms with machine
learning methods. It also combines a small amount of auxiliary data to improve the
spatial and temporal resolution of soil moisture estimation. Fernández et al. proposed an
algorithm to train a neural network using measured data to invert soil moisture from SMOS
observations, and experiments showed that the neural network is an effective nonlinear
regression tool [35]. Eroglu et al. proposed an artificial neural network-based method
to retrieve daily soil moisture; soil moisture data from ground-based GNSS-IR and other
auxiliary data, including normalized difference vegetation index (NDVI), vegetation water
content (VWC), terrain elevation, terrain slope, and h-parameter (surface roughness) were
input into the model modeling; finally, they obtained daily soil moisture estimates in a
9 km × 9 km grid [36]. Yuan et al. used neural networks to invert soil moisture using
point-surface fusion and combined SMAP and multiple in situ observed soil moisture
data based on generalized regression neural networks to build a soil moisture estimation
model, ultimately improving the accuracy of the 9 km product of the SMAP task [37]. A
follow-up study overcame the scale mismatch problem caused by a small spatial extent
based on the triple configuration technique and used neural networks to combine bright
temperature data from SMAP and other auxiliary data to build soil moisture estimation
models [38]. Cui et al. combined soil moisture data from the Fengyun-3B satellite with
surface temperature, normalized difference vegetation index, albedo, digital elevation
model based on generalized regression neural networks, longitude, and latitude; finally,
they improved the spatial and temporal resolution of the Fengyun-3B satellite from 0.25◦

and 2–3 days to 0.05◦ and one day [39]. However, most of these studies were based on the
Spatio-temporal resolution of existing products, either improving the spatial or temporal
resolution of the dataset, relying too much on the Spatio-temporal resolution of existing
satellite-based GNSS-R products without comprehensive improvement. Also, the influence
of surface environmental elements is not fully considered in using auxiliary data, such as
rainfall, altitude, and some other vital factors that are not input.

In this paper, we propose a multi-data fusion learning method based on machine
learning by combining ground-based GNSS-IR technology soil moisture data and surface
environmental data. A multi-data fusion soil moisture model is constructed to obtain a spa-
tially continuous soil moisture product of 500 m per day. We used surface environmental
data, including (latitude and longitude information, NDVI, rainfall, air temperature, land
cover type, and four topographic factors (elevation, slope, slope direction, and shading)).
Since the above surface environmental data and soil moisture are related in a complex
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non-linear manner, it is difficult to fuse multiple data types and map soil moisture using
traditional linear statistical regression algorithms. Compared with traditional algorithms,
machine learning techniques excel in dealing with complex non-linear problems. In partic-
ular, The Genetic Algorithm Back-Propagation Neural Network model optimized by the
genetic algorithm (GA) is highly stable and well fitted. Therefore, we input the processed
data into the trained GA-BP neural network model and finally obtained the soil moisture
map of 500 m per day for 15 days during 15 February 2014–1 March 2014 for the western
coast of the United States.

The rest of the paper is described below. Section 2 describes the ground-based GNSS-
IR data, the post-validation data National Aeronautics and Space Administration and the
U.S. Department of Agriculture (NASA-USDA) products, and the network structure of the
GA-BP model. Section 3 describes the study area and the pre-processing process of soil
moisture data and related geoenvironmental elements from GNSS-IR stations. Section 4
compares and analyzes the accuracy of the soil moisture products generated based on the
GA-BP model and the method’s feasibility. Section 5 gives the conclusion of the paper and
provides an outlook for future research.

2. Materials and Methods
2.1. PBO Project

The National Science Foundation’s (NSF) Plate Boundary Observatory (PBO), which
began construction in 2004, was completed in 2008 [40]. The PBO is a core network of 1100
continuously operating GNSS stations. The network also contains 1 Hz and 5 Hz high
sampling rate stations capable of observing millimeter changes in GNSS station locations
over days to years. The essence of this is GNSS satellites transmitting signals, which are
L-band microwave signals (~1.2 and ~1.5 GHz). The ground receiver antenna receives
both direct and reflected signals, while the reflected signals vary with soil moisture, snow
depth, and vegetation conditions. The changes in surface reflections are recorded in the
signal-to-noise ratio (SNR) data, which is then solved to quantify soil moisture, snow depth,
and vegetation growth rate. The network is the only one operating on the principle of
GNSS-IR technology. Soil moisture data from the PBO project can be downloaded from
the International Soil Moisture Network (ISMN) website and available on the PBO data
portal. The basic parameters of all stations of the PBO network in the study area are shown
in Table 1.

Table 1. Basic parameters of PBO measurement stations.

Name Parameters

Receiver Type TRIMBLE NETRS GPS
Antenna Type TRM29659.00
Rectifier type SCIT

Station height and sampling rate 2 m, 15 s
Effective depth for measuring soil moisture 0–5 cm

2.2. NASA-USDA Soil Moisture Data

National Aeronautics and Space Administration Goddard Space Flight Center (NASA
GSFC) provided the NASA-USDA global soil moisture data by the 1-D Ensemble Kalman
Filter (EnKF) data assimilation method. SMOS level 2 soil moisture observations were
generated by integrating them into a modified two-layer Palmer model [41]. Due to the low
resolution of SMOS itself, as a result, the NASA-USDA global soil moisture data generated
based on SMOS data has a low spatial resolution. The spatial resolution of this dataset is
only 0.25◦ × 0.25◦. This dataset includes both surface and subsurface soil moisture data,
but the soil moisture based on GNSS-IR can only reflect the variation of soil moisture
within 1–6 cm of the soil surface. Therefore, the surface soil moisture of the NASA-USDA
global soil moisture data is selected as the initial comparison data for the point-surface
fusion results. This paper obtained NASA-USDA global soil moisture through Google
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Earth Engine (https://developers.google.com/earth-engine/datasets/catalog/NASA_
USDA_HSL_soil_moisture#description, accessed on 6 March 2021) data.

2.3. GNSS-IR Technology for Inversion of Soil Moisture

SNR observations are the core computational data of GNSS-IR technology, an index
describing the signal quality of GNSS antennas. It is mainly influenced by the combination
of elements, such as receiver antenna gain, satellite altitude angle, and multipath effect [42].

The GNSS receiver receives both direct and reflected signals from GNSS satellites. The
continuous movement of GNSS satellites makes the GNSS direct reflection signal constantly
change, which makes the characteristic parameters of the interference waveform constantly
change over time, and ordinary geodetic receivers will record these changes in the form of
SNR [43]. Therefore, the study of SNR can estimate soil moisture through the change of the
characteristic parameters of the interference effect. The ground multipath error model is
shown in Figure 1.
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From Figure 1, the phase difference between the direct and reflected signals of the
GNSS satellite can be deduced as:

α =
4πh

λ
sin β (1)

where h denotes the vertical height of the GNSS receiving antenna from the ground and
β denotes the angle λ between the GNSS signal and the ground surface is the L carrier
wavelength. Further study reveals that the SNR can be expressed in terms of direct and
reflected signals as follows.

SNR2 = Q2
d + Q2

m + 2QdQm cos α (2)

In Equation (2), α denotes the phase difference between the direct and reflected signals
of GNSS satellites, and Qd and Qm denote the amplitudes of the direct and reflected
signals of GNSS satellites, respectively. Chew et al. [44] found that after removing the
direct signal amplitude Qd, only the reflected signal amplitude Qm is retained in the SNR
observations. There is a certain sine or cosine relationship between Qm and sinβ, which
can be expressed as:

SNRD = Qm

(
4πh

λ
sin β + ϕm

)
(3)

In Equation (3), ϕm denotes the relative delayed phase. In the case where SNRD is
known, we can use the Lomb-Scargle spectral analysis transform to find the frequency 4πh

λ
and then solve for the magnitude Qm and the relative phase ϕm using a least squares fit.

https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_soil_moisture#description
https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_soil_moisture#description
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A strong correlation between ϕm and soil moisture values was found by Chew et al. [45],
which is the inverse the best parameter for inversion of surface soil moisture.

Based on this, Chew et al. [46] smoothed phase ϕm using a moving average filter to
remove the expected phase variation due to vegetation and add the residual water content
in the soil (SMCr) to produce a phase ϕsm that reflects only the variation in soil moisture.
The phase ϕsm was then related to soil moisture SM is expressed as follows:

SM = Sϕsm + SMCr (4)

In Equation (4), S is the expected slope (between soil moisture and phase), ϕsm in-
dicates the phase change due to soil moisture, and SMCr is available through public
data [47].

2.4. Data Pre-Processing

The objective of the method is to obtain soil moisture products with a high spatial and
temporal resolution by fusing ground-based GNSS-IR data with surface environmental
parameters extracted from optical remote sensing. The specific process of the multi-data
fusion model in this study is described below, and the flow chart of the method is shown
in Figure 2.

(1) Data processing. Download the soil moisture retrieved by GNSS-IR technology
through the International Soil Moisture Network (ISMN). Use Google Earth Engine (GEE)
to obtain image data of surface environmental elements (latitude, longitude, NDVI, temper-
ature, rainfall, land cover type, slope, aspect, elevation, and shadow) of the experimental
area (1 January 2014–1 March 2014). GEE’s image pyramid strategy specifies the output
image with a spatial resolution of 500 m and a temporal resolution of 1 day.

(2) Build the data set. According to each GNSS station’s latitude and longitude
information, the corresponding image value of each GNSS station is extracted. Ten surface
environment elements are used as the input of the GA-BP neural network model to form
the input data set. Take GNSS-IR soil moisture as the training target (output data) to
construct an output data set. This makes the input layer of the GA-BP neural network have
10 neurons, while the output layer has only one neuron.

(3) Model building. Import the modeling input data set and the modeling input data
set into Matlab, and divide all the data into 70%, 15%, and 15% as the training set, validation
set, and test set for model construction. Use the divided training set and confirmation set
to train the GA-BP neural network model, and use the test set to test the accuracy of the
trained model. Save the GA-BP neural network model (trained qualified neural network)
whose accuracy reaches the threshold.

(4) Accuracy verification. First, the reliability of the neural network model that reaches
the threshold is tested by the tenfold cross-validation method. Secondly, a verification
input data set formed 10 kinds of surface environment elements corresponding to the
GNSS stations not involved in the modeling. Input the validation data set into the trained
neural network model and output the GA-BP inversion soil moisture data set. The GA-
BP inversion soil moisture data set is compared and analyzed with the GNSS-IR soil
moisture corresponding to the stations not involved in the modeling. If the accuracy
meets the requirements, the neural network model trained to reach the threshold is reliable
and effective.

(5) Production soil moisture map. Each 500-m square in the experimental area cor-
responds to a latitude and longitude coordinate, and 10 kinds of surface environmental
elements corresponding to all latitude and longitude coordinates in the experimental area
are extracted through the latitude and longitude coordinates to form a map input data set.
Input the mapped input data set into the GA-BP neural network model that reaches the
threshold and obtain the GA-BP inversion soil moisture data set for mapping through the
training output. Import the GA-BP inverted soil moisture data set used for mapping into
ArcGIS, and use ArcGIS “Point to raster” function to convert all the GA-BP inverted soil
moisture data sets used for mapping into raster images (Soil moisture map).
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(6) Soil moisture map verification. The soil moisture map (500 × 500 m) and NASA-
USDA (0.25◦ × 0.25◦) products, NDVI (500 × 500 m), and rainfall (500 × 500 m) were
compared and analyzed. Due to the different units and resolutions of the four Same. We
only analyze whether the generated soil moisture map is qualified by changing the map
spots and the value between the same areas. On this basis, we extracted 392 sites based on
the latitude and longitude of each NASA grid center and analyzed the correlation between
the NASA soil moisture at the sites and the soil moisture retrieved by GA-BP. Further,
evaluate the performance of GA-BP inversion of soil moisture.
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2.5. GA-BP Neural Network
2.5.1. BP Neural Network

Backpropagation (BP) neural network is a multilayer feedforward network model con-
sisting of two processes: forward propagation of information and backward propagation
of error [48]. It is a more widely used neural network with solid adaptability and learning
ability and can better solve nonlinear problems. Its essence is learning by stochastic gradi-
ent descent solving algorithm. The input and output layers output data are called forward
propagation, called backward propagation, using the weights and deviations calculated
in each layer to update the model for iteration. BP neural network mainly consists of the
input layer, hidden layer, and output layer. Its network structure is shown in Figure 3. Our
study’s input signals are latitude, longitude, NDVI, rainfall, air temperature, land cover
type, and four topographic factors (elevation, slope, slope direction, and shading); the
output parameter is GNSS-IR soil moisture. BP neural network model is implemented by
using the neural network toolbox of MATLAB. The number of neurons m in the implicit
layer of the BP neural network takes values between

√
2n + 1 and 2n + 1. n is the number

of neurons in the input layer, so we tested hidden layer neurons ranging from 7 to 21.
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Using a 10-fold coefficient performs best by validating that the best model performance is
obtained when the number of hidden layer neurons is 19. Also, set the number of training
steps for the BP neural network to 1000, the training accuracy to 0.001, and the learning
rate to 0.0001.
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However, the number of neurons in the hidden layer of the BP neural network needs to
be manually selected, and the weights and thresholds are also randomly generated, which
causes the BP neural network to converge slowly and quickly fall into a local minimum [49].
For this reason, this paper uses the GA algorithm to optimize the BP neural network.

2.5.2. The Genetic Algorithm

The GA algorithm is a global search computer algorithm derived mathematically
based on inheritance laws in nature [50]. Its essence is selecting good individuals from
the population; through crossover and mutation operations to obtain new individuals
of good quality. The advantages of the genetic algorithm: (1) It can quickly search the
whole solution in the solution space and has excellent global search capability. (2) It is
suitable for distributed computing, and natural parallelism speeds up the convergence
speed. (3) Simple, general, and wide range of applications. The GA algorithm is used to
implement the optimization of BP neural network weights. The adaptive adjustment of
the crossover and variance probability enables individuals to update the network weights
continuously, thus improving the BP neural network’s network convergence speed and
algorithmic accuracy. For this reason, this paper uses the GA algorithm to optimize the
BP neural network. The global search property of the GA algorithm is combined with the
powerful nonlinear learning ability of the BP neural network to improve the training ability
of the model. The BP neural network optimized by the GA algorithm is called the Genetic
Algorithm Back Propagation neural network. The calculation process of the whole GA-BP
neural network is shown in Figure 4.
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The content of the GA-BP neural network is divided into two parts: On the one hand,
the GA algorithm is used to globally search for the optimal solution to find a set of optimal
solutions. On the other hand, the optimal global solutions are used as the initial weights of
the BP neural network. In this study, the initial population size of the GA algorithm is set
to 50, the number of genetic generations to 100, the crossover probability to 0.3, and the
variance probability to 0.09.

2.6. Validation Method and Evaluation Metrics

This study applied a 10-fold cross-validation technique to test the model overfitting
and predictive ability [51]. The training and validation data were run in 10 random
iterations. In each iteration, the entire data set was randomly divided into ten equal-sized
portions. One of the copies is used as the validation sample, and the remaining nine
copies are used as the training sample for one iteration. In the next iteration, one of the
previous training samples is used as the validation sample, and the remaining nine are
used as the training samples in the next iteration. Repeat this step nine times until ten
iterations are completed, and we will get the prediction results for the whole data set of
soil moisture. The model cross-validation results are obtained by averaging the ten results.
These averaged cross-validation results provide a good check of whether the model is
overfitted. When the model is poor, the cross-validation results are also poor, and the
model with the most significant correlation coefficient is selected as the best-fit model for
subsequent predictions.

To verify the validity of each model, we quantitatively evaluated the training and test
sets using the Pearson correlation coefficient R, root mean square error (RMSE), unbiased
root mean square error (ubRMSE), and mean bias (bias). R describes the degree of model
convergence between +1 and 1. Where +1 indicates a perfect positive linear correlation,
0 indicates no linear correlation, and 1 indicates a perfect negative linear correlation. RMSE
and bias measure the deviation between the inverse soil moisture values and the measured
values. RMSE of 0 indicates no deviation. The bias of 0 indicates an unbiased estimate,
more remarkable bias than 0 is an overestimate, and less than 0 is an underestimate. In
general, the smaller the two, the better. ubRMSE is the random error. ubRMSE eliminates
possible additional bias when the measured value is considered the actual value, and the
smaller the value is, the better the model performance is.
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3. Study Area and Data
3.1. Study Area

Considering that the dense distribution of the stations affects the modeling effect in
local areas [52]. Most GNSS stations are deployed in the western coastal region, and the
distribution is denser. In this study, we select the western part of the continental United
States (32◦ N–39◦ N, 114◦ W–123◦ W) as the study area. We obtained soil moisture values
for a total of 60 days from 1 January 2014 to 1 March 2014 through The International Soil
Moisture Network (ISMN) [53] (https://ismn.geo.tuwien.ac.at/en/, accessed on 6 March
2021) for the experimental study. Here are 50 stations in the experimental area, considering
the density of GNSS station distribution and land cover type. In this paper, 44 stations
(brown circles) were selected to participate in the point-surface fusion modeling training;
6 stations (gray circles) were selected as test stations, which were not involved in the
modeling and only used as the last results verification. Figure 5a,b show the GNSS stations
and the distribution of land cover types in the selected experimental area, respectively.
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area in green, modeling stations in brown, and validation stations in gray; (b) land cover type of the
experimental area.

As seen in Figure 5b, the primary topography of the region is high mountains and
plateaus. The central and northern parts of the test area are mostly evergreen coniferous
forests as well as grasslands. The central part is the central valley, which is cultivated
mainly by agricultural land. The left side of the central valley is the Coastal Range; the right
side is the Sierra Nevada, which is dominated by evergreen coniferous forests and savannas.
The southeastern part of the test area is barren, primarily desert and open sagebrush. It can
be seen that each direction of the experimental area has unique geomorphological features
and the geographical conditions are pretty different. In terms of climate, the western coastal
region of the test area has a Mediterranean climate, the Sierra Nevada region has a highland
mountain climate, and the southern and southeastern regions have a tropical desert climate.
Although there are multiple climates in the test area, the overall Mediterranean climate is
still present due to the overall proximity to the ocean. In terms of rainfall, the northwestern
part is near the coast and receives more rainfall. The central valley is a mountainous area
with a high elevation and less rainfall. The southeastern desert region has no rainfall. Thus,
it can be seen that the soil moisture in the test area will have significant differences both in
space and time, and the experiment has strong feasibility.

https://ismn.geo.tuwien.ac.at/en/
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3.2. Other Geographic Auxiliary Data

To ensure the comprehensiveness and reliability of the soil moisture inversion model,
we used the surface environmental factors around the measurement stations as input data
sets. These data are (1) Latitude and longitude information, calculated by ArcGIS based on
World Geodetic System-1984 (WGS-84) Coordinate System. (2) Land cover type, extracted
from the International Geosphere-Biosphere Program (IGBP) land cover map based on Mod-
erate Resolution Imaging Spectroradiometer (MODIS) to obtain land cover class data [54].
(3) normalized difference vegetation index, based on the MODIS water surface reflectance
daily global 500 m dataset [55], was calculated from the near-infrared (NIR) and infrared
(RED) bands of the reflectance data. The formula is NDVI = (NIR − RED)/(NIR + RED).
We used a sliding window of more than 16 days on average, centered on calculating the
NDVI for a particular day (eight days ahead and seven days past), obtaining the NDVI
value with slight fluctuation in short periods. (4) Topographic factors, which are usually
used to assess the influence of coarse surface over topography on soil moisture, are accessed
through the Google Earth Engine for the dataset [56]. Topographic data (elevation, slope,
slope direction, and shading) from the NASA Shuttle Rader Topography Mission Digital
Elevation 30m dataset were extracted with the help of the extremely high computing power
of the Google Cloud Platform. (5) Rainfall and air temperature are critical meteorological
parameters for the surface environment and climate change and also play an essential
role in vegetation growth and have a more substantial influence on soil moisture [57]. We
obtained the US region’s daily average air temperature and rainfall through the Phase Ro-
tated Intense Slow Moonbeam (PRISM) project [58]. (7) NASA-USDA global soil moisture
data generated based on SMOS data have a low spatial resolution and include surface
and subsurface soil moisture data. In this paper, we select the surface soil moisture of
NASA-USDA global soil moisture data as the preliminary comparison and validation
data for the point-surface fusion results. All the data mentioned above are available for
download through the Google Earth Engine, and the specific products used in this study
are listed in Table 2 below.

Table 2. Auxiliary data used in the study.

Environmental
Parameters

Spatio-
Temporal

Resolution
Project Time

Auxiliary
geographic

environment
data

NDVI 1 day/500 m MOD09GA 1 January 2014–1
March 2014

Land cover type 1 day/500 m MCD12Q1 2014

Rainfall, air
temperature 1 day/2.5′ PRISM 1 January 2014–1

March 2014

elevation, slope,
slope direction,

shading
30 m

NASA SRTM
Digital Elevation

30 m
2000

Validation data NASA-USDA
soil moisture 3 days/0.25◦ NASA GSFC 1 January 2014–1

March 2014

The above table shows that the maximum temporal resolution for all surface environ-
mental parameters is one day. Meanwhile, the Google Earth Engine sets the spatial image
resolution to 500 m when outputting images with specified spatial resolution according to
the image pyramid strategy. Therefore, this study’s final multi-data fusion of soil moisture
products has a spatial and temporal resolution of 500 m per day.
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4. Experiment and Analysis
4.1. Modeling

We input the processed input dataset (latitude and longitude information, rainfall, air
temperature, land cover type, NDVI and four topographic factors (elevation, slope, slope
direction, and shading); and the output dataset (ground-based GNSS-IR soil moisture data)
into the GA-BP neural network for iterative training. We obtained the optimal GA-BP
multi-data fusion soil moisture model after 300 training cycles. Figure 6. shows scatter
plots of the Inversion values and GNSS-IR soil moisture actual values for the entire data set
of the optimal model and the test set, along with Pearson correlation coefficient R values,
RMSE, bias, and ubRMSE. In addition, Table 3 shows the accuracy statistics of the modeled
measurement stations.
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Figure 6. (a) Scatterplot of random sampling retrieval for the whole dataset; (b) Scatterplot of the test
set data (15 February 2014–1 March 2014) for 44 modeling stations, providing Pearson correlation
coefficients R, RMSE, bias, and ubRMSE.

Table 3. Accuracy statistics of modeled measurement stations including R, RMSE, bias, and ubRMSE.

Accuracy Index Scope Number of Measuring Stations Average

R
0–0.4 5

0.89670.4–0.6 3
0.6–0.1 36

RMSE
<0.04 29

0.04080.04–0.06 10
>0.06 5

bias
<0.02 22

0.00020.02–0.03 16
>0.03 6

ubRMSE
<0.04 33

0.04070.04–0.06 9
>0.06 2

It was considering that the Pearson correlation coefficient R takes the values of [0–0.4],
[0.4–0.6], and [0.6–1] as weak, medium, and strong correlations, respectively. The above
table shows that 33 stations with Pearson correlation coefficients greater than 0.6 are
strongly correlated, accounting for 75% of all stations. 3 stations are moderately correlated,
and the remaining 18.1% are weakly correlated. The overall correlation of all stations
reached 0.8770, and despite the poor performance of some stations, a nonlinear regression
of the entire data was very effective. Like the correlation, the SMAP task was produced
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with a precision of 0.04 due to its accuracy. Therefore, RMSE below 0.04 is considered
high performance, [0.04–0.06] as medium performance, and greater than 0.06 as more
unreasonable performance. In this case, there were 28 stations with RMSE less than 0.04,
accounting for 63.6% of all stations. We are further combined, with the ubRMSE, it can be
seen that there are 30 stations with ubRMSE less than 0.04 (high performance), accounting
for 68.1% of all stations. Based on the four of the above table, it can be seen that the short
delay estimation of our algorithm seems to be consistent with the average short delay level
of most stations. The vast majority of stations achieved good modeling results, except for a
few stations that did not meet expectations.

4.2. Model Validation

In order to test the feasibility of the above-trained GA-BP multi-data fusion soil
moisture inversion model to retrieve soil moisture in areas other than modeling, we
input 10 surface environmental elements from six specific sites that were not involved
in modeling. In the trained GA-BP neural network model, the output is GA-BP inverted
soil moisture. The GA-BP retrieved soil moisture was compared with the GNSS-IR soil
moisture of the characteristic site. Four indicators (Pearson correlation coefficient R, RMSE,
bias, and ubRMSE), were used to analyze their accuracy. The results are shown in Table 4.

Table 4. Accuracy statistics of the six unmodeled measurement stations.

Test Stations R RMSE Bias ubRMSE Land Cover Type

ANGUS_PROP 0.4040 0.0403 −0.0392 0.0092 Barren
CALCITYAPT 0.8824 0.0331 0.0273 0.0188 Open bushes

CARRIZORAN 0.9516 0.0490 0.0141 0.0470 Grassland
MOONEYCYN 0.8199 0.0734 −0.0635 0.0367 Grassland
MT_GLEASON 0.8800 0.0643 0.0170 0.0620 Savanna
WICKSRANCH 0.8342 0.0331 0.0071 0.0324 Grassland

As shown in Table 4, five Pearson correlation coefficients R are more significant than
0.6 for the six test stations. The highest correlation is 0.9329, which has a robust correlation.
The worst correlation is only 0.0143 for the stations in barren areas. Only one station has
an ubRMSE greater than 0.06, and four stations are less than 0.04. It can also be seen that
the stations with the land cover type of grassland have better inversions and fewer errors
in flat areas, and there are no gross errors. In addition to the rainfall factor, the model
is influenced by NDVI due to its significant influence. For this reason, in areas with no
vegetation cover, desert, there is no vegetation. It also means that there is no reasonable
NDVI, which influences the final inversion results. Although the test results of one or two
stations did not meet the expectations, and the errors were relatively large. However, the
vast majority of the tested stations achieved good results with minor errors. This shows
that the trained GA-BP multi-data fusion soil moisture inversion model is feasible and
accurate for inverting soil moisture in areas other than modeling.

In order to verify the correlation between NASA-USDA soil moisture, GNSS-IR soil
moisture, and GA-BP model inversion of soil moisture. We compare and analyze the
NASA-USDA soil moisture corresponding to the latitude and longitude of the 50 modeling
stations, the GNSS-IR soil moisture, and the soil moisture retrieved by the GA-BP model.
Because the units of the three are different, the error of the three cannot be calculated.
Therefore, this paper only uses the Pearson correlation coefficient R to verify, and the
comparison results are shown in Table 5.
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Table 5. Comparison of soil moisture values for NASA-USDA, PBO, and GA-BP models.

Accuracy Index Pearson’s Correlation Coefficient R

NASA-USDA and PBO
<0.6 0.6–0.8 >0.8 Average
12 7 31 0.8222

NASA-USDA and GA-BP inversion values
<0.6 0.6–0.8 >0.8 Average
14 6 30 0.8471

As seen in Table 5, 39 stations out of 50 with Pearson correlation coefficient r more sig-
nificant than 0.6 between NASA-USDA soil moisture values and GNSS-IR based inversion
of soil moisture, accounting for 78% of the total number stations. Meanwhile, among these
stations, less than 0.6, the NASA products of 7 stations are unchanged during the inversion
period, resulting in poor inversion results. The actual number of stations with fluctuations
is 43, which shows that the actual effect of our algorithm is better than expected. There are
31 stations that correlate greater than 0.8, accounting for 72% of the fluctuating stations. The
correlation between the soil moisture and NASA-USDA soil moisture values obtained from
the inversion of this paper is strong, with 40 stations correlating 0.6, accounting for 80% of
the total number of stations. There are 34 stations that correlate greater than 0.8, with an
average correlation of 0.7770. This shows that the GA-BP model in this paper is accurate
and consistent with the NASA-USDA soil moisture results, and the accuracy is better than
GNSS-IR soil moisture. Moreover, the resolution of the inversion of soil moisture by the
GA-BP model in this paper is higher than that of NASA-USDA soil moisture data, which
can better represent the differences and changes in soil moisture in the region. Therefore, it
can be shown that the fusion of multiple data of soil moisture using the neural network
proposed in this paper is feasible, and the fusion model based on GA-BP neural network
established in the previous paper is accurate and effective.

4.3. 500 m Daily Soil Moisture Map Generation

Due to the good predictive ability of the GA-BP model to retrieve soil moisture, we
combined all 10 surface environmental elements in the 500 × 500 squares in the experimen-
tal area into a map input set and input the qualified GA-BP neural network model trained
above to obtain Continuous soil moisture products in 500 m of space per day. Figure 7.
Comparison of the 15-day GA-BP inversion soil moisture map and the 5-day NASA-USDA
soil moisture product from 15 February 2014 to1 March 2014.

From Figure 7((a1)–(a4),(b1)–(b4),(c1)–(c4),(d1)–(d4),(e1)–(e4)) contrast can be seen.
The soil moisture map retrieved by GA-BP is consistent with the spatial distribution of
NASA-USDA soil moisture products. In the area with high NASA-USDA soil moisture
value, the soil moisture value retrieved by GA-BP is also high, the soil moisture value
retrieved by NASA-USDA is low, and the soil moisture value retrieved by GA-BP is also
low. However, the soil moisture map of NASA-USDA represented by (a4), (b4), (c4),
(d4), and (e4) has a low spatial resolution, which can not distinguish the terrain of the
experimental area, let alone show the change of soil moisture in each area in detail. It can
only reflect the overall, low-resolution soil moisture variation in the experimental area, and
it is challenging to distinguish soil moisture variation in different areas. It can only show
a whole patch of the same color, and the temporal resolution is low, which cannot reflect
the daily changes of soil moisture. In contrast, the soil moisture product generated in this
paper provides daily soil moisture changes over a 500-m range. Under the same climatic
conditions, whether it is the Central Valley floor in the center, the Coastal Mountains in the
west, the Sierra Nevada in the south, or the desert areas in the southeast, it can show the
differences in soil moisture in these regions in more detail.
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The (a4), (b4), (c4), (d4) of the NASA-USDA products show no considerable variation
in soil moisture during 15 February 2014–26 February 2014. This is basically consistent with
the GA-BP inverted soil moisture map ((a1)–(a3), (b1)–(b3), (c1)–(c3), (d1)–(d3)) generated
in this study. During this period, the soil moisture in each region did not change much.
The northeastern region is primarily grassland and evergreen coniferous forest with denser
vegetation cover. The southeastern part is a coastal area near the sea. The central part is
a predominantly agricultural area with year-round irrigation and more rain, resulting in
high soil moisture values in the areas mentioned above. The southwest is mostly a desert
area with little rainfall all year round, so the soil moisture values are low. In terms of
time, (e1)–(e3) is compared with (a1)–(a3), (b1)–(b3), (c1)–(c3), (d1)–(d3), and it can be seen
that in most areas the soil moisture have risen drastically. This is due to three consecutive
days of continuous rainfall in the eastern coastal and central regions during 27 February
2014–1 March 2014, which significantly increased the soil moisture value. At the same time,
during this period, the soil moisture map (e4) of NASA-USDA products also increased
significantly compared to (a4), (b4), (c4), and (d4). The soil moisture increase area in the
soil moisture map (e4) of NASA-USDA products is the same as the soil moisture map
(e1)–(e3) retrieved by GA-BP. This preliminarily shows that the soil moisture map retrieved
by GA-BP in this paper is accurate.

In order to further verify the reliability of the soil moisture map retrieved by GA-
BP in this study, we compared rainfall, NDVI map, and soil moisture. Existing studies
have shown that NDVI can reflect the vegetation coverage information and reflect the soil
moisture information under the vegetation coverage state [59]. In addition, precipitation
can be said to be the first influencing factor in bare-soil environmental areas. It also plays
a vital role in vegetation growth and significantly impacts soil moisture [60]. Figure 8.
shows the rainfall, NDVI, and GA-BP inverted soil moisture map from 27 February 2014 to
1 March 2014.

As seen in Figure 8(a1)–(a3), the NDVI in this region, which fluctuates up and down
in a small range, does not vary significantly. However, because NDVI is calculated by
waveband, the optical image information is highly susceptible to interference. Meanwhile,
in the desert and urban building areas without vegetation cover, the NDVI calculation
is seriously affected because of the low vegetation cover. This results in NDVI values
greater than 1 or less than 1 in a small number of places, making negative soil moisture
values in these areas. In later experiments, this study will be improved for different NDVI
calculations in these different areas. The distribution of NDVI in the region is also generally
consistent with the land cover type map in Figure 5b. The southwestern part is a desert,
barren area with basically no vegetation cover. For this reason, the NDVI values are
low, which also makes the soil moisture values in this region poorer compared to other
regions. The northeastern and central areas are primarily arable land, surrounded by
arable land as grassland; more peripheral are tall shrub-like vegetation and coniferous
forests, resulting in higher NDVI values in the eastern coastal and central areas of the
test area. (b1)–(b3) shows the rainfall distribution during the period, as we can see. The
central-eastern coastal area had substantial rainfall on 27 February 2014 (red box range), as
rainfall was directly and strongly influenced. The soil moisture model of this experiment
captures this vital information better, and the soil moisture values in the red-boxed area of
the GA-BP Inversion soil moisture map (c1) on that day have increased significantly. The
continuous rainfall at the exact location from 28 February 2014–1 March 2014 has further
increased the soil moisture values in this area. Our GA-BP Inversion soil moisture map
all reflects the soil moisture changes in these areas better. From the red boxed areas of the
GA-BP Inversion soil moisture maps of (c1)–(c3), we can see that the soil moisture at these
locations is directly affected by rainfall. The GA-BP inversion soil moisture map of this
experiment can better describe the soil moisture change.
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4.4. Product Accuracy Verification

In order to further evaluate the performance of GA–BP inversion of soil moisture map.
We calculate the R-value between the NASA–USDA product and the GA–BP Inversion soil
moisture map at 392 fixed points extracted from the study area. Since the NASA–USDA
product is only available for three days, for this reason, the GA-BP Inversion soil moisture
values were averaged with equal weights. Figure 9 shows the distribution of R-values
between NASA–USDA product and the GA–BP Inversion soil moisture at 392 fixed points,
and Table 6 shows the statistics of Pearson’s coefficient R at 392 sites.

Table 6. Pearson’s coefficient R statistics for site 392.

Accuracy Range

R 0 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1
Number of sites 25 20 22 27 46 253
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As seen in Table 6, 25 of the 392 fixed sites did not correlate due to the absence of soil
moisture fluctuations in NASA-USDA products. A total of 299 of the remaining 367 sites
had Pearson correlation coefficients R more significant than 0.6, accounting for 81.5% of
the total sites. There were 27 between [0.4–0.6] and 42 less than 0.4. Overall, the multi-
data fusion model in this study has strong reliability. As can be seen from Figure 9, the
regions with low Pearson coefficients are mainly concentrated in the southeastern part of
the experimental area, which is mostly desert and barren areas where the soil moisture
inversion is not so ideal. The soil moisture located in the eastern coastal region has a Pearson
coefficient greater than 0.8 in most places except for a few areas lacking fluctuations. It
can be seen that the GA-BP Inversion soil moisture in this study is consistent with the soil
moisture values of NASA products. In conclusion, the multi-data fusion soil moisture
inversion model based on GA-BP neural network in this experiment has a particular
facilitating effect for predicting soil moisture.

5. Conclusions

This study innovatively combines ground-based GRSS-IR soil moisture data with
surface environmental data. We construct a multi-data fusion soil moisture model based
on the GA-BP neural network to generate a soil moisture product of 500 m per day, which
improves existing products’ temporal and spatial resolution. Experiments were conducted
using data from 1 January 2014–1 March 2014, and 10 geoenvironmental elements (latitude
and longitude information, rainfall, air temperature, four topographic factors (elevation,
slope, slope direction, and shading), and NDVI) were input into the model. The correlation
coefficient R of the optimal model was obtained as 0.8660, and the ubRMSE was 0.0354.
The results showed that the GA-BP neural network could better construct the nonlinear re-
lationship between the geoenvironmental elements and soil moisture. Finally, we obtained
soil moisture products with a daily spatial resolution of 500 m, compensating for PBO sites’
spatial limitation. It also improves the time limit of the existing soil moisture products. We
finally obtained maps of the GA-BP inversion soil moisture products with 500 m spatial
resolution per day for a total of 15 days during 15 February 2014–1 March 2014. It was
analyzed by comparing with the NASA-USDA soil moisture products and rainfall for the
same period. The results show that the final generated soil moisture products are more
consistent with the NASA-USDA global soil moisture data generated based on microwave
remote sensing data. At the same time, the model inversion effect is better in areas with
low vegetation cover density and average in areas with high vegetation density or no
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vegetation cover. It is also highly consistent with rainfall distribution, and the soil moisture
value increases with the increase of rainfall. In conclusion, this paper demonstrates the
effectiveness of machine learning methods to obtain high spatial and temporal resolution
soil moisture products with great potential in predicting soil moisture through multiple
data fusion techniques.

Our work will focus on expanding the test area to cover the whole US or even the
entire world in the future. At the same time, we will explore the difference in NDVI
calculation in vegetated and non-vegetated areas to further improve the model’s accuracy.
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