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Abstract: The positioning accuracy of a ground-based system in an indoor environment is closely
related to the geometric configuration of pseudolites. This paper presents a simple closed-form equa-
tion for computing the weighted horizontal dilution of precision (WHDOP) with four eigenvalues,
which can reduce the amount of calculation. By comparing the result of WHDOP with traditional
matrix inversion operation, the effectiveness of WHDOP of the proposed simple calculation method
is analyzed. The proposed WHDOP has a linear relationship with the actual static positioning result
error in an indoor environment proved by the Pearson analysis method. Twenty positioning points
are randomly selected, and the positioning variance and WHDOP of each positioning point have
been calculated. The correlation coefficient of WHDOP and the positioning variance is calculated to
be 0.82. A pseudolite system layout method based on a simulated annealing algorithm is proposed
by using WHDOP, instead of Geometric dilution of precision (GDOP). In this paper, the constraints
of time synchronization are discussed. In wireless connection system, the distance between master
station and slave station should be kept within a certain range. Specifically, for a given indoor scene,
many positioning target points are randomly generated in this area by using the Monte Carlo method.
The mean WHDOP value of all positioning points corresponding to the synchronous pseudolite
layout is used as the objective function. The results of brute force search are compared with the
method, which proves the accuracy of the new algorithm.

Keywords: ground-based navigation; horizontal dilution of precision (HDOP); simulated annealing;
positioning accuracy

1. Introduction

As a commonly used positioning technology, the global navigation satellite system
(GNSS) can provide service for the ground, and the ocean, in all weather conditions. How-
ever, in some more challenging situations, such as in the canyon or the indoor environment,
if the number of satellites received by the receiver in these areas is less than 4, the re-
ceiver loses the ability to continue providing position information to the user [1–4]. A
new positioning system is needed in these areas with weak GNSS signals, such as indoors
or canyons.

In order to solve this problem, the design of pseudolites was introduced. The ground-
based navigation system composed of pseudolites emits signals similar to GNSS, which
can be used to enhance GNSS positioning services or even provide positioning services
as an independent system [5–7]. In this positioning system, the position of pseudolite can
be changed flexibly. However, different from GNSS, the distance between pseudolite and
user is much closer than navigation satellite. Its geometric configuration has a significant
influence on the whole positioning system. Like GNSS, ground-based navigation systems
also use dilution of precision (DOP) to evaluate the geometric configuration [8]. As the
number of satellites increases, the DOP calculation becomes larger. A lot of previous studies
have been proposed to try to compute GDOP without matrix inversion or to resort to the
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co-factors approach [9]. These methods are mainly divided into two categories, one is based
on the neural network structure, and the other is based on the extracted feature values.

Jwo and Lai used a back-propagation neural network (BPNN) for the GNSS satellite
GDOP approximation [10]. Based on BPNN, these methods do not require matrix inver-
sion operation. However, points with large deviations from the true results will appear,
introducing calculation errors. In order to improve the accuracy and robustness of the net-
work, a large amount of data is often required, which increases the computational burden.
Zhu (1992) proposed a calculation method that uses the three intermediate variables a, b,
and c, which significantly reduces the amount of calculation and does not require matrix
inversion. However, this method is only suitable for four satellites [11]. However, in actual
positioning scenarios, the receiver can often receive more than four satellites. It showed
that increasing the number of satellites used for the location would reduce the GDOP and
improve the positioning accuracy [12]. Thus, it makes sense to try to use all available
pseudolite signals received by the receiver. Shing and Doong proposed a closed-form
equation for computing GDOP for reducing the calculation based on four eigenvalues
in previous studies [9]. This method can perform GDOP calculation for more than four
satellites without a large amount of training data, as in the BP neural network algorithm.
When people move around indoors, the height tends to be constant and people pay more
attention to the horizontal orientation of the situation [4,13,14]. However, in indoor posi-
tioning scenarios, the overall positioning situation, such as different pseudolites having
different variance, should be considered, instead of the size of the Horizontal dilution of
precision (HDOP) value of a specific point.

To find the optimal geometric layout of pseudolites, Hu et al. [15] proposed two
pseudo-satellite solutions based on airship positioning in near-space, focusing on indepen-
dent airship network positioning solutions. It also points out the significant advantages
of pseudo-satellites in nearby space airships. However, this method only focuses on the
layout of the four pseudolites. Yi et al. [16] proposed the layout of 6 pseudolites and
analyzed the influence of altitude angles and azimuth angles. However, these articles pay
more attention to user positioning in the air, and most of them are based on simulation
experiments without actual positioning experiments for verification and analysis. However,
these methods only consider the precision factor and do not consider the differences of
different pseudolites. For solving these problems in indoor ground-based systems, this pa-
per proposes a simple calculation method for weighted HDOP concerning the eigenvalues
used by Simon and El-Sherief (1995) [17] and then compared with the result of the inverse
matrix operation [18] to verify the accuracy of the method. To quickly find the optimal
solution of the pseudolite layout, a particle swarm optimization algorithm [19] based on
simulated annealing is used. The main contributions are as follows: We analyzed the
effect of the geometric distribution of the sensors on the positioning of the receivers. Then,
we use a weighted calculation method to ensure a reasonable precision factor calculation.
The actual system is used to verify the rationality of the proposed method. We propose a
pseudolite layout algorithm, which can be used not only for pseudolite layout but also as a
reference algorithm for Bluetooth and Wi-Fi layout.

In the following sections, we revisit the geometric interpretation of GNSS DOP factors
and the mathematical derivation of some approximate methods in Section 2. A newly
proposed method is proposed and verified through a large number of simulation experi-
ments in Section 3. In Section 4, we conduct a real-world experiment to collect data and
demonstrate the proposed algorithm with a ground-based navigation system. The Pearson
correlation coefficient is calculated by using the collected static positioning results, which
verifies that the proposed method has a linear relationship with the actual application.
Future work and conclusions are summarized in the last section.
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2. Geometric Precision Factor

In this section, we first analyze the influence of geometric accuracy factor on position-
ing, and then review the traditional calculation methods and existing fitting calculation
methods. The fitting calculation method of WHDOP is proposed in the end of the section.

2.1. Mathematical Description of Geometric Precision Factor

The positioning principle of pseudolite is similar to GNSS, which uses the time of
the satellite arriving at the user to measure the distance. A typical indoor positioning
system generally consists of more than four transmission base stations. The base stations
maintain time synchronization through the following methods: share a common clock
source through wire connection, or maintain clock synchronization with the reference
base station through wireless transmission. The receiver receives the broadcast signal of
the station and then processes the signal to obtain the encoding and phase measurement
values. The difference with GNSS is the multipath impact is more severe in the indoor
environment. In order to reduce the impact of multipath, we usually use the carrier phase
to obtain the location of the receiver. Since there is no ionosphere between the pseudolite
and the receiver, the delay does not exist in the equation. Besides, because the distance
between each base station and the receiver is short, the impact of the troposphere is small
and can be ignored. The carrier phase observation between the ground-based station and
the receiver is expressed as follows [7]:

φk
i = λ−1‖si − uk‖+ Ni − fcδti + fcδtk

u + wk
i , (1)

‖si − uk‖ =
√
(xi − xu)2 + (yi − yu)2 + (zi − zu)2, (2)

where si is the three-dimensional position of the base station i, and uk is the position of
the receiver. Ni stands for the ambiguity values, which are considered to be constant. In
this experiment, we connect all the transmitters to the same crystal oscillator by wire. The
time of all the stations can be considered well synchronized. The clock error variance of the
transmitter δti can be considered constant. The clock difference of receiver δtu0 at the initial
time and the ambiguity can be obtained in known-point-initialization (KPI) positioning
method [20]. fc and λ denote the frequency and carrier. wk

i represents other noises, such as
multipath and measurement deviation, which are the main factors affecting positioning
accuracy. In indoor scenes, users mostly move on a horizontal plane, the height of the
receiver is constant and measurable, and the receiver only needs to solve two-position
coordinate components in the horizontal direction. When we use the least square method
for positioning, we only need three pseudolites to solve it. Like GNSS, the positioning
accuracy of pseudolite is mainly related to the following two factors: measurement error
and the geometric distribution of pseudolites. The smaller the DOP value present, the
better the constellation distribution structure and the higher the positioning accuracy.
The calculation of the DOP factor is based on the elements along the diagonal of matrix
H [21,22], which is calculated as follows:

H = (GTG)−1 =

∣∣∣∣∣∣∣∣
h11

h22
h33

h44

∣∣∣∣∣∣∣∣, (3)

where

G =


− cos θ(1) sin α(1) − cos θ(1) cos α(1) − sin θ(1) 1
− cos θ(2) sin α(2) − cos θ(2) cos α(2) − sin θ(2) 1

· · · · · · . . . . . .
− cos θ(N) sin α(N) − cos θ(N) cos α(N) − sin θ(N) 1

. (4)

The matrix H ultimately depends on the number of visible satellites and the geometric
distribution relative to the positioning users and has no relationship with the signal strength
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of pseudolites or the quality of receivers. The corresponding DOP values can be calculated
according to the weight coefficient matrix H. Usually, we use GDOP to observe geometric
accuracy, HDOP to indicate horizontal accuracy, and Vertical dilution of precision (VDOP)
to observe vertical height precision. They are calculated as follows:

GDOP =
√

h11 + h22 + h33 + h44, (5)

HDOP =
√

h11 + h22, (6)

VDOP =
√

h33. (7)

Note that the DOP definition assumes that all tracking pseudolites of the system mea-
surements have the same accuracy. However, these measurements of different pseudolites
have different variances, especially when the elevation difference is enormous. When the
pseudolite is installed at a high altitude from the ground, the elevation is low when the
receiver is far away from the pseudolites. The multipath effect is more severe than that of
the satellite with high elevation. Therefore, the proper weighting measurement of a single
satellite should be considered. The weighted GDOP (WGDOP) [23] has been put forward
as follows:

WGDOP =
√

tr[(GT
NWNGN)−1]. (8)

The weighted matrix is expressed as:

WN = diag(
1
σ2

1
...

1
σ2

N
). (9)

The method for calculating the variance of the measures adopted in Pan et al. [24] is
given by:

σ2
i = σ2

0 /(sinE)2. (10)

σ0 is the standard deviation (STD) of code observations, which is different for each
constellation. E is the satellite elevation angle and stands for the satellite elevation angle,
and σ0 is different for different GNSS constellations. Since there is only one constellation
in ground-based navigation, we set the value to 1. Similar to the calculation method of
WGDOP, our proposed WHDOP uses the same weight matrix as follows:

WN = diag(sinE2
1...sinE2

i ...sinE2
N). (11)

2.2. Fitting Algorithm of GDOP

In order to reduce the amount of calculation, Simon used the artificial Neural Network
(ANN) approach for GDOP approximation. There are two stages of operation in the neural
network method. First, data with known associated pairs is sent to the network for learning
weights in the training phase. The goal is to minimize the difference between the output
of the network and the real output. Researchers spent four hours and 47 min on VAX
machines to train satisfactory artificial neural networks. The final root mean squared error
(RMSE) was 1.44%.

From their point of view, the calculation of DOP consists of four independent eigen-
values, and the GDOP can be expressed as:

GDOP = trace(H) =
√

λ−1
1 + λ−1

2 + λ−1
3 + λ−1

4 . (12)

The selection of eigenvalues is defined as follows:

h1(λ) ≡ λ1 + λ2 + λ3 + λ4 = trace(H), (13)

h2(λ) ≡ λ2
1 + λ2

2 + λ2
3 + λ2

4 = trace(H2), (14)

h3(λ) ≡ λ3
1 + λ3

2 + λ3
3 + λ3

4 = trace(H3), (15)
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h4(λ) ≡ λ1λ2λ3λ4 = det(H). (16)

Shing and Doong presented a simple closed-form equation for solving this equation by
using Newton’s identities from symmetric polynomials [9]. Cubic elementary symmetric
quaternion polynomial can be written down as:

e3(X1, X2, X3, X4) = X1X2X3 + X1X2X4 + X1X3X4 + X2X3X4. (17)

It can be written as follows by using Newton’s identities:

e3 =
1
3
[
1
2
(p2

1 − p2)p1 − p1 p2 + p3], (18)

where p stands for the power sum symmetric polynomial of degree k, for example:

pk(X1, X2, ..., Xn) = Xk
1 + Xk

2 + ... + Xk
n. (19)

The expression of GDOP can be expressed as:

GDOP =

√
λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4

λ1λ2λ3λ4
. (20)

After the above theoretical calculations, the final approximate expression is as follows:

GDOP =

√
0.5h3

1 − 1.5h1h2 + h3

3h4
. (21)

2.3. WHDOP Fitting Algorithm

The GDOP value obtained by the calculation method in Equation (21) does not need
to be inverted. Which reduces the amount of calculation and does not incur any approx-
imation error nor require much training. Since these four eigenvalues are derived from
elevation and azimuth, they can also be used to calculate HDOP. This paper proposes a
weighted HDOP calculation method with the same form as GDOP, as follows:

WHDOP =

√
ah3

1 + bh1h2 + ch3

dh4
. (22)

Among them, abcd is a fixed coefficient. When the scene is fixed, abcd has a set of
optimal solutions to minimize the residuals between weighted HDOP solved by traditional
algorithms and the proposed method. We use a genetic algorithm to find the suitable
value of abcd. A genetic algorithm is a kind of random optimization derived from the
evolution of the survival of the fittest. Unlike traditional search algorithms, we can process
multiple individuals in the group simultaneously by using genetic algorithms. This means
that multiple search space solutions are evaluated, reducing the risk of falling into a
locally optimal solution. The genetic algorithm does not have the limitation of function
continuity in the derivation. Directly operating on structural objects is one of the main
features of the algorithm. Genetic algorithm uses a probabilistic method to find the optimal
solution, which has a certain inherent, implicit parallelism and good global optimization
capabilities. When the information is obtained in the evolution process to organize the
searching, individuals with more excellent fitness have a higher survival probability. They
are more adapted to the environmental and genetic structure. The search direction can be
adjusted adaptively, and the optimized search space can be automatically obtained and
guided when searching for the optimal value. In summary, the genetic algorithm is suitable
for solving the four-parameter problems.

The specific steps are as follows: first, randomly generate 4N initial data for abcd,
which constitutes a group. We use these 4N random data as a starting point and iteratively
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update. In the biological world, the fitness of the theory of evolution represents the ability
of an individual to adapt to the environment. Here, we use this fitness function as an
evaluation indicator and the objective function to be optimized. In the genetic algorithm,
the fitness function needs to be compared and sorted. The selection probability is calculated
on this basis at the same time, so the value of the fitness function should be positive. We
randomly select dozens of points in the indoor positioning scene and use traditional
methods as function 6 and function 8 to calculate their WHDOP values. Then, the sum of
the absolute value of the difference with the proposed method is also called as L1-norm is
used as the fitness function, as follows:

F f itness =
N

∑
i=1

abs(WHDOPiproposed −WHDOPitroditional). (23)

Afterward, through selection, excellent individuals are selected from the exchanged
groups so that they have the opportunity to reproduce as parents for the next generation.
The process to find the smallest value of the fitness function. The next step is mutation.
A certain number of individuals are randomly selected in the group. The value of a gene
in the data is randomly changed with a certain probability for the selected individuals,
just as in biological evolution. In genetic algorithms, the probability of mutation is low,
and this value is usually between 0.001 and 0.01, which provides an opportunity for new
values to be generated. Finally, we should stop the program when the required deviation
is satisfied, or the algorithm iteration reaches the maximum genetic algebra. When we get
the calculation method of WHDOP, we can use it to carry out the geometric layout of the
base stations.

Pseudolites are often placed on the top of the house to make more places have direct
signals and avoid obstacles in the indoor environment. All the WHDOP values of indoor
positioning points will also change accordingly when the position of one of the pseudolites
is changed. Therefore, selecting a suitable location for all the pseudolites requires many
calculations to have a reasonable WHDOP for all potential points to be located. In order to
obtain this solution quickly, we adopted an improved particle swarm algorithm based on
the simulated annealing algorithm.

The simulated annealing algorithm is inspired by the simulation of the reliable cooling
process. When the solid is heated, the thermal motion of the atoms in the solid increases
continuously, and the internal energy increases. As the temperature rises, the orderly move-
ment of the solid particles is broken. The particles inside the solid become disordered with
the increase in temperature. The particles gradually tend to be ordered as the temperature
of the object decreases and, finally, reaching the ground state at room temperature, where
the internal energy is also the smallest. It is a theoretically global optimal algorithm, which
has been widely used in engineering.

We set the internal energy as the objective function value and consider the temperature
T as a control parameter in actual application. The simulated annealing algorithm has no
relation to the initial value, and the solution obtained by the algorithm has no relation to
the initial solution. Simulated annealing is an algorithm with asymptotic convergence.

Starting from a random solution, a new candidate value is randomly generated from
the domain. The acceptance criterion allows the objective function to accept the solution
that deteriorates the objective function within a specific range. The optimization process
is to continuously generate new solutions (different pseudolite geometric distributions),
calculate the objective function, and choose to accept or reject this result according to a
certain probability. In the particle swarm algorithm, if the best position of the group is at
the local minimum, all particles tend to the local minimum. We can improve the particle
swarm algorithm and increase its global search ability by using simulated annealing.

The original particle swarm algorithm updates the speed and position of the particles
as follows, where xi,j is the position of the pseudolite, cr represents the random probability,
c1 and c2 are set to 2.1, and pg represents the local best value. The number of populations
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of the particle swarm algorithm is set to 40, the maximum number of iterations is 100, and
the total number of calculations is 4000.

vi,j(k + 1) = χ[vi,j(k) + c1r1(pi,j(k)− xi,j(k)) + c2r2(pg,j(k)− xi,j(k))], (24)

χ =
2∣∣∣2− (c1 + c2)−

√
(c1 + c2)2 − 4(c1 + c2)

∣∣∣ (25)

xi,j(k + 1) = xi,j(k) + vi,j(k + 1)(j = 1, ..., n). (26)

In order to minimize the overall WHDOP value, the objective function is set as follows:

F = WHDOP1 + WHDOP2 + WHDOPk + ... + WHDOPn, (27)

where WHDOPk represents the value of weighted HDOP of the k-th positioning point
relative to the current pseudolite geometric distribution. In order to meet the requirements
of time synchronization, the distance between the slave station and the master station
should be kept within a certain range.

‖s0 − si‖ ≤ dmax. (28)

s0 indicates the location of master station, si indicates the slave station. dmax is the
maximum distance of wireless communication. The first step is to generate a new variable
in the solution space. In order to reduce the time complexity of the algorithm, a method
that can generate a new solution through simple transformation is usually selected, such as
replacing or swapping all or part of the candidate values. We select a pi position to replace
pg with a certain probability of avoiding the algorithm falling into the local minimum
solution. The second step is to calculate the objective function difference corresponding to
the new candidate value. The calculation equation is as follows:

∆F = Fpi − Fpg . (29)

The third step is to judge whether the new solution is accepted. The calculation
method of probability is as follows: min{1, exp(−∆F /T)}> random [0, 1]. If this calculation
is satisfactory, we choose to accept the new solution. The last step is to modify the objective
function value when the new candidate value is determined to be accepted. The current
solution has completed one iteration when this step is done. The next round of iteration is
carried out based on the current solution. However, if the new candidate value is judged to
be discarded, the next round of trials will continue based on the original solution. After
many solution changes, we can find the minimum value of the objective function under a
specific T and, finally, obtain the optimal global pseudolites distribution solution.

3. Simulation Experiment of the Proposed Algorithm

In this section, we first introduce the method of fitting WHDOP, and then propose the
layout method. We analyze the time complexity of the proposed method. In the last part of
this section, we conduct test experiments in a real environment.

3.1. Simulation for Calculating WHDOP

We conducted simulation experiments to verify the accuracy of the proposed algorithm
for WHDOP calculation. Assume that the positioning area is a 7 × 9 m rectangle, and the
pseudolites are installed at the height of 8 meters in this positioning area. To solve the four
unknown solutions of abcd in Equation (22), we randomly generated 100 points in the
positioning area and randomly generated six pseudolite coordinates, as shown in Figure 1.
We calculated the WHDOP value of each point by using the traditional method. Then, we
put these WHDOP into Equation (23) and use the genetic algorithm to solve the unknown
parameter abcd.
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Figure 1. Six pseudolites and positioning points.

The values of abcd obtained are: −0.259, 0.173, 0.132, 1064.355. To verify the accuracy
of the proposed WHDOP algorithm, we use the Monte Carlo method [25] to randomly
generate 500 points in the area and calculate the value of WHDOP by two methods for each
point. We randomly changed the coordinate position of the pseudolites and performed
it ten times in total. The average error of all points WHDOP is 0.743. The mean value
of WHDOP is 12 under the traditional method. We drew the difference between the two
values of 50 points, as shown in Figure 2.

5 10 15 20 25 30 35 40 45 50

Points 

0

5

10

15

20

25

30

W
H

D
O

P

Traditional method

Proposed method

Figure 2. The value of WHDOP under six pseudolites by two different calculation methods.

An example for computing WHDOP is illustrated. Suppose a random distribution of
6 pseudolites is available to the receiver, and the direction cosines as follows:
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G =

∣∣∣∣∣∣∣∣∣∣∣∣

−0.343 0.316 −0.885 1.0
−0.120 0.125 −0.985 1.0
−0.351 0.440 −0.826 1.0
−0.410 0.159 −0.898 1.0
−0.593 0.169 −0.788 1.0
−0.630 −0.148 −0.763 1.0

∣∣∣∣∣∣∣∣∣∣∣∣
, (30)

W = [0.783, 0.970, 0.683, 0.807, 0.0620, 0.582], (31)

H = G
′
diag(W)G, (32)

H =

∣∣∣∣∣∣∣∣
83.834 −18.518 170.532 183.701
−18.518 12.141 −35.098 −39.817
170.532 −35.098 386.412 407.613
183.701 −39.817 407.613 432.163

∣∣∣∣∣∣∣∣. (33)

Then, get the value of h1 through trace(H), and get the value of h2 and h3 through
trace(H2) and trace(H3). The values of h1, h2, h3, and h4 are 8.889, 74.100, 637.300, 1.701×
10−4. According to the traditional calculation method, we can get the value of WHDOP
is 9.797. The WHDOP result obtained by using Equation (22) is 9.449. According to
the method of six pseudolites, we also carried out the calculation of four pseudolites
and eight pseudolites and summarized the results in Table 1. It should be noted that,
when randomly generating the pseudolite distribution, we avoided the case where the
pseudolite distribution is concentrated or linear and chose the relatively scattered geometric
distribution of pseudolites for calculation. This is also in line with the situation when the
ground-based system is deployed, making the overall DOP in the positioning area small.

Table 1. Fitting parameters and errors under different numbers of pseudolites.

Number of Pseudolites 4 6 8

a −0.295 −0.259 −0.656
b 0.401 0.173 0.394
c −0.052 0.132 0.387
d 313 1064 1995

Mean WHDOP value 14.072 12.002 6.843
Average error 1.134 0.743 0.643

Error percentage 8.66% 6.19% 9.40%

3.2. Pseudolites Geometric Planning Simulation

Assume that the positioning area is a 7 × 9 m rectangle, and the pseudolites are
installed at the height of 8 m in this positioning area, which is the same as 3.1. We used
the improved particle swarm algorithm based on simulated annealing to simulate the
geometric layout of pseudolites. We set the number of iterations N to 100. The actual
iteration process can be seen from Figure 3, where the algorithm has converged when
N = 32.
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Figure 3. Correspondence between iterative process and F value.

From the operation results, the improved geometric layout method of pseudolites has
good convergence and robustness. In terms of time complexity, it is O(N

2
) and does not

change with the number of pseudolites. In computer science, brute force or exhaustive
search [26], also known as generating and test, can provide global optimal solutions. The
method consists of systematically enumerating all possible candidates for a solution and
checking that each candidate matches the problem description. Although brute force
research is easy to implement, if a solution exists, it will certainly find it. However, its cost
is proportional to the number of candidate solutions, and, due to this, in many practical
problems, the cost consumed grows rapidly with the size of the problem. The results of the
brute force search algorithm are more accurate but consume a lot of computing resources.
We can use the results of the brute force search algorithm to verify the accuracy of our
proposed algorithm. If we use the brute force search method, as the number of pseudolites
increases, the computational time complexity will increase exponentially. We use four
pseudolites to conduct a brute force search and compare the results with the proposed
method. The search process is as follows, assuming that, with 1 meter as the step unit, the
x-coordinate range of pseudolite one starts from 0 to 9, and the y-coordinate range is 0 to 7.
The other three pseudolites are traversed at the same time as the first pseudolite. In the
process of searching, the average WHDOP value at each group of positions is recorded.
After traversing all positions, the position distribution of the pseudolites with the minimum
WHDOP solution is found. The time complexity of the algorithm is O(N4) in terms of time
complexity. This process requires (9 ∗ 7)4 = 15,752,961 operations. The time complexity
increases exponentially with the number of pseudolites. We need to multiply the calculation
of WHDOP by 500 points to get the total calculation amount. Due to the limited computing
resources, we could only perform a global brute force search of 4 pseudolites. In order to
verify the accuracy of the proposed method, we plot the results of two different methods,
as shown in Figure 4.

We put the distribution results of WHDOP in Table 2. The average WHDOP value of
the proposed method and brute force search is only 0.1, (2%), indicating the accuracy of
the proposed method.
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Figure 4. Comparison of the results of brute force search (top) and the proposed algorithm (bottom).

Table 2. Distribution of WHDOP values using different methods under four pseudolites.

WHDOP Value ≤4 4–5 5–6 >6 Mean WHDOP

Proposed Method 41.8% 21.6% 13.8% 22.8% 4.8
Brute Force Search 39.4% 26.6% 14.0% 20.0% 4.7

We simulated the layout of six pseudolites and eight pseudolites, as shown in
Figures 5 and 6. There is a pseudolite at every corner and center, which makes the overall
WHDOP value small. Then, we make statistics of WHDOP results, as shown in Table 3.
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Figure 5. WHDOP distribution map of 6 pseudolites.
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Figure 6. WHDOP distribution map of 8 pseudolites.

Table 3. Distribution of WHDOP values using the proposed method under six pseudolites and
eight pseudolites.

WHDOP Value ≤4 4–5 5–6 > 6 Mean WHDOP

6 pseudolites 78.0% 10.2% 10.8% 1.0% 2.958
8 pseudolites 85.8% 8.2% 5.8% 0.4% 2.694

In this positioning area, from four pseudolites to six pseudolites, WHDOP decreased
by 1.888. However, the WHDOP decreased by 0.264 from six pseudolites to eight pseudo-
lites, indicating that the distribution of six pseudolites has a good positioning accuracy in
this area.

3.3. Actual Positioning Experiment

The ground navigation system consists of eight base stations, and each base station
is regarded as a pseudolite. The system is installed in a 15 m ∗ 15 m room, as shown
in Figure 7. We conducted a static test at a known location (the “receiver” in Figure 7)
to evaluate the pseudolite signal quality and indoor positioning accuracy. The receiver
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includes the receiving antenna and the Ublox module connected to the computer. The
receiving point location is far from the wall, and there are no other obstacles around, which
can help the receiver reduce the impact of multipath. Then, we used the receiver to collect
carrier phase and pseudorange data.

Figure 7. Ground-based navigation system receiving module.

The signal transmission baseband unit of the pseudolite is a multi-channel RF module
(ad9371) driven by FPGA and DSP. Each station can transmit an L1 (1575.42 MHz) signal,
and each base station includes an antenna. All transceivers share a common clock source
for time synchronization. Pseudolites are installed on the top of the house, on the same
horizontal plane, and the maximum height difference is within 1.5 cm. In order to make
the signal strength of the pseudolites received high and reduce the influence of multipath,
we put the pseudolites at a high position and keep the distance between the pseudolites to
avoid signal interference. We used an Electronic Total Station for antennas of transceivers
coordinates determination, and the calibration accuracy is 1–2 mm. We used a relative
coordinate system, where a particular position in the room is the origin of the coordinates,
and other coordinates are the relative positions from this point. We plot the coordinate
distribution of pseudolites as shown in Figure 8. The coordinates of the pseudolites are
shown in Table 4.

Table 4. Position distribution of pseudolites.

Pseudolite X (m) Y (m) Z (m)

1 3.5659 −1.8707 11.3553
2 −2.8797 −2.2747 11.3568
3 −5.2303 0.464 11.3562
4 −5.6214 7.344 11.3456
5 −3.3354 9.1587 11.3428
6 2.6414 9.5559 11.3459
7 5.098 8.0073 11.3476
8 5.5518 1.1654 11.3507
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4. Experiments by Indoor Navigation System
4.1. Static Point Positioning

We use the KPI positioning method proposed in Reference [20] and use carrier phase
observations to obtain positioning results. Using carrier phase for static point positioning
can reduce the influence of multipath and obtain centimeter-level positioning solutions.
We performed static positioning at the corner and center of the positioning area, as shown
in Figure 9. The relative height value of all test points is 0.35 m.

It can be analyzed from Figure 9 that, when the positioning point is closer to the corner,
the value of WHDOP is larger the result of static positioning is more scattered, and shows
a linear distribution. Conversely, when the position of the receiver is close to the center, the
value of WHDOP is smaller, and the positioning result shows a tendency to cluster. Then,
we tested the positioning of the other three corners and plotted the positioning results, as
shown in Figure 10. In the other three corners, the coordinates are A10 (3.0223, 0.7152), J1
(−2.9701, 5.7737), and J10 (−2.7025, 0.3928) shows the same trend as A1, that is, a linear
positioning error.

Figure 9. Cont.
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Figure 9. (top) The positioning result of the static point A1 (2.6777, 6.059); (bottom) the positioning
result of the static point E5 (0, 2.6734).

Figure 10. Positioning results in the four corners and central area of the positioning area.

4.2. Pearson Correlation Coefficient Verification

We carried out the Pearson correlation coefficient between WHDOP and the position-
ing result to verify that the proposed WHDOP method has practical application significance.
Pearson product-moment correlation coefficient (PPMCC), also called Pearson correlation
coefficient (PCC for short), is used to measure the correlation (linear correlation) between
two variables, X and Y. In statistics, its value is between −1 and 1. The larger the absolute
value of the correlation coefficient presents, the stronger the correlation between the two
sets of data. If one variable increases, the other variable also increases, indicating a positive
correlation between them, and the correlation coefficient is greater than 0. If one variable
increases, the other variable decreases, indicating a negative correlation between them, and
the correlation coefficient is less than 0. When the correlation coefficient is closer to 1 or
−1, the correlation is vital. On the contrary, when the correlation coefficient is closer to
0, the correlation is weaker. The Pearson correlation coefficient between two sets of data
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is defined as the covariance and standard deviation quotient. The calculation equation is
as follows:

r =
cov(X, Y)

σXσY
, (34)

r = ∑n
i=1(Xi − X̄)(Yi − Ȳ)√

∑n
i=1(Xi − X̄)2

√
∑n

i=1(Yi − Ȳ)2
, (35)

where X and Y are the averages of the two sets of data. We randomly selected 20 positioning
points and calculated the positioning variance and WHDOP of each positioning point.
Among the twenty points, the static positioning variance of 19 points is within 1.2 cm, and
the positioning variance of only one point is 1.5 cm. This shows that the positioning system
can reach centimeter-level or even sub-centimeter-level positioning accuracy. According to
the Equation (35), the correlation coefficient of these points is calculated to be 0.82, which
proves that the positioning error has a linear relationship with our proposed WHDOP. We
performed a linear fit according to the minimum residual sum, as shown in Figure 11.
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Figure 11. WHDOP and positioning residual fitting line.

Most of the points are distributed to the straight line, and a few points deviate from
the straight line, which can be seen from the Figure 11. The sum of squared residuals is 64
(mm2). In order to analyze the result, a histogram of the residual result points is marked as
shown in Figure 12.
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Figure 12. Residual distance and quantity statistics chart.

5. Discussion and Conclusions

Unlike GNSS, indoor positioning focuses on horizontal positioning accuracy. We
proposed a new method for evaluating horizontal positioning accuracy, called WHDOP.
In addition to the horizontal precision factor, as in the traditional method, the pseudolite
signal strength factor received by the receiver is also included in WHDOP, which can reflect
the accurate positioning accuracy. Then, based on the traditional inversion operation,
this study provided yet another method to compute WHDOP. The distance between base
stations is also taken into account in the deployment constraints to meet the need for time
synchronisation between base stations in wireless systems. A practical example is used to
illustrate the calculation process of the proposed WHDOP, which can reduce the amount of
calculation during the pseudolites layout search process. In contrast to the conventional
simulation approach, real ground-based navigation which can realize centimeter-level
positioning precision was built up for tests. Eight pseudolites were used for testing and the
distribution of the pseudolites was accurately measured. Within the positioning area, grid
points were divided for positioning sampling, and their respective WHDOP values and
positioning standard deviations were calculated. We used actual test examples to verify
the practical application significance of the proposed WHDOP. The correlation coefficient
between 20 randomly selected static test results, which shows a strong linear relationship
between the WHDOP value and the positioning accuracy. This proves the superiority of
our proposed method. Based on WHDOP, a particle swarm algorithm based on a simulated
annealing algorithm is proposed to search for the position of pseudolites. The accuracy of
the method are proved by the simulation experiments.
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